usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

SCONE: Secure Linux Containers with Intel SGX

Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, and Andre Martin,
Technische Universitdt Dresden; Christian Priebe, Joshua Lind, Divya Muthukumaran,
Dan O’Keeffe, and Mark L Stillwell, Imperial College London; David Goltzsche,
Technische Universitdt Braunschweig; Dave Eyers, University of Otago; Riidiger Kapitza,
Technische Universitdt Braunschweig; Peter Pietzuch, Imperial College London;
Christof Fetzer, Technische Universitdit Dresden

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov

This paper is included in the Proceedings of the
12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI '16).
November 2-4, 2016 - Savannah, GA, USA
ISBN 978-1-931971-33-1

Open access to the Proceedings of the
12th USENIX Symposium on Operating Systems
Design and Implementation

is sponsored by USENIX.

-ﬁ
~

FEEEEEEET

|1||1|||||||||||IhJ|||||-'

.
+ + + N e -

SCONE: Secure Linux Containers with Intel SGX

Sergei Arnautovl, Bohdan Trachl, Franz Gregorl, Thomas Knauth], Andre Martin],
Christian Priebe”, Joshua Lind”, Divya Muthukumaran®, Dan O’Keeffe®, Mark L Stillwell*,
David Goltzsche3, David Eyers4, Riidiger Kapitza3, Peter Pietzuchz, and Christof Fetzer'

! Fakultat Informatik, TU Dresden, christof.fetzer@tu-dresden.de
2Dept. of Computing, Imperial College London, prp@imperial.ac.uk

3Inf0rmatik, TU Braunschweig, rrkapitz@ibr.cs.tu-bs.de

4Dept. of Computer Science, University of Otago, dme@cs.otago.ac.nz

Abstract

In multi-tenant environments, Linux containers managed
by Docker or Kubernetes have a lower resource footprint,
faster startup times, and higher I/O performance com-
pared to virtual machines (VMs) on hypervisors. Yet
their weaker isolation guarantees, enforced through soft-
ware kernel mechanisms, make it easier for attackers to
compromise the confidentiality and integrity of applica-
tion data within containers.

We describe SCONE, a secure container mechanism
for Docker that uses the SGX trusted execution support
of Intel CPUs to protect container processes from out-
side attacks. The design of SCONE leads to (i) a small
trusted computing base (TCB) and (ii) a low performance
overhead: SCONE offers a secure C standard library in-
terface that transparently encrypts/decrypts I/O data; to
reduce the performance impact of thread synchronization
and system calls within SGX enclaves, SCONE supports
user-level threading and asynchronous system calls. Our
evaluation shows that it protects unmodified applications
with SGX, achieving 0.6x—1.2x of native throughput.

1 Introduction

Container-based virtualization [53] has become popu-
lar recently. Many multi-tenant environments use Linux
containers [24] for performance isolation of applications,
Docker [42] for the packaging of the containers, and
Docker Swarm [56] or Kubernetes [35] for their deploy-
ment. Despite improved support for hardware virtual-
ization [21, 1, 60], containers retain a performance ad-
vantage over virtual machines (VMs) on hypervisors:
not only are their startup times faster but also their I/O
throughput and latency are superior [22]. Arguably they
offer weaker security properties than VMs because the
host OS kernel must protect a larger interface, and often
uses only software mechanisms for isolation [8].

More fundamentally, existing container isolation

mechanisms focus on protecting the environment from
accesses by untrusted containers. Tenants, however,
want to protect the confidentiality and integrity of their
application data from accesses by unauthorized parties—
not only from other containers but also from higher-
privileged system software, such as the OS kernel and
the hypervisor. Attackers typically target vulnerabilities
in existing virtualized system software [17, 18, 19], or
they compromise the credentials of privileged system ad-
ministrators [65].

Until recently, there was no widely-available hard-
ware mechanism for protecting user-level software from
privileged system software. In 2015, Intel released the
Software Guard eXtensions (SGX) [31] for their CPUs,
which add support for secure enclaves [26]. An enclave
shields application code and data from accesses by other
software, including higher-privileged software. Memory
pages belonging to an enclave reside in the enclave page
cache (EPC), which cannot be accessed by code outside
of the enclave. This makes SGX a promising candidate
for protecting containers: the application process of a
container can execute inside an enclave to ensure the con-
fidentiality and integrity of the data.

The design of a secure container mechanism using
SGX raises two challenges: (i) minimizing the size of
the trusted computing base (TCB) inside an enclave
while supporting existing applications in secure contain-
ers; and (ii) maintaining a low performance overhead for
secure containers, given the restrictions of SGX.

Regarding the TCB size, prior work [6] has demon-
strated that Windows applications can be executed in en-
claves, but at the cost of a large TCB (millions of LOC),
which includes system libraries and a library OS. Any
vulnerability in the TCB may allow an attacker to access
application data or compromise its integrity, which mo-
tivates us to keep a container’s TCB size inside of the
enclave small.

The performance overhead of enclaves comes from the
fact that, since the OS kernel is untrusted, enclave code

USENIX Association

12th USENIX Symposium on Operating Systems Design and Implementation 689

christof.fetzer@tu-dresden.de
prp@imperial.ac.uk
rrkapitz@ibr.cs.tu-bs.de
dme@cs.otago.ac.nz

cannot execute system calls. An enclave thread must
copy memory-based arguments and leave the enclave be-
fore a system call. These thread transitions are expen-
sive because they involve saving and restoring the en-
clave’s execution state. In addition, enclaves have lower
memory performance because, after cache misses, cache
lines must be decrypted when fetched from memory. Ac-
cesses to enclave pages outside of the EPC cause expen-
sive page faults.

To maintain a small TCB for secure containers, we ob-
serve that containers typically execute network services
such as Memcached [23], Apache [44], NGINX [47] and
Redis [46], which require only a limited interface for sys-
tem support: they communicate with the outside via net-
work sockets or stdin/stdout streams, use isolated or
ephemeral file systems, and do not access other I/O de-
vices directly. To mitigate the overhead of secure con-
tainers, we note that enclave code can access memory
outside of the enclave without a performance penalty.
However, for applications with a high system call fre-
quency, the overhead of leaving and re-entering the en-
clave for each system call remains expensive.

We describe SCONE, a Secure CONtainer Environ-
ment for Docker that uses SGX to run Linux applications
in secure containers. It has several desirable properties:

(1) Secure containers have a small TCB. SCONE
exposes a C standard library interface to container
processes, which is implemented by statically linking
against a libc library [38] within the enclave. System
calls are executed outside of the enclave, but they are
shielded by transparently encrypting/decrypting applica-
tion data on a per-file-descriptor basis: files stored out-
side of the enclave are therefore encrypted, and network
communication is protected by transport layer secu-
rity (TLS) [20]. SCONE also provides secure ephemeral
file system semantics.

(2) Secure containers have a low overhead. To reduce
costly enclave transitions of threads, SCONE provides a
user-level threading implementation that maximizes the
time that threads spend inside the enclave. SCONE maps
OS threads to logical application threads in the enclave,
scheduling OS threads between application threads when
they are blocked due to thread synchronization.

SCONE combines this with an asynchronous system
call mechanism in which OS threads outside the enclave
execute system calls, thus avoiding the need for enclave
threads to exit the enclave. In addition, SCONE reduces
expensive memory accesses within the enclave by main-
taining encrypted application data, such as cached files
and network buffers, in non-enclave memory.

(3) Secure containers are transparent to Docker. Se-
cure containers behave like regular containers in the

Docker engine. Since container images are typically gen-
erated by experts, less experienced users can therefore
benefit from SCONE, as long as they trust the creator of a
secure container image. When executing secure contain-
ers, SCONE requires only an SGX-capable Intel CPU,
an SGX kernel driver and an optional kernel module for
asynchronous system call support.

Our experimental evaluation of SCONE on SGX hard-
ware demonstrates that, despite the performance limi-
tations of current SGX implementations, the through-
put of popular services such as Apache, Redis, NGINX,
and Memcached is 0.6x—1.2x of native execution, with
a 0.6x-2x increase in code size. The performance of
SCONE benefits from the asynchronous system calls and
the transparent TLS encryption of client connections.

2 Secure Containers

Our goal is to create a secure container mechanism that
protects the confidentiality and integrity of a Linux pro-
cess’ memory, code, and external file and network I/O
from unauthorized and potentially privileged attackers.

2.1 Linux containers

Containers use OS-level virtualization [35] and have be-
come increasingly popular for packaging, deploying and
managing services such as key/value stores [46, 23] and
web servers [47, 25]. Unlike VMs, they do not require
hypervisors or a dedicated OS kernel. Instead, they use
kernel features to isolate processes, and thus do not need
to trap system calls or emulate hardware devices. This
means that container processes can run as normal sys-
tem processes, though features such as overlay file sys-
tems [10] can add performance overheads [22]. Another
advantage of containers is that they are lightweight—
they do not include the rich functionality of a standalone
OS, but instead use the host OS for I/O operations, re-
source management, etc.

Projects such as LXC [24] and Docker [42] create
containers using a number of Linux kernel features, in-
cluding namespaces and the cgroups interface. By us-
ing the namespace feature, a parent process can create
a child that has a restricted view of resources, includ-
ing a remapped root file system and virtual network de-
vices. The cgroups interface provides performance isola-
tion between containers using scheduler features already
present in the kernel.

For the deployment and orchestration of containers,
frameworks such as Docker Swarm [56] and Kuber-
netes [35] instantiate and coordinate the interactions of
containers across a cluster. For example, micro-service
architectures [58] are built in this manner: a number

690 12th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

of lightweight containers that interact over well-defined
network interfaces.

2.2 Threat model

Analogous to prior work [50, 6], we assume a power-
ful and active adversary who has superuser access to the
system and also access to the physical hardware. They
can control the entire software stack, including privi-
leged code, such as the container engine, the OS kernel,
and other system software. This empowers the adversary
to replay, record, modify, and drop any network packets
or file system accesses.

We assume that container services were not designed
with the above privileged attacker model in mind. They
may compromise data confidentiality or integrity by
trusting OS functionality. Any programming bugs or in-
advertent design flaws in the application beyond trust-
ing the OS are outside of our threat model, as mitigation
would require orthogonal solutions for software reliabil-
ity. In our threat model, we also do not target denial-of-
service attacks, or side-channel attacks that exploit tim-
ing and page faults [63]. These are difficult to exploit
in practice, and existing mitigation strategies introduce a
high performance overhead [9].

2.3 Intel SGX

Intel’s Software Guard Extensions (SGX) [29, 30, 15] al-
low applications to ensure confidentiality and integrity,
even if the OS, hypervisor or BIOS are compromised.
They also protect against attackers with physical access,
assuming the CPU package is not breached.

Enclaves are trusted execution environments provided by
SGX to applications. Enclave code and data reside in a
region of protected physical memory called the enclave
page cache (EPC). While cache-resident, enclave code
and data are guarded by CPU access controls. When
moved to DRAM, data in EPC pages is protected at the
granularity of cache lines. An on-chip memory encryp-
tion engine (MEE) encrypts and decrypts cache lines in
the EPC written to and fetched from DRAM. Enclave
memory is also integrity protected meaning that memory
modifications and rollbacks are detected.

Non-enclave code cannot access enclave memory, but
enclave code can access untrusted DRAM outside the
EPC directly, e.g., to pass function call parameters and
results. It is the responsibility of the enclave code, how-
ever, to verify the integrity of all untrusted data.

Enclave life-cycle. Enclaves are created by untrusted
code using the ECREATE instruction, which initializes an
SGX enclave control structure (SECS) in the EPC. The
EADD instruction adds pages to the enclave. SGX records

the enclave to which the page was added, its virtual ad-
dress and its permissions, and it subsequently enforces
security restrictions, such as ensuring the enclave maps
the page at the accessed virtual address. When all en-
clave pages are loaded, the EINIT instruction creates a
cryptographic measurement, which can be used by re-
mote parties for attestation.

For Intel Skylake CPUs [31], the EPC size is be-
tween 64 MB and 128 MB. To support enclave applica-
tions with more memory, SGX provides a paging mecha-
nism for swapping pages between the EPC and untrusted
DRAM: the system software uses privileged instructions
to cause the hardware to copy a page into an encrypted
buffer in DRAM outside of the EPC. Before reusing
the freed EPC page, the system software must follow a
hardware-enforced protocol to flush TLB entries.

Threading. After enclave initialization, an unprivileged
application can execute enclave code through the EENTER
instruction, which switches the CPU to enclave mode and
jumps to a predefined enclave offset. Conversely, the
EEXIT instruction causes a thread to leave the enclave.
SGX supports multi-threaded execution inside enclaves,
with each thread’s enclave execution state stored in a
4 KB thread control structure (TCS).

Performance overhead. SGX incurs a performance
overhead when executing enclave code: (i) since priv-
ileged instructions cannot execute inside the enclave,
threads must exit the enclave prior to system calls. Such
enclave transitions come at a cost—for security reasons,
a series of checks and updates must be performed, in-
cluding a TLB flush. Memory-based enclave arguments
must also be copied between trusted and untrusted mem-
ory; (ii) enclave code also pays a penalty for writes
to memory and cache misses because the MEE must
encrypt and decrypt cache lines; and (iii) applications
whose memory requirements exceed the EPC size must
swap pages between the EPC and unprotected DRAM.
Eviction of EPC pages is costly because they must be
encrypted and integrity-protected before being copied to
outside DRAM. To prevent address translation attacks,
the eviction protocol interrupts all enclave threads and
flushes the TLB.

2.4 Design trade-offs

Designing a secure Linux container using SGX requires
a fundamental decision: what system support should be
placed inside an enclave to enable the secure execution
of Linux processes in a container? As we explore in
this section, this design decision affects both (i) the se-
curity properties of containers, in terms of the size of the
TCB and the exposed interface to the outside world, and
(ii) the performance impact due to the inherent restric-

USENIX Association

12th USENIX Symposium on Operating Systems Design and Implementation 691

Service TCB No. host Avg. Latency CPU
size system calls throughput utilization
Redis 6.9% <0.1x 0.6x 2.6x 1.1x
NGINX 5.7x 0.3x 0.8 4.5x 1.5%
SQLite 3.8% 3.1x 0.3x 4.2x 1.1x

Table 1: Relative comparison of the LKL Linux library
OS (no SGX) against native processes that use glibc

tions of SGX. To justify the design of SCONE, we first
explore alternate design choices.

(1) External container interface. To execute unmod-
ified processes inside secure containers, the container
must support a C standard library (libc) interface. Since
any libc implementation must use system calls, which
cannot be executed inside of an enclave, a secure con-
tainer must also expose an external interface to the host
OS. As the host OS is untrusted, the external interface
becomes an attack vector, and thus its design has secu-
rity implications: an attacker who controls the host OS
can use this interface to compromise processes running
inside a secure container. A crucial decision becomes
the size of (a) the external interface, and (b) the TCB re-
quired to implement the interface within the enclave.

Figure 1a shows a prior design point, as demonstrated
by Haven [6], which minimizes the external interface by
placing an entire Windows library OS inside the enclave.
A benefit of this approach is that it exposes only a small
external interface with 22 calls because a large portion of
a process’ system support can be provided by the library
OS. The library OS, however, increases the TCB size in-
side of the enclave. In addition, it may add a perfor-
mance overhead due to the extra abstractions (e.g., when
performing 1/0) introduced by the library OS.

We explore a similar design for Linux container pro-
cesses. We deploy three typical containerized services
using the Linux Kernel Library (LKL) [45] and the mus!
libc library [38], thus building a simple Linux library OS.
The external interface of LKL has 28 calls, which is com-
parable to Haven.

Table 1 reports the performance and resource metrics
for each service using the Linux library OS compared
to a native glibc deployment. On average, the library
OS increases the TCB size by 5%, the service latency
by 4x and halves the service throughput. For Redis and
NGINX, the number of system calls that propagate to
the untrusted host OS are reduced as the library OS can
handle many system calls directly. For SQLite, however,
the number of system calls made to the host OS increases
because LKL performs I/O at a finer granularity.

While our library OS lacks optimizations, e.g., mini-
mizing the interactions between the library OS and the
host OS, the results show that there is a performance

Library OS inside TCB

Minimal TCB

Untrusted system calls

. Application Code Application Code Application Code
é Libraries Libraries Libraries
g C Library Shim C Library C Library
g’ Library OS Shielding layer
é Shielding layer =
% g T C Library 1
[Host OS | Host 0S [Host OS |

(@)

(b)

()

Figure 1: Alternative secure container designs

degradation for both throughput and latency due to the
kernel abstractions of the library OS. We conclude that
the large TCB inside of the enclave and the performance
overhead of this design is not a natural fit for containers.

Figure 1b shows the opposite, extreme design point:
the external interface is used to perform all libc library
calls made by the application. This raises the challenge
of protecting the confidentiality and integrity of applica-
tion data whilst exposing a wide interface. For example,
I/O calls such as read and write could be used to com-
promise data within the enclave, and code inside the se-
cure container cannot trust returned data. A benefit of
this approach is that it leads to a minimal TCB inside the
enclave—only a small shim C library needs to relay libc
calls to the host libc library outside of the enclave.

Finally, Figure 1c shows a middle ground by defin-
ing the external interface at the level of system calls ex-
ecuted by the libc implementation. As we describe in
§3, the design of SCONE explores the security and per-
formance characteristics of this particular point in the
design space. Defining the external container interface
around system calls has the advantage that system calls
already implement a privileged interface. While this de-
sign does not rely on a minimalist external interface to
the host OS, we show that shield libraries can be used to
protect a security-sensitive set of system calls: file de-
scriptor based I/O calls, such as read, write, send, and
recv, are shielded by transparently encrypting and de-
crypting the user data. While SCONE does not support
some system calls, such as fork, exec, and clone, due to
its user space threading model and the architectural lim-
itations of SGX, they were not essential for the micro-
services that we targeted.

(2) System call overhead. All designs explored above
pay the cost of executing system calls outside of the
enclave (see §2.3). For container services with a high
system call frequency, e.g., network-heavy services, this
may result in a substantial performance impact. To quan-
tify this issue, we conduct a micro-benchmark on an Intel
Xeon CPU E3-1230 v5 at 3.4 GHz measuring the maxi-
mum rate at which pwrite system calls can be executed
with and without an enclave. The benchmark is imple-
mented using the Intel SGX SDK for Linux [32], which

692

12th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

glibc (32 B)

10000 ///
/w

1000 glibc (64 KB)

SGX SDK (64 KB)

100 //

System calls (1000s/s)

1 2 3) 5 [7 8
Threads

Figure 2: Number of executed pwrite system calls
with an increasing number of threads

performs synchronous system calls with threads leav-
ing and re-entering the enclave. We vary the number of
threads and the pwrite buffer size.

Figure 2 shows that the enclave adds an overhead of
an order of magnitude. The performance with large
buffer sizes is limited by the copy overhead of the
memory-based arguments; with small buffers, the main
cost comes from the threads performing enclave tran-
sitions. We conclude that efficient system call support
is a crucial requirement for secure containers. A se-
cure container design must therefore go beyond simple
synchronous support for system calls implemented using
thread transitions.

(3) Memory access overhead. The memory accesses
of a secure container process are affected by the higher
overhead of accessing enclave pages (see §2.3). We ex-
plore this overhead using a micro-benchmark built with
the Linux SGX SDK on the same hardware. The bench-
mark measures the time for both sequential and random
read/write operations, normalized against a deployment
without an enclave. All operations process a total of
256 MB, but access differently-sized memory regions.

Figure 3 shows that, as long as the accessed memory
fits into the 8 MB L3 cache, the overheads are negligible.
With L3 cache misses, there is a performance overhead
of up to 12x for the random memory accesses. When the
accessed memory is beyond the available EPC size, the
triggered page faults lead to an overhead of three orders
of magnitude. Sequential operations achieve better per-
formance due to CPU prefetching, which hides some of
the decryption overheads: they experience no overhead
for memory ranges within the EPC size and a 2x over-
head for sizes beyond that.

These results show that, for performance reasons, a
secure container design should reduce access to enclave
memory. Ideally, it should use untrusted non-enclave
memory as much as possible, without compromising the
offered security guarantees.

random reads

10004

100+

random writes

10 W«—’*&
f sequential reads and writes
14 l—*—*—BH—*—H—*-*—**—*—!(

1 2 4 8 16 32 64 92 128 256
Allocated memory size (MB)

Normalized run time (w.r.t. native)

Figure 3: Normalized overhead of memory accesses
with SGX enclaves

3 SCONE Design

Our objective is to offer secure containers on top of an
untrusted OS: a secure container must protect container-
ized services from the threats defined in §2.2. We also
want secure containers to fit transparently into existing
Docker container environments: system administrators
should be able to build secure container images with the
help of Docker in a trusted environment and run secure
containers in an untrusted environment.

3.1 Architecture

Figure 4 gives an overview of the SCONE architecture:

(1) SCONE exposes an external interface based on
system calls to the host OS, which is shielded from at-
tacks. Similar to what is done by the OS kernel to pro-
tect itself from user space attacks, SCONE performs san-
ity checks and copies all memory-based return values to
the inside of the enclave before passing the arguments
to the application (see §3.4). To protect the integrity
and confidentiality of data processed via file descriptors,
SCONE supports transparent encryption and authentica-
tion of data through shields (see §3.2).

(2) SCONE implements M:N threading to avoid the
cost of unnecessary enclave transitions: M enclave-
bound application threads are multiplexed across N OS
threads. When an application thread issues a system call,
SCONE checks if there is another application thread that
it can wake and execute until the result of the system call
is available (see §3.3).

(3) SCONE offers container processes an asyn-
chronous system call interface to the host OS. Its imple-
mentation uses shared memory to pass the system call
arguments and return values, and to signal that a sys-
tem call should be executed. System calls are executed
by separate threads running in a SCONE kernel module.
Hence, the threads inside the enclave do not have to exit
when performing system calls (see §3.4).

USENIX Association

12th USENIX Symposium on Operating Systems Design and Implementation 693

Host operating system (Linux)

. SCONE
Container

component

Enclave
Application Code

trusted

Application-specific libraries

lock-free
queues

System call
requests
System call
responses
External container interface

O
I
17
=
2
=]
i
5

A
Intel SGX
driver

Figure 4: SCONE architecture

(4) SCONE integrates with existing Docker container
environments, and ensures that secure containers are
compatible with standard Linux containers (see §3.5).
The host OS, however, must include a Linux SGX driver
and, to boost performance, a SCONE kernel module.
Note that SCONE does not use any functionality from the
Intel Linux SDK [32] apart from the Linux SGX driver.

3.2 External interface shielding

So far, many popular services, such as Redis and Mem-
cached, have been created under the assumption that the
underlying OS is trusted. Such services therefore store
files in the clear, communicate with other processes via
unencrypted TCP channels (i.e., without TLS), and out-
put to stdout and stderr directly.

To protect such services in secure containers, SCONE
supports a set of shields. Shields focus on (1) prevent-
ing low-level attacks, such as the OS kernel controlling
pointers and buffer sizes passed to the service (see §3.4);
and (2) ensuring the confidentiality and integrity of the
application data passed through the OS. A shield is en-
abled by statically linking the service with a given shield
library. SCONE supports shields for (1) the transpar-
ent encryption of files, (2) the transparent encryption of
communication channels via TLS, and (3) the transpar-
ent encryption of console streams.

When a file descriptor is opened, SCONE can asso-
ciate the descriptor with a shield. A shield also has con-
figuration parameters, which are encrypted and can be
accessed only after the enclave has been initialized.

Note that the shields described below focus only on
application data, and do not verify data maintained by
the OS, such as file system metadata. If the integrity of
such data is important, further shields can be added.

File system shield. The file system shield protects the

confidentiality and integrity of files: files are authenti-
cated and encrypted, transparently to the service. For the
file system shield, a container image creator must define
three disjoint sets of file path prefixes: prefixes of (1) un-
protected files, (2) encrypted and authenticated files, and
(3) authenticated files. When a file is opened, the shield
determines the longest matching prefix for the file name.
Depending on the match, the file is authenticated, en-
crypted, or just passed through to the host OS.

The file system shield splits files into blocks of fixed
sizes. For each block, the shield keeps an authentication
tag and a nonce in a metadata file. The metadata file is
also authenticated to detect modifications. The keys used
to encrypt and authenticate files as well as the three prefix
sets are part of the configuration parameters passed to
the file system shield during startup. For immutable file
systems, the authentication tag of the metadata file is part
of the configuration parameters for the file system shield.
At runtime the metadata is maintained inside the enclave.

Containerized services often exclusively use a read-
only file system and consider writes to be ephemeral.
While processes in a secure container have access to
the standard Docker tmpfs, it requires costly interaction
with the kernel and its file system implementation. As
a lightweight alternative, SCONE also supports a dedi-
cated secure ephemeral file system through its file sys-
tem shield. The shield ensures the integrity and confi-
dentiality of ephemeral files: the ephemeral file system
maintains the state of modified files in non-enclave mem-
ory. Our evaluation results show that the performance of
ephemeral files is better than those of tmpfs (see §4.3).

The ephemeral file system implementation is resilient
against rollback attack: after restarting the container pro-
cess, the file system returns to a preconfigured startup
state that is validated by the file system shield, and there-
fore it is not possible for an attacker to rollback the file
system to an intermediate state. This is also true dur-
ing runtime, since the metadata for files’ blocks resides
within the enclave.

Network shield. Some container services, such as
Apache [44] and NGINX [47], always encrypt network
traffic; others, such as Redis [46] and Memcached [23],
assume that the traffic is protected by orthogonal means,
such as TLS proxies, which terminate the encrypted con-
nection and forward the traffic to the service in plaintext.
Such a setup is appropriate only for data centers in which
the communication between the proxy and the service is
assumed to be trusted, which is incompatible with our
threat model: an attacker could control the unprotected
channel between the proxy and the service and modify
the data. Therefore, for secure containers, a TLS net-
work connection must be terminated inside the enclave.

SCONE permits clients to establish secure tunnels to

694 12th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

M app. threads
(variable)

M:N scheduler

4° A A
TCS TCS TCS
4 4 4 enclave

T EENTER " EENTER " EENTER

thread control
structures (TCS)

N OS threads (fixed)
~ #hardware threads

system call threads
~ #app. threads

N MA MA MW

#OCTL *lOCTL *IOCTL *IOCTL
asynchronous system
call execution

Figure 5: M:N threading model

container services using TLS. It wraps all socket opera-
tions and redirects them to a network shield. The network
shield, upon establishing a new connection, performs a
TLS handshake and encrypts/decrypts any data transmit-
ted through the socket. This approach does not require
client- or service-side changes. The private key and cer-
tificate are read from the container’s file system. Thus,
they are protected by the file system shield.

Console shield. Container environments permit autho-
rized processes to attach to the stdin, stdout, and stderr
console streams. To ensure the confidentiality of appli-
cation data sent to these streams, SCONE supports trans-
parent encryption for them. The symmetric encryption
key is exchanged between the secure container and the
SCONE client during the startup procedure (see §3.5).

Console streams are unidirectional, which means that
they cannot be protected by the network shield whose
underlying TLS implementation requires bidirectional
streams. A console shield encrypts a stream by splitting
it into variable-sized blocks based on flushing patterns.
A stream is protected against replay and reordering at-
tacks by assigning each block a unique identifier, which
is checked by the authorized SCONE client.

3.3 Threading model

SCONE supports an M:N threading model in which
M application threads inside the enclave are mapped to
N OS threads. SCONE thus has fewer enclave tran-
sitions, and, even though the maximum thread count
must be specified at enclave creation time in SGX ver-
sion 1 [29], SCONE supports a variable number of ap-
plication threads.

As shown in Figure 5, multiple OS threads in SCONE
can enter an enclave. Each thread executes the scheduler,
which checks if: (i) an application thread needs to be wo-
ken due to an expired timeout or the arrival of a system
call response; or (ii) an application thread is waiting to be
scheduled. In both cases, the scheduler executes the as-
sociated thread. If no threads can be executed, the sched-

uler backs off: an OS thread may choose to sleep outside
of the enclave when the back-off time is longer than the
time that it takes to leave and reenter the enclave.

The number of OS threads inside the enclave is typi-
cally bound by the number of CPU cores. In this way,
SCONE utilizes all cores without the need for a large
number of OS threads inside the enclave. The sched-
uler does not support preemption. This is not a limi-
tation in practice because almost all application threads
perform either system calls or synchronization primitives
at which point the scheduler can reschedule threads.

In addition to spawning N OS threads inside the en-
clave, SCONE also “captures” several OS threads in-
side the SCONE kernel module. The threads dequeue
requests from the system call request queue, perform
system calls, and enqueue results into the response
queue (see Figure 4). The system call threads reside in
the kernel indefinitely to eliminate the overhead of ker-
nel mode switches. The number of system call threads
must be at least the number of application threads to
avoid stalling when system call threads block. Periodi-
cally, the system call threads leave the kernel module to
trigger Linux housekeeping tasks, such as the cleanup of
TCP state. When there are no pending system calls, the
threads back-off exponentially to reduce CPU load.

SCONE does not support the fork system call. En-
clave memory is tied to a specific process, and therefore
the execution of fork would require the allocation, ini-
tialization, and attestation of an independent copy of an
enclave. In current SGX implementations, the OS kernel
cannot copy enclave memory to achieve this.

3.4 Asynchronous system calls

Since SGX does not allow system calls to be issued from
within an enclave, they must be implemented with the
help of calls to functions outside of the enclave. This
means that the executing thread must copy memory-
based arguments to non-enclave memory, exit the en-
clave and execute the outside function to issue the system
call. When the system call returns, the thread must re-
enter the enclave, and copy memory-based results back
to the enclave. As we showed in §2.4, such synchronous
system calls have acceptable performance only for appli-
cations with a low system call rate.

To address this problem, SCONE also provides an
asynchronous system call interface [52] (see Figure 6).
This interface consists of two lock-free, multi-producer,
multi-consumer queues: a request queue and a response
queue. System calls are issued by placing a request into
the request queue. An OS thread inside the SCONE ker-
nel module receives and processes these requests. When
the system call returns, the OS thread places the result
into the response queue.

USENIX Association

12th USENIX Symposium on Operating Systems Design and Implementation 695

Enclave scheduler threads

memory
args 4d M\ M
@ yield‘.' i
coRy app thread2.--" __. @ A
M M LT fesume ()
pp thread 1 (@ @
L}
EI syscall slotl Isyscall sIotI‘~ §
k5 —- “[scall3 o retl
kS| K7 scall2 5 ret2
©| memory memory scalll Q ret3
= args args e
o
thread thread System call System call
local local requests responses

Figure 6: Asynchronous system calls

As shown in Figure 6, an application thread first
copies memory-based arguments outside of the en-
clave @ and adds a description of the system call to a
syscall_slot data structure (2), containing the system call
number and arguments. The syscall_slot and the argu-
ments use thread-local storage, which is reused by sub-
sequent system calls. Next the application thread yields
to the scheduler 3), which will execute other application
threads until the reply to the system call is received in the
response queue. The system call is issued by placing a
reference to the syscall slot into the request queue @.
When the result is available in the response queue (%),
buffers are copied to the inside of the enclave, and all
pointers are updated to point to enclave memory buffers.
As part of the copy operation, there are checks of the
buffer sizes, ensuring that no malicious pointers refer-
ring to the outside of an enclave can reach the applica-
tion. Finally, the associated application thread is sched-
uled again ®.

The enclave code handling system calls also ensures
that pointers passed by the OS to the enclave do not point
to enclave memory. This check protects the enclave from
memory-based lago attacks [12] and is performed for all
shield libraries.

3.5 Docker integration

We chose to integrate SCONE with Docker because it
is the most popular and widely used container platform.
A future version of SCONE may use the open container
platform [28], which would make it compatible with both
Docker and rkt (CoreOS) [48]. With SCONE, a secure
container consists of a single Linux process that is pro-
tected by an enclave, but otherwise it is indistinguish-
able from a regular Docker container, e.g., relying on the
shared host OS kernel for the execution of system calls.
The integration of secure containers with Docker re-
quires changes to the build process of secure images,
and client-side extensions for spawning secure contain-
ers and for secure communication with these containers.

not trusted
3: pull
Repositor [mage > Docker
P Y g Engine
L Lipush / 2: pull 4: execute ==
trusted image image +
SCONE Client
Secure Image | [+ =---- - - -l > Enclave
Docker client 5: secure
communication

Figure 7: Using secure containers with Docker

SCONE does not require modifications to the Docker En-
gine or its API, but it relies on a wrapper around the orig-
inal Docker client. A secure SCONE client is used to
create configuration files and launch containers in an un-
trusted environment. SCONE supports a typical Docker
workflow: a developer publishes an image with their ap-
plication, and a user can customize the image by adding
extra layers.

Image creation. Images are created in a trusted environ-
ment (see Figure 7). The image creator must be famil-
iar with the security-relevant aspects of the service, e.g.,
which files to protect and which shields to activate.

To create a secure container image, the image creator
first builds a SCONE executable of the application. They
statically compile the application with its library depen-
dencies and the SCONE library. SCONE does not sup-
port shared libraries by design to ensure that all enclave
code is verified by SGX when an enclave is created.

Next, the image creator uses the SCONE client to cre-
ate the metadata necessary to protect the file system.
The client encrypts specified files and creates a file sys-
tem (FS) protection file, which contains the message au-
thentication codes (MACs) for file chunks and the keys
used for encryption. The FS protection file itself is en-
crypted and added to the image. After that, the secure
image is published using standard Docker mechanisms.
SCONE does not need to trust the Docker registry, be-
cause the security-relevant parts are protected by the FS
protection file.

If the image creator wants to support the composition
of a secure Docker image [42], they only sign the FS
protection file with their public key, but do not encrypt
it. In this way, only its integrity is ensured, permitting
additional customization. The confidentiality of the files
is assured only after finishing the customization process.

Container startup. Each secure container requires a
startup configuration file (SCF). The SCF contains keys
to encrypt standard I/O streams, a hash of the FS pro-
tection file and its encryption key, application arguments
and environment variables. Only an enclave whose iden-
tity has been verified can access the SCF. Since SGX
does not protect the confidentiality of enclave code, em-

696 12th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

bedding the startup configuration in the enclave itself is
not an option. Instead, after the executable has initial-
ized the enclave, the SCF is received through a TLS-
protected network connection, established during en-
clave startup [2]. In production use, the container owner
would validate that the container is configured securely
before sending it the SCF. The SGX remote attestation
mechanism [29] can attest to the enclave to enable this
validation, but our current SCONE prototype does not
support remote attestation.

4 Evaluation

Our evaluation of SCONE on SGX hardware is split
into three parts: (i) we present application benchmarks
for Apache [44], NGINX [47], Redis [46] and Mem-
cached [23]. We compare the performance of these ap-
plications with SCONE against native variants (§4.2);
(ii) we evaluate the performance impact of SCONE’s file
system shield with a set of micro-benchmarks (§4.3); and
(iii) we discuss results from a micro-benchmark regard-
ing the system call overhead (§4.4).

4.1 Methodology

All experiments use an Intel Xeon E3-1270 v5 CPU with
4 cores at 3.6 GHz and 8 hyper-threads (2 per core) and
8 MB cache. The server has 64 GB of memory and runs
Ubuntu 14.04.4 LTS with Linux kernel version 4.2. We
disable dynamic frequency scaling to reduce interfer-
ence. The workload generators run on a machine with
two 14-core Intel Xeon E5-2683 v3 CPUs at 2 GHz with
112 GB of RAM and Ubuntu 15.10. Each machine has
a 10 Gb Ethernet NIC connected to a dedicated switch.
The disk configuration is irrelevant as the workloads fit
entirely into memory.

We evaluate two web servers, Apache [44], and
NGINX [47]; Memcached [23]; Redis [46]; and
SQLite [55]. The applications include a mix of compute
(e.g., SQLite) and I/O intensive (e.g., Apache and Mem-
cached) workloads. We compare the performance of
three variants for each application: (i) one built with the
GNU C library (glibc); (ii) one built with the musl [38]
C library adapted to run inside SGX enclaves with syn-
chronous system calls (SCONE-sync); and (iii) one built
with the same musl C library but with asynchronous sys-
tem calls (SCONE-async). We compare with glibc be-
cause it is the standard C library for most Linux distribu-
tions, and constitutes a more conservative baseline than
musl. In our experiments, applications compiled against
glibc perform the same or better than the musl-based vari-
ants. The application process (and Stunnel) execute in-
side a Docker container.

Appli- Worker Enclave Syscall
cation threads threads threads
async sync async Sync async sync
Apache 25 25 4 8 32 -
NGINX 1 1 1 1 16 -
Redis 1 1 1 1 16 -
Memcached 4 8 4 8 32 -

Table 2: Thread configuration used for applications

SCONE-async uses the SCONE kernel module to cap-
ture system call threads in the kernel. For each appli-
cation and variant, we configure the number of threads
(see §3.3) to give the best results, as determined experi-
mentally. We summarize the thread configuration in Ta-
ble 2. Worker threads are threads created by the appli-
cation, e.g., using pthread_create(). In the glibc vari-
ant, worker threads are real OS threads, while in SCONE
they represent user space threads. Enclave threads are
OS threads that run permanently inside the enclave,
while system call threads are OS threads that run per-
manently outside. With SCONE-sync, there are no ded-
icated system call threads because the enclave threads
synchronously exit the enclave to perform system calls.

For applications that do not support encryption (e.g.,
Memcached and Redis), we use Stunnel [61] to encrypt
their communication in the glibc variant. When reporting
CPU utilization, the application’s glibc variant includes
the utilization due to Stunnel processes. In SCONE, the
network shield subsumes the functionality of Stunnel.

Reported data points are based on ten runs, and we
compute the 30% trimmed mean (i.e., without the top
and bottom 30% outliers) and its variance. The trimmed
mean is a robust estimator insensitive to outliers: it mea-
sures the central tendency even with jitter. Unless stated
otherwise, the variance is small, and we omit error bars.

4.2 Application benchmarks

Apache is a highly configurable and mature web server,
originally designed to spawn a process for each con-
nection. This differs from the architecture of the other
benchmarked web server—NGINX employs an event-
driven design. By default, it uses a single thread but cur-
rent versions can be configured to use multiple threads.

We use wrk2 [62] to fetch a web page. We increase the
number of concurrent clients and the frequency at which
they retrieve the page until the response times start to de-
grade. Since Apache supports application-level encryp-
tion in the form of HTTPS, we do not use Stunnel or
SCONE’s network shield.

Figure 8a shows that all three variants exhibit compa-
rable performance until about 32,000 requests per sec-

USENIX Association

12th USENIX Symposium on Operating Systems Design and Implementation 697

-o- Glibc -4+ SCONE-async -# SCONE-sync

-o- Glibc + Stunnel -4 SCONE-async -® SCONE-sync

-o- Glibc + Stunnel -4- SCONE-async -# SCONE-sync

44 44
[]
I n
[I
3 : — 3 .
O L g i
> |- g |
£°] i g2l
[} . c .
© [% I A
— 14 i : A1 i 0
i ' - - &
0 ® - - - oA 0
0 20 40 60 0 50 100 150 200 0 100 200 300
Throughput (k.req/s) Throughput (k.op/s) Throughput (k.op/s)
(a) Apache (b) Redis (c) Memcached
Figure 8: Throughput versus latency for Apache, Redis, and Memcached
-o- Glibc -4 SCONE-async -# SCONE-sync -o- Glibc + Stunnel - - SCONE-async -® SCONE-sync -o- Glibc + Stunnel -4+ SCONE-async -# SCONE-sync
800 4 800 800
~ 600 ~ 600 ~ 600
c c c
o 9 o
N 400 5 400 X 400
5 5 5
D 200 D 2001 D 2004
o o o
(6] (@] (@]
0 E T T T 1 0) T T T T 1 O E T T T 1
0 20 40 60 0 50 100 150 200 0 100 200 300
Throughput (k.req/s) Throughput (k.op/s) Throughput (k.op/s)
(a) Apache (b) Redis (c) Memcached

Figure 9: CPU utilization for Apache, Redis, and Memcached

ond, at which point the latency of the SCONE-sync in-
creases dramatically. SCONE-async performs slightly
better, reaching 38,000 requests per second. The glibc
variant achieves 48,000 requests per second.

As shown in Figure 9a, SCONE-sync utilizes the CPU
more despite the fact that SCONE-async uses extra
threads to execute system calls. As we show below, the
synchronous system call interface is not as performant
as the asynchronous interface, resulting in a higher CPU
utilization. However, SCONE-async has a higher CPU
utilization than glibc. This is caused by the slower exe-
cution time of Apache running inside the enclave as well
as the extra threads used in the SCONE kernel module to
execute the system calls.

Redis is a distributed in-memory key/value store and rep-
resents an I/O-intensive network service. Typical work-
loads with many concurrent operations exhibit a high
system call frequency. Persistence in Redis is achieved
by forking and writing the state to stable storage in the
background. Fundamentally, forking for enclave ap-
plications is difficult to implement and not supported
by SCONE. Hence, we deploy Redis solely as an in-
memory store.

We use workloads A to D from the YCSB benchmark
suite [14]. In these workloads, both the application code

and data fit into the EPC, so the SGX driver does not need
to page-in EPC pages. We present results only for work-
load A (50% reads and 50% updates); the other wor