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1. Introduction

John Conway discovered a technique using infinite, finitely presented groups
that in a number of interesting cases resolves the question of whether a region in
the plane can be tessellated by given tiles. The idea is that the tiles can be
interpreted as deseribing relators in a group, in such a way that the plane region
can be tiled, only if the group element which deseribes the boundary of the region
is the trivial element 1.

A convenient way 1o describe the construction is by means of the Cavley graph
ar graph of a group. If G is a group, then its graph T'(G) with respeet to generators
g1 2.0 £, isa directed graph whose vertices are the elements of the group. For
each vertex ¢ = T(G), there will be n outgoing edges, labeled by the generators,
and n incoming cdges: the edge labeled g, connects v Lo ug,.

It is comvenient to make a slight modification of this picture when a generator g,
has order 2. In that case, instead of drawing an arrow from ¢ to vg; and another
arrow from og, back to o, we draw a single undirected edge labeled g, Thus, in a
drawing of the graph of a group, if there are any undirected edges, it is understood
that the corresponding generator has order 2,

The graph of a group is automatically homogeneous: [ur every element g = G,
the transformation o — go is an automorphism of the graph. Every automorphism
of the labeled graph has this form. This property characterizes graphs of groups: &
eraph whose edges are labeled by a finite set F such that there is exactly one
incoming and one outgoing edge with each label at each vertex is the graph of a
group if and only if it admits an automorphism taking any vertex to any other.

Whenever R is a relator for the group, that is, a word in the generators which
represents 1, then if you start from ¢ £ [" and trace out R, you get back to » again.
Il ¢ has presentation

G="{gi BEsrv- v B = LRy =1, Ry =1},

the graph I'(G) extends to a 2-complex T*(G): sew k disks at each vertex of
v & [ g), one for each retator R, so that its boundary traces out the word K. An
exception is made here for relations of the form g = 1, since this relation is
already incorporated by drawing g, as an undirected edge. The 2-complex 3G is
simply-connected: that is, every loop in "2} can be contracted to a point. In fact,
if the loop is an edge path, the sequence of edges it follows describes a word in the
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generators, The fact that the path returns to its starting point means that (he Word
represents the identity. A proof that this word represents the identity by myu;
substitutions using the relations R, can be translated peometrically into 3
topy of the path in TG,

As a very simple example, the symmetric group 5, is generated by the Eranspos;.
tions @ = (12) and & = (23). They satisfy the relation (ab) = 1. The graph is 4
hexagon, with undirected edges, alternately labeled @ and b

A slightly more complicated example is §,. [t is generated by three elements
a = (12}, b = (23}, and ¢ = (34). A presentation is

ny
homn.

Sy= Casbgla* =bt=vi= l.{f.u’J]l3 = {.bc‘]3 = {m.",lz = 1%,

To construct its graph, first make some copies of the ab hexagon for the §
subgroup generated by @ and b, and similarly make some copies of be hexagons,
The subgroup gencrated by a and ¢ is &, % Z,, and its graph is a sguare wilh
cdges labeled alternately « and ¢. Make copies also of ac-sguares. Take one copy
of each polygon, and fit them together around a vertex, gluing an a edge 1o an 4
edpe, eic, Around the perimeier of this fgure, keep gluing on a copy of the
polygon that fits. If you do this systematically, layer by layer, you will have
constructed a polyhedron—it is a truncated octahedron. All the edges from the
underlying octahedron are labeled b, while the squares produced by truncating the
vertices are labeled acac.

The reader may enjoy working out the graph of the alternating group 4., using
generators @ = (12034), and b = (12345} Note that they satisfy the relations
b* =1 and ab? = (135)" = 1. Try kicking around the comstruction, with white
ababab hexagons and black bbbbb pentagons.

T =

NCT

Fro. 1.1, Spceerball. A soceerball s constructed Trom 12 pentagons, obtained by rotating and shrinking
the faces of a regular dodecabedron, topether with 20 hexagons centered w0 the vertices of the
dodecthedron,

Of course, graphs of groups don't always work out so nicely or so casily, bul
often, for simple presentations, they can be worked out, and they tend to have @
nice geometric favor.

2. Lozenges

We will begin with a relatively easy tiling problem. Suppose we have a plane
ruled into equilateral triangles, and a certain region R bounded by a polygon ™
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whose edges are edges of the equilateral triangle network. When can R be tiled by
figures, let us call them lozenges, formed from two adjacent equilateral triangles?
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Fig, L1 A region tiled by lozenges. A portion of an equilateral trinngle subdivision of the plane. tiled
iy lozenges,

L I L T [T gy

To analyze this problem, we first establish a labeling convention. We arrange

the triangulation of the plane so that one set of edpes is parallel to the x-axis, or at
(. Label these directed edpges a, label b the directed edees pointing at 120°_and ¢
- the edges pointing at 2407 This labeling is homogencous, so it is the graph of a
eroup A. We can read off relators for A by tracing out the boundary curves of
- friangles: A satisfies abe = 1 and cha = 1. If desired, the first relation could be
-~ used to eliminate ¢; the second relation then says that ba = ab. The group 4 is
- Z + Z, as we could have seen anyway by its action on the plane.
The shape of the polygon w7 is determined by the sequence of edges it traces
- put; this is @ word in the generators a, b, ¢ of A. Rather than thinking of it as a
- word, we prefer to think of it as an element alw) in the free group F with
~ generators a, b, c. The fact that = closes up is equivalent to the condition that the
- homomorphism £ -+ A send alw) to the identity.

If a lozenge is placed in the triangular network, its boundary can be traced by
one of three elements, depending on its orientation: that element is either
Ly=aba='b~', L, =beb 'e™ or Ly = cac”'a . The precise word depends on

- the starting point on the boundary of the lozenge, but starting from a different
vertex only changes the word by a circular permutation; the two choices give
conjugate elements of F. The lozenge group L is defined by these relators, that is

L={abelby=L;=Ly=1).

Actually, the three relations say that the three penerators commute with each
other, so that [, = Z°.
We claim that if the region R can be tiled by lozenges, then the mmage ) of
- alw)in L must be trivial. In fact, suppose that we have such a tiling. If R consists
of a single tile, the claim is immediate, Otherwise, find a simple arc in R which
cuts R into two tiled subregions Ry and R, By mdoction, we may assume that
M) and H{m,) are both trivial, where =, is a polygonal eurve tracing around 4R .
- But f{m) = I }» I{m,;), so [{m) is also trivial.
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Fio. 2.2 Three-dimensional interpretation of lozenge tilmng: 1f a region R can by tiled hy Iozenges, then
the lozenge pattern lifts to the 2-skeleton of @ cubical tiling of R, oriented diagonally 1o the pline of
the lozenges,

There is a very direct geometric interpretation: think of the graph (L) as the
l-skeleton of a cubical tesselation of space, oriented so that cubes are on their
corners: more precisely, so that the two endpoints of any path labeled abe are on
the same vertical line. The 2-complex ['*( L) is the union of the faces of the cubes.
A lozenge in the plane is the orthogonal projection of a square face of a cube.
Given a path 7 in the plane, arrange it (for notational purposes only) so the base
point = lies below the base point 1 of TCL). Lift it edge by edge to a path in T(L),
When you make a complete circuit around ., you may or may not come back to
the starting point in [{L). The invariant [{m) € L is the ending vertex. This
invariant of necessity lics in the kernel of the map L — A, which is isomorphic te
Z: it can be described simply as the net rise in height.

If R can be tiled hy lozenges, the tiling itself can be lifted, tile by tile, intc
T L), that is, into the 2-skeleton of the cubical tesselation, This gives another
proof that the invariant f{=) must be 1if R can be tiled. In fact, if you look at &
tiling by lozenges, you can imagine it so that it springs out at you in a three-dimen-
stonal picture.

Fies, 2.3, Nontileable region. The region in the plane enclosed by the polygonal curve cannot be tiled b
lozenges. since when it s lifted (o the eubic network, it Tails o close.

Algebraically, given the word representing 7, the net rise in height is simply th
sum of the exponents. The condition is that = heads at a bearing of °, 1207, 0
240° the same length of time it heads at a bearing of 607, 1807, or 300%.
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This condition can be seen in an alternative way using a colering argument. The
triangles in the plane have an alternating coloring, with abe triangles colored white
and cha triangles colored black. Each lozenge covers one triangle of each
color—therefore, if K can be tiled, the number of white triangles must equal the
qnumber of black triangles. The difference in fact can be shawn to be the net rise in
height of @, as measured in main diagonals of cubes. The coloring consideration
really gives a more elementary derivation that 7(w) must vanish for a tiling to be
possible. However, this and related coloring arguments in general cannot give as
much information as (7). One way to think of it 1s that coloring arguments are
the abelian part of the group theory. If the group is abelian as in the present case,
or more generally if the subgroup consisting of invariants I{=) for closed paths is
abelian, then that information is sufficient.

The algebraic condition that /(z) = 1, is not sufficient to guarantee a tiling by
lozenges. There are curves 7 which go around nearly a full circle, with the lift in
I L) rising considerably, and then instead of closing, they circle around another
loop which brings them down to the starting height, If R could be tiled by
lozenges, it could be divided into two regions by a fairly short path along edges of
lozenges: but the rise in height for one side would be forced to be still positive,
which would be a contradiction. We will return later to give a necessary and
sufficient condition for a tiling by lozenges, along with a formula for a tiling if such
exists,

/4 Py
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Fig. 7.4, Potentially tileable repion, The boundary curve of this region lifts to 4 closed curve, so it
meets the group-theoretic tiling condition, An ictual tiling will be shown in 4.1, High lozenge tiling.

3, Tribone Tilings

Here is another example, for which other methods seem inadequate. [ first
heard this problem in an electronic mail inquiry from Carl W.Lee (ms.uky.edu!lee)
in Kentucky.

Last semester, a number ol us here became interested in a combinatorial
problem that was making the rounds. I'm sure you already have heard of it,
and we heard a rumor that John Conway had solved it. It concerned a
triangular array of dots, The problem was to pack in as many segments as
possible, where each segment covered three adjacent dots in one of the three
directions, and no two segments were allowed to touch. Is there any size
configuration that admits a packing such that each dot is covered? Do vou
know anything about the status of this problem? Thanks in advance.

T P ey
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Fro. 3.1, Triangle of hevagons. A triangular army of hexagans, eight on o side, Can this be tiled by
tribones?

1 hadn’t heard of it, but 1 asked Conway about it. We sat down together, and he
worked it out,

This question can be alternately formulated in terms of a triangular array of
hexagons. The problem is to show that one cannot tesselate the region using tiles
made of three hexagons hooked linearly together, More generally, one can ask for
the minimum number of holes left in an attempt to tile the region by these tiles.

If the region has side length n, then the number of hexagons is n(n + 1)/2. A
first, necessary condition is that # or n + 1 is divisible by 3, that is, n 1% congruent
to 0 or 2 mod 3. Note that if it is ever possible to solve the problem when n s
congruent to 2 mod 3, one can extend the solution by adding a row of tiles along
one side, to derive a solution for n + L

Label each side in the hexagonal grid with an a, b, or ¢, according to the
direction of the edge: a if it is parallel to the x axis, b il the angle from the x-axis
to the edge (measured counterclockwise) is 607, and ¢ if this angle 1s 1207 Thus,
the sides of every hexagon are labeled abeabe,

This labeling gives the 1-skeleton of the grid the structure of a group graph,
where the group is

A=¢a.bela®=b= ¢ = (abc)” = 1).

The group is a group of isometries of the plane, generated by 180° revolutions
about the centers of the edges; it also contains the 180° revolutions about the
centers of the hexagons. The group A is sometimes called the (2,2, 2, 2-group.

A path = in the l-skeleton of the hexagonal grid now is determined by a wiord
in the generators of 4. We prefer to think of this in a slightly different way: 7
determines an element a () in the free product F=Z,+%,+%,;. We are
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Pnrliculurly interested in closed paths, that is, clements of the kernel of £ — A.
Unfortunately, this kernel is infinitely generated: it is a [ree group whose genera-
tors are given by arbitrary paths p,, followed by a circuit around one of the three

hexagons at the endpoint of p,, followed by the p; L.

Ere 3.2 ‘Tribones in thres orientations, There are thiree possible orientations for a tribone, in an array
of hexagons. With our labeling convention, they are labeled in three different ways.

The standard tile, let us call it a tribone, can be laid in the plane in three
different orientations. Circuits around the tribones in these three orientations
trace oul the elements

T, = (ab)'clab)’e
Ty (be)'a(be)'a
Ty = (ca) b(ea)’h.

If 7 is a simple closcd circuit in the plane such that the region R bounded by
can be tiled by these tribones, then the image [{) of a(7) in the tribone group

T={(a,bcla?=b?=c*=T,=T,=T;=1)

must be trivial,

The relation 7, says that ¢ conjugates (ab)® 10 its inverse, Observe that a and b
also conjugate (ab)’ to its inverse—in fact, this is already true in F. In other
words, (ab)® generates a normal subgroup, and it commutes with every word of
even length. Similarly, (be)® and (ca)® generate normal subgroups. Together, the
three elements generate a normal abelian subgroup J of T.

To form a picture of 7, let us first Jook at the quotient group T, = T/J =
(a,b,cla’ = b* = ¢* = (ab)* = (bc)* = (ca)’ = 1). The graph of T, can readily
be constructed: take an infinite collection of three types of hexagons, with their
edpes labeled by the relations C,C, and C. These glue together to form a
hexagonal pattern in the plane, where each vertex has one a edge, one b edge, and




Thd WILLIAM B, THURSTON [October

Fig, 3.3, Second hexaganal group. The group T also has a graph isomorphic (o the edges of o
hexagonal tiling of the plane,

one ¢ edge incident to it. The group T, acts faithfully as a group of isometries of
the plane, generated by reflections in the edges of this hexagonal tiling: it is a
triangle group. It is curious that even though the groups A and 7, and the labeled
graphs [(A4) and ['(T,) are different, when the labels are stripped they become
isomorphic,

If the region R can be tiled by tribones, then al7) must map to the trvial
clement of T, so it maps to the trivial element of Ty In our case, the region is a
triangular array of hexagons, and its boundary can be taken as alw)=
(ab)"(ca)"(bc ).

Obviously, if r is a multiple of 3, the image {7}/ in T} is trivial. In the other
case, that o is 2 more than a multiple of 3, it is also trivial. This is easily scen by
tracing out the curve in our array of hexagons, or by noticing that one can add
additional tribones along one edge to form a triangular region with side length
n + 1, which is a multiple of 3. Since we have pushed 7 only across tribones, flw)
is the same for the two cases.

Since 7, was not sufficient to detect the nontriviality of f{m), we need to finish
our job, and build a picture of T. First, look at the path in the graph of T,
determined by the element T. Start at a vertex + where the circuit C| = ababab
goes counterclockwise around a hexagon, Then T goes counterclockwise around
this hexagon, then along the ¢ edge, clockwise around the € hexagon through
that vertex, and back along the ¢ edge to close. In particular, the signed total of
€ -hexagons enclosed (counted according to degree of winding with counterclock-
wise circuits counted positively), is (0.

It is not hard to describe now the full group T, which is an extension of the form
J=7%— T — T, We can interpret an element of T to be a vertex v in the graph
of T,,, together with a path p from = to v, subject to the equivalence relation that
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A

Fra. 3.4 Allernate image of tribane. By constructian, the tribone relations are satisfied in the groups T
and hence Ty = T4, This is the image of one of the tribone relators in the graph of the group 7)), Note
how it encircles twa AR-hexagons, once clockwise and once counterclockwise,

if ¢ is another path from = to v, then p ~ g if the signed totals of €, C;, and €
hexagons are all 0. (Of course, if we pick one path such as p from + to o, then
other paths from * to v are determined by three arbitrary integers, which specily
these signed totals.) With this definition, the relations 7, are obviously satisfied,
hence the group so constructed is at least a quotient group of T. But we have
already seen that the kernel J of the map T — T, is abelian, and generated by C.
In the construction, this kernel is the free abelian group on the €, so it must in
fact pive T.

Once we know T, we can read f(m) by inspection. As we saw, il suffices to
consider the case n = 3k; the invariant is CFCyC5, which is obviously not 1, so the
tilimg s popossible,

One can ask whether this method gives a lower bound on the number of holes
one is forced to leave, in a partial tiling of R by tribones. To study this question,
we should examine the subgroup K of T generated by elements of the form /{y),
where v is a path in the graph of A going from = lo some point v, circumnavigat-
ing a hexagon, and returning. In other words, K is the kernel of the map T’ — .
Note that w(y) has the form gabeabcg ™!, where g is arbitrary, In the group Ty,
abeabe acts as a translation. The conjugates of abcabe in T are translations in
three different directions spaced at 1207 angles, and the subgroup they generate is
ismorphic to Z°, In K, there are actually an infinite number of different conjugates
of abcabc: if g acts as a translation in T, then the commutator gabeabeg lebacha
is trivial in T}, but it might not be trivial in T this path may enclose an arbitrary
number m of hexagons of type €, and an equal number of type €, and C.

The subgroup K is therefore a nilpotent group, generated by s = abeabe,
t = beabea, and u = C,C,C,, with presentation

K= (s, t,ulls,u] =[tul = Lsit] =u’).
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Fio. 35 Alternate image of & trangle, The triangle word (abMleal™be)® ol siee n =

G oueon = i 4+ 2 maps to the trivial element in Ty Do the diagram above, if n = 3m, trace the word
starling at the center, If & = 3m + 2, start b from the center.

It is easy to check that every element of K is realized as f{w), for some simple
closed curve + in the plane.

Even though the invariants associated with triangular regions take larger and
larger values in {, this does not give any intormation limiting the number of holes:
far instance, three holes g,abcabeg " can yield u*, for arbitrarily high k. In fact, it
is possible to tesselate the triangular region of size n with tribones except for |
hole, if n = 1(3), by placing the hole exactly in the middle, and then arranging
concentric triangular layers of tribones around this hole, From these examples,
tribone tilings with 3 holes are easily constructed when n = 003) or 2(3). It does
give some information, however: in the case that n = 23 or n = 3), the
conjugacy class changes (“increases”) with n, which implies that the length of
the minimum closed loop enclosing all the holes has to go to infinity with n. In the
case n = 1(3), the conjugacy class of /() is constanl—since the region can always
be tiled with a single hexagon missing. {7} is conjugate o abcabe, However, the
actual word changes with n, which implies that the missing hole cannot be too
close to the boundary. Perhaps a careful analysis would show that if there is a
single hole, it must be exactly in the center of the triangle.

4. Dominoes and Lozenges Revisited

Conway’s tiling groups are quite versatile, provided you can work out the group
determined by the tiles, Even when (or perhaps especially when) the invariant
[(7) gives no information which could not have been casily obtained by other
means, the geometric picture of the graph of the group can sometimes be exploited
to give not just an algebraic criterion, but 4 precise geometric eriterion for the
existence of a tiling,

When G is a tiling group (with presentation given by a set of tiles), we define a
measure of area in ['(G) to be the area defined by projection to the plane: the
area of a 2-cell is the area of a corresponding tile, When the algebraic invariant
{7} is 1, the curve = bounding R lifts to a closed & in ['(G). We can ask, what 1s
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the minimum area of a surface S in ['*(G) with boundary #7 This area is
necessarily al least as great as the area of R. 1 it is equal, then the images of the
2-cells of § must be disjoint, so that they form a tiling of R. There are several
approaches which are sometimes successful for calculating this minimal area, but
there iy one particular situation when there is a really definitive solution: when
I'(G) can be enlarged, by adding 3-cells, to make a contractable 3-manifold. In
this situation, there is a "“max flow min cut” principle which guarantees an efficient
algorithm for finding a minimal surface.

Rather than going on with the general theory, we will illustrate this with two
cxamples. First we revisit the lozenge question.

If R is a union of triangles in the plane, and if ¢ and w are vertices in R,
possibly on the boundary, define d{e, w) to be the minimum length of a positively
directed edge-path in R (possibly going on the boundary) joining v to w. This
“distance’” function o is not symmetric, since we cannot simply reverse an edge
path. Any closed positively directed edge path has length a multiple of 3, so the
d(v, w) is defined modulo 3 independent of path. The three vertices of a triangle
take the three distinet values modulo 3. If R is connected. it is always possible to
find at least one positively directed path from o to w, so dle, w) is well-defined.

Consider the lifting of any tiling of R by lozenges to the cubical network, T*(L).
This is determined by a height function A(v) for the vertices v. We can choose the
vertical scale so that i is inteper-valued, and ecach edge of a lifted lozenge
increases in height by 15 the edge of the triangular network covered by the lozenge
lifts to a diagonal of a square, and decreases in height by 20 Tt follows that
hiw) = Blu) = o, w)

The boundary path « determines a unique height function & on its vertices, up
to constants, This gives a necessary condition that R can be tiled: for any two
vertices v and w on ar, h{w) — hly) = dlo, w).

If = satisfies this necessary condition, then there is a unique maximally high
lozenge tiling: define

R{x) = min{d{o,w)}.
HET
To produce the actual tiling, place a lozenge so as to cover an edge where the
height changes by 2. Since the three vertices of a triangle take distinct values
modulun 3, and since A increases by at most | along any edge, cach lri:mgl:_' has
exactly one edge where /i changes by 2: therefore, the collection of lozenges is a
tiling.

Fiei. 4.1, High lozenge tiling, The “highest” lozenge tiling compatible with the boundary cumve.
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There is a simple algorithm for quickly computing /i and the tiling: rather thap
spell it out, we will describe the analogous algorithm for dominoes.

A closed path = in a square grid can be described hy an clement alw) of the
free group F(x, v), which maps to the trivial clement of the A = Z°, If the region
R bounded by + can be filled with dominoes, then the image [} of al+=) in the
domino group G = (x, ylap® = v, yr® = x7y) must be trivial.

What does the graph of & look like? We can construct a picture in RY, as
follows. Fill the w-plane with a black and white checkerboard pattern. Above (he
black square [0, 1] = [0, 1], construct a right-handed helix, joinimg (0, 0,01 by a line
segment to (0, 1, 1) to (1,1, 2), 40, 1, 3), (0, 0,4), and sa on: the x and y coordinates
here marching forever around the houndary of the square, while the = coordinate
increases by | each move. Similarly, (0,000 is connected to (0.1, — 1), ere
Construct a similar helix above each black square. Label each edge x or y,
according to its image in the plane. Note that this creates left-handed helices
ahove the white squares. The boundary of any domino in the plane lifts to a closed
path in this graph we have constructed. Since the graph has a simply-transitive
group of isometries, it is the graph of a group. Since it satisfies the domino
relations, it is at least a quotient group of the domine group G 1t is not hard (and
strictly speaking, it is not logically necessary) to verify that this graph is indeed the
graph of .

The curve w lifls to a curve 7 in the graph of G. A convenicnt way Lo denote
this, in the plane, is to record the height of the lift next w each vertex of = in the

Fic. 4.2, The domino greup. The graph of the domine group = a union of square helices aver the
squares of i checkerhoard, allernating in handedness. A domine anywhere in the plane lifts w this
graph, starting at any poinl. This illusteation shows twa coils of four neighboring hebces

Fig, 4.3, Damino tiling, A tiling by 9 dominoes, lifted o the graph of the damino group.
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plane. The rule is simple: one can start with () at some arbitrary vertex. Along any
edge of = which has a black square to its left, the height increases by 1. Along
anty edge with a white square 1o its left, the height decreases by 1. A necessary
ug{;ditiun that & can be filled with dominoes is that the height after traversing
once around the curve is (.

Fic. 4.4, Domino roof. This is the tiling which the algorithm yields, when applied 10.a 16 % L6 square
grid. This is the tiling which has the highest lifling to the graph of the dominy group of any tiling by
dominoes,

There is a criterion and construction for a domino tiling, analogous to the
construction for lozenges. Here is how the formula can be worked out, on a sheet
of grid paper. Begin, as above, by labeling the height of each vertex of . The
heights consist of the integers in some interval, [n, m]. We will construct a height
function on all vertices of R, beginning with » + 1, and working up. Supposc,
inductively, that we have finished with all vertices of height less than or equal to k.
For each vertex v of height &, and for each edge e leading from o which has a
black square on its left, consider the second endpoint w of e. If the height of w
has been previously defined, and if it is not greater than & + 1 leave it as is. 1f the
height is defined and greater than & + 1, then a domina tling 15 impossible: give
up. Otherwise, define the height of w 1o be & + L

If this procedure reaches a successful conclusion, each edge of R has a
difference of heights of its two endpoints of either | or 3. (Note that the height
modulo 4 is determined by the point in the plane.) Erase all the edges whose
endpoints have a difference of height of 3. What is left is a picture of a tiling by
dominoes,

5. Triangles

Here is a related sequence of tiling problems which arc resistant to direct
attempts at general solution, but translate nicely into the realm of group theory.

Consider, apain, a triangular array of dots, with & dots on each side. Is it
possible to subdivide this array into disjoint triangular arrays of dots with M an
cach side? We suggest the reader indulge in experimentation with a few cases,

[.hr.-y-.-..- -y
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Freio 4.5, Doming bubble. This illustration shows both the highest and the lowest tiling by dominoes of
a standard checkerboard. They are womarphic, differing only by o 90° rotation of the checkerboard
{interchanging calors), The upper tiling is shown in the upper plane as well as the upper surface of the
bubble, the lower tiling in the lower plane and the lower surface of the bubble, The bubble they fary
encloses the lift of any tiling by dominees. Possible tilings are “like™ Lipschite functions i the squarc
with Lipschitz constant 1, as measured in the Manhattan metric. The lmits of domino 1ilings, lited 10
the graph of the group, as the grid size goes w zero, are exactly such Lipschitz functions

before reading further. For example, the cases M = 2 with N ranging [rom 2 10 12
are interesling,

As in the case of the tribones, this translates fnto a tiling problem: given a
triangular array of hexagons with N hexagons per side, can one tile it by tiles T,
which are triangular arrays of hexagons M per side? We can express this with
notation as in the case of tribones: label the edges of the underlying hexagonal
tiling by a's, &'s and ’s. Given a path 7 in the plane, it is deseribed by an clement
alwm) of F ={a b,cla® =8> =¢* =13 If the region R bounded by = can be
tiled by the copies of Ty, then the image (=) of alw) s trivial in the group

Gy={a.b,cla* =h*=cl= Lty =13,
were {,, represents the boundary curve of the tile 7,
Ly = (ﬂhju{f.‘ﬂ}ﬁ'{'hr}m

A parallelogram of hexagons with M hexagons on one side and M + | on the
other can be tiled by two copies of T,,. This implies that (ab)" commutes with
(be)™*' and with (ca)™*!, and so forth.

These relations imply that (ab)" commutes with (b)Y and they also
imply that (ab)™*! commutes with (b} ™+ Combining these two facts, it
follows that (ab) commutes with (be)™* "V Geometrically, one can tile an
M x M(M + 1) parallelogram and an M + 1 x M(M + 1) parallelogram. Their
difference is a 1 % MM + 1) parallelogram: this can be tiled in a certain algebraic
sense as the difference of the two,

It will simplify the picture at this point if we pass to the subgroups F° and G
generated by words of even length. Since all relations have even length, the
wordlength modulo 2 describes & homomorphism of F and G, to Z,, and these
subgroups have index 2. The group F*° is the free group on 2 generators, but a
more symmetric description is

IL'-'.' = {le }|rz|_rllz = |}1
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where x =ab, v = bc, and z = ca. A presentation for the group G§; is obtained
by adjoining rci;mnnt, coming from g to F7 it requires two relations, one
obtained by transcribing ¢, directly, and the other transeribing the conjugate ﬂf fag
tw an element of odd length. Using t,, = 1 and bty b = 1, we obtain

) H’ M

= {xiyoz|oe = 1My AMEL =AML, ~(M 1) o Yy

=1,x

(i¢, has an interesting alternate generating set: X =x™, X" = x~™" 1 topether
with ¥, ¥', Z and Z' defined similarly, clearly penerate. We have already seen that
X, Y, and Z commute with X' ¥, and 2"

The elements 5 = XM r= ¥YM* and w = ZM"! commute with everything in
‘-ﬂw s0 they penerate a central subgroup J which is Z7 or a quoticnt. Let
Gl = G /1. We will analyze the structure of (). and from that construct Gy,

In GU, X, Y, and Z satisfy relations

X7 = 1r A-.'I-F-r[ . 1lrm'l!'+[ — z.‘-fll =1,

These relations describe the orientation-preserving (M + 1L, M + 1, M + 1) trian-
gle group, which acts as a discrete group of isometries on the Euclidean plane il
M = 2 and on the hyperbolic plane if M > 2. We have not checked that these
generate afl the relations on X, Y, and Z, but we immediately deduce that the
subgroup H of Gy generated by X, Y, and Z is a quotient of this triangle group.
But there is # homomorphism f of the original group G, to the full triangle group
{including reflections), defined by sending a, b, and ¢ to reflections in the sides of
a w/AM+ 1), w/M + 1), m/(M + 1) triangle. The relation t,, = 1 15 satisfied,
since in this group (ab)™ = ba so that (ab)(ca)M(be)™ = (baKackch) = 1. Note
that { sends X to ba, ¥ to ac and Z to cb, that is, to the standard generators of
the (M + 1, M + 1, M + 1) triangle group, and it sends s, ¢, and u to (. There-
fore, H is isomorphic to the orientable (M + 1, M + 1, M + 1) triangle group.

A similar analysis shows that the subgroup H' generated by X', ¥ and 2" is the
oricntable (M, M, M) triangle group. This grnup acts on the sphere, the Euclidean
plang, or the hyperbolic plane when M =2, M =3, or M = 4. The analogous
homomarphism ' maps G, to the full (M, M, M) triangle group, mapping a. b
and ¢ to the standard generators.

The two subgroups #f and H' intersect (as seen from the effects of f and (1)
they generate (5%, and they commute with each other. Therefore, (7, is the
product H * H' of the two triangle groups.

Now we need to determine the kernel J of the quotient Gy, — Gy, and the
structure of the central exlension. As in the tribone case, we can do this geometri-
cally, in terms of areas enclosed by curves. The graph I' of the full (M + 1
M + 1, M + 1) triangle group is formed from copies of three kinds of 2(M + 1)-
gons, with perimeters labeled (af)", (ca)® and (be)", with one of cach kind
meeting at each vertex. Arrange the orientation so that 1 is an “even™ vertex that
i5, the a, b, and ¢ edges emanating from 1 are in counterclockwise order. Then the
relation 1, based at ¢ encloses positively one copy of each type of polygon, while
the conjugate br, b encloses negatively one copy of each type of polyvgon.

Similarly, the graph I of the full (M, M, M) triangle group is made from three
kinds of 2M-gons, Starting at the 1, which we suppose is an cven vertex, the
relation t,, encloses positively one copy of each type of polyzon, while bz b
cncloses negatively onc copy of cach. However, in the case M = 2, the entire
graph is finite; it is the 1-skeleton of a cube, and the number of polyzons enclosed
by 4 curve is well-defined only modulo 2,
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First let's deal with the case M > 2. We can define an extension K of G}, as ap
equivalence relation on elements of F* as follows. An element g of F© deter.
mings paths ple)in T and p{g) in I, We define g to be equivalent to fr il plg)
ends at the same point as plh), p'lz) ends at the same point as p'(h), and if the
closed loop plg)p~'(h) encloses the same numbers of ab-polygons, be-polygons,
and ca-polygons as p'(g)p' ™ '(h),

In particular, an element of the kernel of the map of K to H % H" maps to
closed loops in both pictures, and is determined by the triple of differences of the
number of polygons enclosed. The elements 5, ¢ and © map to (1,000, (0, 1,0),
and (0,0, 1% It follows that K = G, and J = Z7 (provided M > 2).

The boundary of the size N triangle T, can be described by the elemen
t, = Lab ) ea)™be)¥. The path plt,) in T closes only when N is 0 or —1 mad
M + 1, while the path p'(¢, ) closes only when N is 0 or —1 mod M. Since M and
M + 1 are relatively prime, there are four solutions modulo MUAM + 1) 0, M,
M* — 1, — 1. For values of N satisfying one of these congruence conditions, the
invariant in Gy, is 0, so the invariant is in J; it is a positive multiple of (1, 1, 1) in
all but the trivial case N = M.

Throresm (Conway). When N = M > 2, the tdangular aray T, of hexagons
cannol be tifed by T,,'s.

This analysis has an interesting variation case M = 2, Given two elements g
and h of F°, we can defing them to be equivalent if plg) and plh) have the same
endpoints, p'lgl and p'(h ) have the same endpoints, and if the nombers of
polyeons of the three types enclosed by the path plg)p(h)™' is a multiple & of
(1,1, 1) which has the same parity as the number of polygons enclosed by
p'lg)p'th) "', This defines a central extension of H X H' by Z° modulo the
subgroup generated by s2°u” = 1. To justify that this group is in fact G5, we must
prove that s*r*u® = (ab)"(ca)'?(bc)'? = 1 in this group, or even better, that it is
possible to tile T4, Such a tiling can be found fairly easily—see Fioune 5.1 the
12-stack by 2-stacks.

Fiei. 5.0 The 12-stack by 2-stacks, The triangle Ty5 cun be tiled by 755,
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The computation of the mod 2 invariant for lilings by 7,5 can be rather
annoying when done directly. However, there is a neat trick, which enables one to
see this invariant geometrically: most regions which have a multiple of 3 hexagons
can be tiled easily by T.'s along with trihones. The boundary ahababcabababe of a
tribone maps to closed paths in both T and T In I, it encloses a net of ) of each
type of hexagon, as we saw before. In I, this curve winds counterclockwise 1.5
cevolutions about an ab-face of the cube, goes down a c-edge to the oppasite face,
winds 1.5 revolutions counterclockwise (with respect to the orientation of the
square), and goes up again to close. It is therefore equivalent, in terms of which
kinds of squares it encloses, o abcabe, which is an odd multiple of (1.1, L)X

Therefore, if a region can be tiled with a collection of T3's together with an odd
sumber of tribones, it cannot be tiled with Ty's. For 0 < N < 12, only for the
values 2, 3. 5, 6, 8, 9, 11 is the number of tiles a muitiple of 3. One quickly finds
that in the cases Ty, Te, T, and T, there is a tiling by one tribone and the rest T5's,
while 75, Ty, and T, can be tiled.

Given any tiling or partial tiling of 7,, with & > L. it can be extended to a tiling
or partial tiling of Ty, 2 by adding a 12 > k parallelogram, topether with a T,
The 12 x & parallelogram can be tiled by subdividing into 2% 6 and 3% 6
parallelograms.

Trroresm (Conway). A miangular array Ty of hexagons can be tiled by 1575 if and
anly if k is congruent to 0, 2, Y, or 11 maodulo 12,
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