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Abstract

We study the problem of tiling a simple polygon of
surface n with rectangles of mven typea (sl We
present a limear fime algoriihm for deciding if o poly-
gon can be tiled with 1 x m and k& x 1 &iles {and giving
2 filing when il exiels), and o quadratic algorithm for
the same problem when the tile types are m x k and
kxm.

1 Introduction

We present algorithms far tiling a simple region of
72 (ir palygonal region without holes) with rectan-
gular tiles.

In the first part, we presenl a linear Lime algo-
rithm [in the surface area n of the region] when
thers are two tile types, the 1 ¥ m and [ % 1 rect-
angles. Previously the only known algorithms other
than exhaustive scarch were for the case of dominees
[{m = 2,1 = %), where several combinatonal methods
were known (using matchings, or max-flow-min-cut al-
gorithms), Our algorithm generalizes a domino tiling
algorithm of W. P Thuesbon [1] Leswd v ideas of 7, H.
Gonway and Lagariag which zely on geometric group
theory. After the fach, one can view this problem as a
flow problem as in the case of dominoen.

In the second part, we give a quadratic algorithm
for tiling with & x [ and I x &k rectangles (ie. when
thees 1o only one tile typa, up to rotatian). Thin cace
apprars more complicated, bul is interesting becaose
there zeems Lo be no natural interpretation as a flow
prnblam

In the last section, we define the distance between
twao tilings of & region in terms of the number of ele-
mentary transformations needed to go from one to the
other, and study the maximum dislance,

It is known rom Mike Robson [2] that tiling a rc-
gion with holes with 1 % m and n x 1 tiles 13 NP-
cornplete 25 soon as m > 2 and | > 3. On the other
hand, efficient tiling algorithms and criteria have been
abtained for restricted classes of polygons [3][4). As[ar
as rectangles are concerncd, from [8] we sce that our
tiling problem 13 NP-complete for polygonal regions
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with holes as soon as £ > 2 and | = 1 (opumal tile
salvage problem).

a

Tiling a polygon with 1 xm and [ x 1
tiles
We will only pressat the algorithm m the caaz
m = { = 3, since generalizing the algorithm is auraight-
forward from thal case. By a polygon we will mean a
eimple polygon in Rt having varlicaz z}, and var
tical or horizontsl edges, A polygon P is described
by its perimeter 8F, which is a sequence of directed
horimontal and vertical edges of length 1
2.1 The method of Conway and Lagarias

Let a be a symbol associated with each horzontal
otep (of length ana) ta the right and b ba tha eym
bol associated with each step upward, Let a=! denote
& horizontal atep to the left, and b-' a verlical step
down; them the perimeter of o polygon, read in & coun.
tarclockwise senee [rom an arbitrary starting pont, is
a2 word in @, b,a=! -1

Lat F = {a,b|} denote the fres group ganeratad by
a and b and in general let (A|R) denote the growp
genocated by the elements of A4 with relations r =
e for r £ K. Following Thurston [1], we define the
tiling group of a sel of tiles to be the quoticnt of the
free group F by the relations describing the tilea, Let
& = (a,b|[a?, 8], [n,6%]) (where the notetion [r,y] =
shorthand for eyz=ty=1),

Let P be the polygon in 2% which we want to tile.
Choooe & pownt on the boundary of P orbitrarily and
label it by e. Going around P from that pont in
counterclockwize order, we get & word w in F, The
word w can sles be thought oy a word in 7 in = natinral
way.

Fact 1 [1] If P can be tled, thenw =¢ m &

Proof idea: First, the polygon given by a single tile
gives w = ¢; a horizontal 3 x 1 tile corresponds to the
relation a%ba~b~! = [a. 0] = ¢, and a vertical 1 x 3
tile corrcsponds to abz— =% = [e,8%] = & Starting
from any region P, removing a tile from P corresponds
to changing w by applying ons of the relators [a? 4]
or [o,87]. O




The condition w = ¢ in & & not always sufficient.
For example, the polyzon figure 1 admits no tiling
{with 1 % 3 and 3 x 1 tiles) even though wis trivial in
Y

w=oltteta— - Ta" 1=l = P20t~ = e

iflw= ¢in G, then 8P lifts to a closed path in
the Cayley graph D(7) of /7 Fram that clased path,
&P can be recovered by projoction onto 27 = G/[a, U]
(defined to be the group obtained from G by addinq
the relater [o,h), i.e. by anniisnting hy the norma
closure of the relator [a, §]).

Define a 2-complex [3(G) by glusing disks onta
T( &), vue disk for cach occurence of the relatora [a, b3
and [n"‘hjl in T(G). A tiling of F then lifts to & sur-
face in T?{G) spanning Lhe loop w in [(G) C T(G).
Dehine 2 surface area in T*(G) by giving area 3 to
ench disk (ic. the area of its projection on Z7). In
general, a surface spanning w in [?(G) does not nec-
essarily project to o tifing of P, vince Lhe projection
may be self-overlapping  Bul we have the following
key observatinn:

Fact 2 [1] If P 15 tileable, then any mintmum area
surface spanning w in T?(G) projects {o a filing of P,

The problem s now reduced to finding a surface of
minimum area

In the ense of domine tilinga (whan Lha tiles are
1x2and 2 % 1, T(G) is noturally embeddable in BY,
and Thurston solves the problem by first defining a
*lLiright” function in T(G), sccondly ohoerving that
there i a lowest tiling 7 spanning w, whose high-
est point must be on tﬁc border w,and thizdly taking
the highest point of w and showing that the tle of 7
at that point can be determined ensily from the local
conditions,

To gencralize Thurston's aporoach, the main prob-
lern is finding the correct definition of a height func-
Liom.

2.2 Delining a height funelion

In our case, the Cayley graph T(G) is a bit diffi-
cult fo visualize, since it cannot be naturally embed-
ded in TI* Tlowever we only ncod bo usc o quolient
graph of & Let H = G/e®, #2, Since o = P=e
implies that ab® = 8¢ and that a®k = bo®, we have
H o= {(a,b|a® 8?) = Bz« Z3, the Jree product of 23
by Z3, The Cayley graph T[If) of i is simply a tres
of trianghes (see figure 2). given = € G, lel &' denote
its projection in K and z" denote its projectlon in
2% = Gf[n,b]. G is a semi-direct product of H by 27,
which means that an element of 7 is determined by
its projections ento 4 and 2%

Fact 3 The map G — H x 27 given by z — (', 2")
13 brpectave

Now, the closed poath w in T(G) associated to the
boundary of P maps W a clueed path o' in T{T).
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Root T{H) al some arbitrary vertex r, far from w',
and define the height of = € A to be the distance from
r tor in the graph T{H). (For example, if nis the
surface area of P, we can define r as the point (ab)'®"

in H).

Lemma 1 [f P 15 tileablz, then there is a fthug of P
whose highesi pomt 15 on the boundary IF

Proof: Let T be a tibng of the polygon. Every pont
ingside P is on the boundary of a tile, 2nd so has an
associated clement of G (and so a height in /7). As.
sume that a highest point £ is in the interior of P, We
claim that r cannot be al the corner of a tile. For,
if £ s, for example, the lower left corner of some tile,
then z has nelghbors labelled za apd =b. Tu T}, i
is easy Lo sae that no matter how z is with respect
to r, zither zo or zb i farther from » than z, hence
higher: contradiction.

Without loss of generality, we can sssume then that
r 15 on the left side of & vertical tile. Then the tile on
the left gide nf = must alsa he vertical (hecause T is
not & corner and not on the boundary). Assume for
example that £ isas in figurs 3, Then zh?, which labels
a neighbor of 7,15 ales highest  Sines it is nnt & cornes
either, this determines tﬁe poeition of the tile left of
z: the two tiles surrounding = must form a rectangle.

Thus y = rhnh~! and 2z = =ha= "t~ are two labels
of the tiling. We chserve that no matter where r is,
one of the two points y and z must be at the same
distance aa = from v, hence also of maximum height.
For example, = is also a moximum in figure 4. IT 2
is on the border of P, we are done, Otherwise, by
the same argument as above, the tile left of 2z must be
vertical and form a rectu.ngie with the previous two
tiles, We can now replace the three vertical tiles by
three horizental tiles, forming & new, lower tiling {1n
the sense that every point of 2 is lower; see figure 5).
Therefore a lowest tiling must have a highest point on
its boundary O

Given I?, we now consider the hiEhr_-rt. pn'uhl = an
the boundary dF of P. From the above lemma, we
know that z is also the highest poinl of some tiling
of P (if P io tileable), It i cosy to see thal = cannot
be at & corner of 8P, Assume that r is on a vertical
side of 8P, aa in figure 6. The neighbors of z on 8P
arn laballed =b and zb=!. Ona of thera must alen havs
maximum height, for example zb. Since neither = nor
b can be at a corner of a tile, the only possibility s
a vartical tile covering both = and =6,

Removing that tila, we get a region which can be
tiled #ff P can be tiled: 1terating the process, we will
obtain an algorithm for liling P or deciding that F
cannot be tiled by | = 3 and 3 x 1 tiles,

2.3 The algorithm

Inpul: a polygonal teglon P of 22 of arca n,
Initinlization: Label some point of P hy &, Let
r= Sab]m" € H = {a,bla®, ). Going around the
boundary, label cach point of 8P by o word w C K
and compute its height.

Repent: Let = be » highest point of 3P,
Onc of ='a neighborn, say v, & ales & higheet point of
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Figure |: A necessary bul not suffidient condition for tiling F

H = (a,b]a? =42 = ¢}

tiles surrounding the higheat point

Y
\ root r

Figure 4: Proof of lemma 1: building a square with highest tiles
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Figure 5: Proof of lamma 1: Removing interior maxima by changing the tiling of a square

xb exterior
of P

x

xb '

Figure 6: Tiling P: putiing down Lhe [irst tile
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8P. Take the tile T in P covering T and y (vertical
if zy is a vertical segment, horizental otherwise). Re-
move T from P. _

Update 8P, the labeis and heights. 2
Until: P is tiled or some point of P is given two dil-
ferent Jabels (then F cannot be tiled).

It 1s easy Lo 5o that, sinee all the updates are local
operations, the algorithm can be implemented so 25 to
have linear running time.

If the Lilis are kx 1 and 1/ inatead of 1% 3 and 3= 1,
the algorithm can easily be generalized. The group to
consider is H = (a,ble*, b'), whase Cayley graph is a
trev of ellecuating k-cycles and l-cycles. The height
i similarly defined, as the distance to some arbitrary
root (sufficiently far away). Given a highest boundary
point, the lowent tiling murt contain the tile which has
= in the middle or co-middle of its long side.

Theorem 1 A polygen of area n can be fled by 1 %
and & = 1 files, or proved not fo be tileable, tn fime
linear in n.

3 'Tiling a polygon with kx[and I X &
rectangles
Wa will only presant tha algarithm in the rase kb = 2
and [ = 3, since generalizing the algorithm ie easy from
thiat special case,
3.1 The tiling group and its quotients
The two rectangular tiles define the reiations alh?
'a? and &b = b¥a? hence the tiling group is G
(e, bl[a?, &°], [u®, 07]). Let Jf be the quolient group
H = G/a* ¥ = (a,b]e®,1?), and K be the group
K =G/a?, i = {a,btla®, Y}, We have: Z2 = G/le, b].
Gven w e G, let w' w' w™ be the projections of w
on H, K and 27

Fact 4 The sop w — (w', w" ") w2 bijective,

Dcfining a height function is new & mere complex
aprratinn, since it apparently involves Loth quotient
gronps / and K. However, it burns oub that uaing the
Tabels in F already gives us “most™ of the information
that we need to conatruct a Lling,.
3.2 Defining a height function

We label some arbitrary point of P by ¢. Going
arovnd the hanndary, wa Iabel cach point of 2P by an
clement of . Hooting H at some point v sufficiently
{ar away, we cen define a height function as being Lhe
distance from r in thc graph T(H). A liling of P

extends the labellings and heights to all the points of

P which are on the border of a tile H:nch tile has two
interior points whose height is undefined),

Lemma 2 [f P i3 trleable, then there ts a filing of P
wheae magimum height b gceurs erther on the fﬂuﬂd~
nig wr withoo distunce ! af the soundary (in whech case
there 15 o boundary point of height h — 1),

Pronf sketch: Let r be a highest intcrior pont, Us-
ing the same elementary arguments as in section 2,
it 15 easy to sce Lhat r cannot be al the corner or in
the middle of the short side of & rectangle: = musi

G1a

he on the long side of a rectangle. Deing case-by-
case analysia, we find that the tiling must contain a
uhlock® formed by three adjacent reclangles, as in fig
ure 7 (where z,2' 9,1 are all biglhesl puints of e
tiling) for vertica! tiles, or a rotated version for hori-
zontal tiles,

Definition 1 Given a tiling of P, o block 15 1 set of
3 adjacend diles, forming @« 3 x 6 or § % 3 reclangle,
such thet the pornts inside the block which are lobelled
are all heghest in the tiling.

What iz there below that block? An elementary
cage-hy-case analysis shows that there are only threc
cases, illugtrated figure B: either there in another
block, lined up with the previous block, forming a 6% &
rectangle, or there i anolher block, shifted by 4, or
there are two horizontal tiles, forming o 6 5 rectangle,

In the first case, we replace the § vertical rectan-
gles by 6 horigontal receangles, ellininating Lie highest

oints. In the second case, we lock at what fa be-
ow the second block. In the third casc, we put the
two hotinontal tiles above the block, moving the black
down hy 2, which either eliminates the highest points
or moves them eloser to the boundary of P helow the
block, Iterating the process, we finally get a block
which teuches the boundary, and the highest point
has been pushed to within distance 1 of ﬂ%‘. o,

3.8 Putting down the first tile

Let = be the highest point on the boundary P
Assume that ¢ 5 on a vertical parl of 8P (since =
is maxinum, it cannot be al & corner), and thal the
interior of P is to the right of =. One of ils neighbors
on AF is alea highest, say y.

If the tile ot & io o vertizal ractangle, then it 18 casy
to see that it has to be a rectangle covering r and
y (see figure 8 - otherwise some interior point would
have height 2 mrre than the haight of 2}

If it is horizontal, then the points along one of the
long sides of the rectangle have height equal to | more
than the height of - they must therefors he highest
points of P. Asin the previous section, by doing case
analysis to study the position of the tiles adjacent ta
that first tile, we sce that there has to be a Llock, in
two posaible positions.

Lemma 3 Let B be a vertwen! block af a tifing of P
The area tp the ripht of B musi

1) contain some points in the exleror of P or

Z) be covered by another block al the same level (figure

IM‘J’ or
1) be covered by two vertical rectangles (figurs 108) or
.{{ be covered by one vertical rectangle and one bock
A :ﬂr_J L, L ﬁgur: Jﬂt,leﬂ"

5) be covered by fwo blocks shafied by 3 (figurs 104)

The proof is by mepaction.

Up to rotating the 6 x 6 figure to change the tiling,
we can asaume that case g never occurs n the tiling.
We will now apply the lerama repeatedly. Let T be
the block at =, 1-":’:'. gay that a I:-locﬁ‘eﬁ ie reachoble from
By i there is a sequence of blocks By, By, ., B = B
such that B; is in the right neighborhood of B {as



& rool

Figure 7: Interior highsst points of a tiling

“J

Figire : Pushing the highest point towards the boundary

Figure 5: Putting down the firat tile
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Figure 10: The right neighborhood of a block
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Fi!ur¢ 11: Puahing vartical tilaa to the laft
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in cases e, ¢ e, ¢’ and d of figure 10). We consider the
s2t 5 of all blocks reachable from Ay in the tiling.

If Lhooe blocks never touch the border 8P outside
By, the only cases which oceur are b, ¢,¢" and d. All
the blocks farthest from By have right neighborhoods
as in figure 10h  Then we ran “push” the vertical
blacks towards the left {as in figure 11) and construct
a new tiling of P such that the tile at z is vertical.

Otherwise, there must be a part S of the boundasy
8P reschable from z by a sequence of blocks, »s in
figure 12. We obscrve that in that tiling, there 13 a
point ' of § with the same label as = in H

Definition 2 Given a fling of P, o pair (z,2") of
roints af AP is tight i{: and ' are both highest on
8P, usth the same label, and are linked by o scquence
of blocks in the filing.

To have sn ﬂﬁu]’ihh“l siguiidar b Wie wvie i Lhe pre=
vious section, we would like to be able Lo say that we
can always pia.u::: a verkical tile &b z, which would en-
able us ta put down the firat tile uning local conditiono
only Unfortunately tight paim of points arc a prob-
lem in this approach. However we will show that such
pairs are actually independent of the tiling  In ardar
Lo characterize them, we will use a different notion of
height, Let K = (a,b|a® b7} be rooted al some arhi-
trary far away point r'. As we go around 8P from ¢,
points can also be labelled with a word w &€ K. We
define their J¢-height to be the distance from w to 7'
in the graph T{K) (which in Lhis case is just & line
graph).

Lemma 4 Given g taleable pelygon P, a poir of points
.,z € 8P is tight for seme filimg of P ifT the fallowang
3 condifions are satisfied:
1) = and = are highest points of 37,
L) IT is poseidle 1o ConSITuCL 4 sequence of 3x @ rectan-
gles (respectively, sequence of 6 x 3 reclangles) finking
= ta z', where every roctengle 33 fo the right of fresp.
belpw) the previvus vie aond shifled by hree, wnd wll
rectangles are inaide P.
3)

| hetght]z) — K -herghtiz'})]| =

| 2

| ¢

z —2'|fd

in case af figure 1€
1 |fa—1

tn case of figure JX

where ¢ and 2' are the z-coardinaies (resp.
coordinaies) of £ end ¥ n T2

1|I.

Proof iden: If (z, z') is tight for some Eiling, then the
three conditions of the lomma arc elcarly satlsfied.

Conversely, given [z,z') which salisly the three
:onditions of the leoma, and given a tiling of P, con-
ader 4 shurlesl path o 2 e 2" in Fo Que can prove
that the path must only traverse horizontal rectangles
of the tiling (otherwise the J{-height would not have
e e change by 2l — 2'|f3 = 1). 1t is posaible to
ihow that those horizontal rectangles must be part of
slocks, which form a sequence. Thercfore (2,2} is
ight: 0.
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Conrequence 1 [f (z,z') 15 fight for some tiling of
P, then (z,z') 18 light for every tifing of F.

The three conditions of the lemma being independent
of the tiling, can be checked even when a tiling of £
is not known.

Finally, tbis gives vs a criterion for putling down
the first tile of the tiling: if the maximum z of 8P 15
on a vertical side, then the firat tile is always a vertical
tile at =, excapt if there is ' such that (z =) 18 tight
then the first tile at = must be horizontal (and its
cxact position is determined by whether the K-height
increases or decreases when going from z to '),

3.4 A polynomial-time algorithm

The analvais of the previous subsection give a poly-
nomial time slgorithm for deciding whether » polygen
can be tiled by 2 % 3 and 3 % 2 tiles, and giving a liling
i1t exists. A high-level deseription follows,

Input: A polygon P with vertical and horizontal
edges of integral lengths
In}tla]izatiam Label the vertices of @ with words
ul B aud ol K, caleulals Whien hieight and JO-heiglht
Hepeat: Take z € 3P of maximum height, I there
exists y € 8P such that s:,yl) is tight, then place a
horisontal tile at & accordingly; cloe place a vertical
tile at z appropriztely,

Update P, #P, H-labels and heights, K-labels and A-
heighta,

Ungt}iLI: P is tiled or thers is 2 conflizt in the labels [in
which case P is not tilcable).

The exsct running time of the slgorithm depends
on the implementation. With a little bit of work, one
can see that there is ao mmplementation for which the
algorithm takes quadratic tima.

For general k x I rectangles {with the two tile types
kx!and ! = k), the algorithm can be generalized to
yield & quadratic-time algorithro,

Theorem 2 Given o polygon of orco n, there 13 an
.uffurithm for tiling the polygon with k x ! and | » k
filea or proving thet it 2 mef feleeble, with running
time O(n?).

We cunjeckuwis bhal the ruimiug Lie can be -
proved,

4 Properties of rectangle tilings
As a eorollary of the above constructions we find,

Theorem 3 Any twe tilings of Phymx ] and 1 xr
files are nhlained from one ancther by "rolefions” of
the form dllustraied figure 14, That s, m vertical L% n
iiles con be replaced By n korzonfal m x 1 files and
conversely.

Any fwo tilings of P by 2 3 and 3 x 2 fles are
obtainable from one another by rolations of the form
illusiraied figurc 15,

It is not hard to show that the distance in terms of
the numht,—: of rotations between bwo l;].l'n.E& ol .F', i
either of the above cases, is at mast O(n%?) for area
n. Furthermore, figure 16 shows two tilings of 2 2k x
3k oquarc by 9 % 1 and L = 3 tiles having distanecc
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Figure 12: Reaching the boundary with a sequence of blocks
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Figure 13: Chain of blocks

Figure 14: rotations for Lrauslunming mx 1, 1 = a tilings
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Fignre 15 rolations for (rancforming 3 » 2 tilings

Figura 16: Two Liling whick are “[ar apart”
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