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Abstract

Given two “bars”, a horizontal one, and a vertical one (both of length at least two), we arc
interested in the following decision problem: is a finite figure drawn on a plane grid tilable with
these bars. It turns out that if one of the bars has length at least three, the problem is NP-
complete. If bars are dominoces, the problem is in P, and even linear (in the size of the figure) for
certain classes of figures. Given a general pair of bars, we give two results: (1) a necessary
condition to have a unique tiling for finite figures without holes, (2) a linear algorithm (in the size
of the figure) deciding whether a unique tiling exists, and computing this one if it does exist.
Finally, given a tiling of a figure (not necessarily finite), this tiling is the unique one for the figure
if and only if there exists no subtiling covering a “canonical” rectangle.

Keywords: Tiling, bars, NP-complete

1. Introduction

Polyominoes and more generally pictures drawn on a plane grid are a subject which
fascinated mathematicians. for a long time {4, 9-11, 19]. They appeared of great
interest for computer science in many research fields: computational geometry [ 2, 4],
data organization in parallel computer architecture [17, 20], formal languages theory
[7], decidability theory [1, 12] and so on. We have focused our attention on the
problem of codicity and related questions.

We consider a number of problems relating to tilings of plane finite figures by
non-overlapping bars. A figure consists of a number of unit squares and we are
concerned with bars chosen from a pair of allowed types #; (covering [ = 2 horizontally
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contiguous squares) and v, (covering m > 2 vertically contiguous squares). Given
a finite figure and a particular pair of bar types, we are interested in deciding whether
a tiling exists, whether it is unique and in actually finding a tiling if one does exist.
Similar problems have been studied in the past [, 10, 11, 14], concerning mainly more
complex tile shapes than our bars but often simpler figures than our arbitrary ones
(squares, quadrants or the whole plane). Results proved have included undecidability
of tiling the plane with a given finite set of tiles [4], NP-completeness of tiling of finite
figures [5, 87, and undecidability of tile codes, that is finite sets of tiles for which
a tiling of any'ﬁnite figsure must be unique [1].

Since a non-connected figure is (uniquely) tilable if and only if each of its connected
components is (uniquely) tilable, we consider only connected figures. A more signifi-
cant distinction concerns the existence of holes, it turns out that absence of holes plays
an important role.

The existence of a tiling can be decided in P for the simplest case hy, v, (the
dominoes), with or without holes. For all other pairs of bar types this problem is
NP-complete for finite figures with holes and has recently been proved to be in P for
those without holes [13].

For the simple case of two dominoes, we show efficient algorithms for certain
problems. Finding a tiling, if one exists, can be performed efficiently in general and
even in linear time in the size of the figure for certain classes of figures. There is also
a linear time algorithm for deciding existence of a unique tiling for finite figures
without holes.

For the case of a general pair of bar types h;, v,, and finite figures without holes, we
give two results on unique tilings. Namely, we give a necessary condition for a finite
figure to have a unique tiling and also a necessary and sufficient condition that a given
tiling is in fact unique.

2. Definitions

The plane is divided into cells which are unit squares with horizontal and vertical
sides, so the set of cells is considered as Z x Z. A figure F is a subset of cells; an instance
of F is a translated image of F. Two different cells are adjacent if they have a common
side. A figure F is connected if the following condition is satisfied: for two cells c and ¢’
of f, there exists a sequence of cells of f,co=1¢, ..., cu = ¢’ such that ¢; is adjacent to
¢;eq fori=0,...,n — 1. A connected figure is called a piece. A piece has no hole if its
complement is also a piece (Fig. 1). A finite piece without holes is called a polyomino.
A figure F is horizontally convex if the following condition holds:

Ve, e F (c=(x,y),¢ =(x,) and x < x') = (Vx < x" < x' (¢" =", y) € F))

A vertically convex figure is defined in a similar way.

A horizontal bar (resp. vertical bar) h; (resp. v;) is the union of [ horizontally (resp.
vertically) contiguous cells (I = 2) (Fig. 2).
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Fig. 1. a) a figure b) a finite piece ¢) a finite piece without holes (a polyomino).
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Fig. 2. A horizontal bar h, and a vertical bar v;.

Fig. 3. A up vertical peak (I = 5, k = 3).

Let S be a set of a horizontal bar k;, and a vertical bar v,. Let ¢ be a cell. Two
horizontal bars h(c) , #'(c) and two vertical bars v(c) , v'(c) are defined in the following
way:

o h(c) (resp. h'(c)) is the instance of i; whose leftmost (resp. rightmost) cell is equal to ¢
e v(c) (resp. v'(c)) is the instance of v, whose lowest (resp. highest) cell is equal to c.

In the following the set S is fixed. A tiling T with S of a figure F is represented as two
subsets T, T, of F such that the sets {h(c) |c € T},} and {v'(c) |c € T,v} form a partition
of F. A subtiling R of a tiling T is a pair of two subsets R, and R, of 7}, and T, which
tile the subfigure F' of F equal to the union of the bars h(c), c € R, and v'(¢c), ¢ € R,

A canonical rectangle is a rectangle I by m. Clearly a canonical rectangle admits two
tilings with S. It will play an important role later.

In a figure F, a up horizontal peak is a set p of k (0 < k <) cells of F which is an
instance of h, and such that the adjacent cells which are marked with a sign + (Fig. 3)
do not belong to F. This definition depends on the set S. In the same way are defined
a down horizontal, left vertical, right vertical peak (Fig. 5).

Let cq, ..., ¢ be the cells of an up peak p, the cover C(p) of the peak p is the rectangle
C(p) = v'(c;) W - U v(cy) (Fig. 4). In a similar way is defined the cover of other peaks
(down, left or right).
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Fig. 4. The cover of the peak of Fig. 3, here m — 4.

O<k<]

O<k<m O<k<m

C(p) C(p)

a) b) c)
Fig. 5. a} a down peak, b) a left peak, c) a right peak, and their cover.

Fig. 6. A finite piece which is not a polyomino.

One can observe (it is important for the future) that in a piece without holes, it is
impossible that two cells of the piece are just touching at a corner and that the two
other cells at this corner do not belong to the piece (this situation is shown in Fig. 6),
because in that case the connectivity implies that the piece has a hole.

This covering notion deals with the following property.

Lemma 2.1. If a figure F admits a tiling T with S and has a up (resp. down, left, right)
peak p, then C(p)<F and p<T,, (resp. T,, Ty, Tyv) .

Proof. Let T be a tiling of a figure F. If pis a up peak, it is clear that each cell ¢ of the
peak cannot be covered in T with an horizontal bar, but only by a vertical bar
whose top cell is ¢, so the proof is done in that case, the other ones are symmetric
cases. [
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Fig. 7. A up chain of three peaks, [ =4, m = 5.

Let A = {X, X', ¥, Y'} a four letter alphabet. The outline of a figure F is orientated
in such a way that the interior of the figure is on the right of the outline, So, if F is
finite, every connected part of the outline is coded [7] with a word of A*, X, X', ¥, ¥’
standing for the following unit moves: X: — , X" «, ¥: 1, ¥": [

Let F be a figure. A up chain of k peaks (k > 1) (Fig. 7) is a partial outline of F which
belongs to the set YT (HV'HV) ¥~ *HY'" with

H={X"10<h<l}, V={Y"0<h<m}, V={Y"0<h<m}

The number k is the length of the chain.

A down (resp. left, right) chain is defined in a similar way. The set of peaks of a figure
form a chain of k peaks (k > 0) if there exists a partial outline of F which forms a chain
of k peaks and covers all the peaks of F (if F has no peak, we will say that its set of
peaks form a chain of 0 peaks). "

3. Tiling finite pieces with S, = {h,, v,}

We first restrict our study to the particular case when the bars are dominoes.
Classical results of graphs theory provide a polynomial algorithm to decide whether
a finite figure admits a tiling with S,. For particular classes of figures, we obtain linear
algorithms.

Let F be a finite figure. The graph Gy of the cells of F is the symmetric graph whose
vertices are the cells of F whose edges are the unordered pairs of cells with a common
side. A matching (resp. perfect matching) of a unordered graph G = (F, E)is a subset E’
of E such that every vertex of F is incident to at most (resp. exactly) one edge of E.

Proposition 3.1. There exists a tiling of a finite figure F with S, if and only if there exists
a perfect matching of the graph Gp. Moreover, there exists a canonical one-to-one
mapping between the tilings of F with S, and the perfect matchings of Gp.

Corollary 3.2. There exists a polynomial algorithm which:
(1) decides the existence of a tiling of a finite figure F with S;, or not.
(2) provides a tiling of F with S,, if such a tiling exists.
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This corollary comes from the fact that the problem of the maximal matching of
a given graph G is solvable in polynomial time [12]. The algorithms to solve the
problem are based on the alternating chains (i.e. chains with alternatively edges in and
out of the matching) and the exchange operations on them. We give here a result,
about those chains, that will be used later. This result is a direct corollary of a classical
theorem of Berge [3] about maximal matchings.

Proposition 3.3. Let F be a finite figure accepting a perfect matching. Let E be
a matching on F and Aq a vertex of F, unmatched by E. There exists a chain
[Ao, Ay ..., ALl alternating for E, such that A, is unmatched by E.

Tiling a horizontally convex finite figure with S,

Usual algorithms in polynomial time do not use the fact that the graph is a sub-
graph of Z2, Recently, Thurston [18] has proposed a linear algorithm for certain
classes of figures (more precisely for holeless finite figures). His main result comes from an
application of the theory of Cayley graphs. In this section, we propose a linear algorithm
for a special kind of figures using directly the geometrical properties of the figures.

Given a figure F, there is a unique way to color each cell of F black or white if we
impose that every black cell (x, y) has components whose sum x + y is even, and
a black cell cannot be adjacent to a black one (actually, F is a piece of a checkerboard).

The set of cells of F which have the same height is called a row of F. Let F be
a horizontally-convex finite figure (i.e. a finite figure whose intersection with each
horizontal line is a segment). For each row of F, we have exactly one cell at the
leftmost position and another one at the rightmost position. So, the white cells at the
leftmost extremity and the black cells at the rightmost extremity can be numbered,
according to the decreasing heights, starting with number one. For the following, the
white kth cell at the leftmost extremity will be called W, and the kth black cell at the
rightmost extremity will be called B,.

We define, by induction on k, a sequence C, of chains of F by

o If I, is lower than B, then Cy = [Ay, 44, ..., A,], with 4, = W, and

(1) if A; is a black cell, then 4., = A4; + (1, 0),

(2) if A, is a white cell whose height is the same as the height of B,, then we have
Aivy = A; +(1,0),

(3) if A; is a white cell (strictly) lower than B,, then

Aiv1=A;+(0,1)if A; +(0,1) is in F and 4; + (0, 1) is not in the chain C,_,
Ay = A; + (1, 0) otherwise.

Informally, we obtain those chains by starting from W, and climbing, if possible,
until the height of B,, according to the following rules:

(1) the chain is allowed to climb when we are on a white cell whose upper neighbor
is in F and is not in the chain C,_,,
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(2) when the clain is allowed to climb, it climbs,

(3) when the chain is not allowed to climb, it goes to the right.

In the other case, the definition is symmetric:

e If B, is lower than W) then C, = [A4,, 44,..., A,], with 4, = By, and

(1) if A; 1s a white cell, then 4;,;, = A4; + (— 1,0),

(2) if A4, is a black cell whose height is the same as the height of W, then we have
Aivr = A; +(— 10,

(3) if A4, is a black cell lower than W, then

A1 =A;+(0,1)if 4,4+ (0,1)is in F and A4; + (0, 1) is not in the chain C,_,
Ai+1 = Ai + ( — ]., 0) OlherWISe .

Theorem 3.4. A horizontally convex finite figure F admits a tiling with S, if and only if
there are as many cells W as cells By and, for each integer k, the extremities of C,, are
W, and B,.

Proof. Let E,; be the matching such that each element of E, is a pair {(x, ), (x', ¥)}
where (x, y) is a black cell and (x', y') = (x, y) + (1, 0). All the cells of F, except the cells
Wy and By, are matched by E,. Moreover, the chains Cy are alternating chains for Ej.
The exchange operation on these chains gives a perfect matching of Gy.

Conversely, let C, = [Ag, A1, ..., A,] be a chain such that 4, = W, and, for each
positive integer k', such that k' < k, let us call W, and B, the extremities of the chain
Cy. Let A, be a white cell of Cy, lower than A ,. Let D, be the upper neighbor of 4,. We
assume that D, % 4,

e If D, is not in F, then, for each non-negative integer n, the cell D, + ( — n, 0) is
not in F, since F is horizontally convex.

e If D isin F,let D, denote the left neighbor of D; and D, the right neighbor of D,.
The cell D, is in the chain C,_, due to condition 3 in the definition of the sequence C,,
case 4; lower than B,. Then because the black cell D, cannot be the left end of a chain,
the cells D, and Dj are in the chain C,_,, are lower than B,_,; and C,_, starts at
|

Moreover, we now assume that & is the lowest integer such that the extremities of
Cy=1[Ag, Ay, ..., A,] are not both W, and B, and 4; is the white cell of C,, lower than
Ay, such that 4; + (0, 1) is in F and A4;..; # A; + (0, 1), with i being maximal (we will
see later what happens when such a cell does not exist), From the previous remarks,
we can get a sequence [Dy, ..., D,,, 4 1] of cells such that: (see Fig. 8)

e D, = A,

e for each integer n such that 0 < n < m, we have:

D2n+1=§D2n+(05 1) and D2u+2=D2n+1+(_1=0)

e for each integer n such that 0 < n < m, D+, and D,, ., are in Cp_,—,
e the cell D,, ., is not in F and, for each non-negative integer p, the cell
Dsyps1 -+ (— p,0) is not in F.
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Fig. 8. Tiling of a horizontally convex figure with §.

Let P be the path [Dam+ 1> Doy - D1y Ait 1y ..., A,]. We use the matching E of Gy,
obtained in the following way: from the matching E,, we do the exchange operation
on the (alternating for Eg) chains Cy,..., C,_,. All the cells of F are matched by the
matching E, except the cells W, and By, with k&’ = k. Thus, the only unmatched cell of
F which is above path P is B,. Assume that there exists an alternating chain C of
matching E from B, to a cell #/; with k' = k. The chain C necessarily crosses the path
P. Let U be the first cell of chain C which belongs to P. One can see that U cannot be
a white cell. But the predecessor of any black cell B of C is the cell W such that " and
B form a domino in the matching E. This yields that the predecessor of U belongs to P,
which is a contradiction. Thus, there exists no alternating chain of E starting in B, and
finishing in an unmatched white cell (for more technical details, see [16]. Hence,
because of the Proposition 3.3, G has no perfect matching.

When there exists no white cell of C,, lower than A4, such that 4; + (0, 1}isin F and
Ajrq # A; + (0, 1), we use the same arguments with P = C,. The case where By is
lower than W) is treated in a symmetric way.

The algorithm given in this theorem spends a linear time since we can construct the
chains C; without passing more than a finite bounded number of times in each cell
of F.

Unigueness of the tiling of a finite figure with S,

We give in this section a necessary condition for a finite figure to have a unique
tiling with S,.

Theorem 3.5. If a finite piece has a single tiling with S,, then it has ar least two peaks.



D. Beaugquier et al. | Computational Geometry 5 (1995) 1-25 9

To give the proof, we need to define a new notion which fits dominoes.

A strip is a sequence (¢, ..., ¢,) of distinct cells such that for i =0,...,n — 1, ¢; 18
adjacent to ¢; . If ¢, is adjacent to ¢, the strip is called a ring (see Fig. 9).

To a strip s we can associate a word m(s) of A* = {X, X", ¥, Y'}* which is the
concatenation of the letters corresponding to the translations from c; t0 Ciyq,
OC<i<n

Lemma 3.6. If s is a ring, then m(s) has an odd length.

Proof. The proof is simple. The curve coded by m(s) is a simple closed curve, so
it contains as many occurrences of X as occurrences of X ’, and the same for ¥ and
Y. O

Lemma 3.7. Every ring has two tilings with S.,.

Proof. Let s = (co,..., 3,4 ) be a ring. The first tiling of s is the set of dominoes
{{ci ci+1} i even}, the second one is the set of dominoes {{ci cir1}] i odd}
(Fig. 10). O

Proof of Theorem 3.5. Let us consider a finite piece P, which admits a single tiling
T with S,. We will examine the cases: P, has no peak, one peak, and prove that each
case leads to a contradiction, using previous lemmas.

Let us suppose P, has no peak. If T is a tiling of P, let {¢,, ¢, } be a set of adjacent
cells which is a bar of 7. Since P, has no peak there is a cell €3 # ¢o In Py which is

Fig. 9. A ring.

Fig. 10. Two tilings of a ring.
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Fig. 11. 1 =2, m = 3, a counter example.

adjacent to ¢,. Let {c,, c¢3} be the bar of T which covers c,. Iterating the process, we
build a sequence of bars {cy; ¢2;+1y Of 7. There exists a smallest integer j and an
integer [ < 2f such that ¢; and ¢,;4; are adjacent. So, (¢, ..., ¢3;+1) 18 a ring. By Lemma
3.6, 2+ 2 —iiseven, so iis even. Then, Py, admits another tiling (Lemma 3.7).

Let us suppose that P, has one peak, the proof is the same as soon as we choose
co to be the peak. [

Theorem 3.5 does not hold if one of the bars has a length greater than two. Figure
11 provides a counter example: it is a finite piece which has a unique tiling and has
a chain of O peaks, but it has a hole.

4, Tiling polyominoes with #, and v,

We give in this section two results. The first one is a linear algorithm to decide
whether a given trapeze is tilable with dominoes. The second one is a necessary
condition for a polyomino to be tiled in a unique way with h, and v,

Tiling a trapeze with h,, v,,

A trapeze T is a horizontally convex finite figure which has the following property:
for each cell (x, y) of T, and each cell (x, y') in T such that y' < y, the cell (x, y — 1) is
also in T.

A horizontal block of a figure F is a rectangle ! xj, with j < m, included in F.
A vertical block of a figure F is a rectangle i x m, with i < [, included in F.

The next cells of a block B of a finite figure F are the cells (x, y) of F such that the cell
(x — 1, y) is in the rightmost column of B.

Clearly, each block has a unique tiling with k, and v,,, and this tiling only contains
one kind of bars.

Let us notice that a next cell of a block B is not in B.

Let 7 be a trapeze. The upper fibre of T is the longest sequence (B, By, ..., B,) of
blocks of T, such that (see Fig. 12):

(1). the block B, contains the highest cell S of T such that the upper neighbor and
the left neighbor of S are not in 7. If the cell S + (I — 1,0) is in T, then B, is the bar
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Fig. 12. Upper fibre of a trapeze.

h; which has S in its leftmost column. Otherwise, By is the largest vertical block of
T which contains S.

(2) for each integer i such that 0 << i < p, the block B; of T has at least one next cell.

(3) If there exists a horizontal block of 7" whose upper-left corner is the highest next
cell of B; and whose lower-left corner is the right neighbor of the lower-right corner of
B;, then Bi+i is this block. Otherwise, B, is the largest vertical block of 7" whose
upper left corner is the highest next cell of B;.

We say that the upper fibre (Bg, By, ..., B)) of T has a good end if the block B, has no
next cell.

Remark. If the upper fibre of 7 has a good end, then the figure 7/ =T —
(Bow By v -+ u B))is also a trapeze.

A trapeze T is fibrous if one of the following conditions holds:

(1) T is empty or the upper fibre of T has a good end,

(2) T"=T—(Bovw B, v - v B is fibrous.

In this case, the tiling of T that we obtain by the union of the tiling by fibres of 77
and the tilings of the blocks B; is called the tiling by fibres of T (if T is empty, its tiling
by fibres is the empty tiling).

Theorem 4.1. Let T be a trapeze. There exists a tiling of T with the bars h; and v,, if and
only if T is fibrous.

Proof. By induction on the size of 7. We have three cases.

In Figs. 13 and 14, blocks H; are black, and the upper fibres of T and T are grey
colored.

Case (A): The upper fibre of T has not a good end.

See Fig. 13. Let us denote (Bg, By,..., By) = (Bo, By, .... Be, Vw15 .-., Vp), Where
B, is the last horizontal  block of the fibre. Let (xq, yo) be the highest next cell of 1,
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Fig. 13. A trapeze whose upper fibre has not a good end.

and let (x§, yo) be the cell of the right side of 7' which is on the same line as (x,, yq).

We define the séquence (Hy, Hy, ..., H,_,+,) of horizontal blocks such that:

® H, is the tile k), included in F, which contains the cell (x5, Vo)

e H; is the horizontal block whose right side is composed by the cells of
B,_;+, whose right neighbors are not in 7.

We remark that each tiling of 7 uses the tiles used to tile the blocks H,;. So the
trapeze 7" =T — (How H; U ... U H,_,,) has a tiling with &, and Uy, thus, by the
induction hypothesis, 7" is fibrous. But the upper fibre of 7" is the sequence
(BosBrseoo s Bic 1, Ve 1 e e V), with Viy, = Vs +(—10). This fibre has not
a good end, which is impossible.

Case (B): The upper fibre of T has a good end, and its last block is a vertical block,

See Fig. 14. Let (x,, y,) be the upper-right corner of Vp, and V be the tile v,, whose
highest cell is (x{, y,). If 7 adimits a tiling containing ¥, then, by an obvious induction
from the trapeze 77— V, T is fibrous.

Now, assume that each tiling of 7" contains the tile h; denoted by H, whose right side
is the cell (xy, y,). Then the trapeze T’ = T — (Ho H;w-- 0 H, ;) has a tiling
with A and v, thus, by induction hypothesis, 7" is tilable by fibres. The upper fibre of
T is the sequence (Bg, By, ..., By_4, Vit1s-oo, Vo Hpy ) where H,,; denotes the
rectangle [ x m — 1 whose right side is composed by the right side of ¥, except the cell
(x1, ¥1). Let us consider the tiling of T that we obtain by the union of the tiling by
fibres of 7" and the tilings of the blocks H ; : the rectangle I x m whose upper-right
corner is (x,, y;) is tiled by m tiles .. We can put [ tiles v, instead of those tiles h,. Thus,
we obtain a tiling of 7" which contains the tile V, a contradiction.
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Case (C): The upper fibre of T has a good end, and its last block is a horizontal block.

See Fig. 15. If T admits a tiling containing H, then, by an obvious induction using
the trapeze T"— H, T is fibrous. Now, let us assume that each tiling of 7 contains the
tile V. Let P be a tiling of 7. We define the sequence (Vy, V', ..., V}), where V; denotes
a tile v,, of P such that:

e =1V,

e lct us denote by (x;, y;) the highest cell of V. For 0 < i < k, we have:

© y;,—n <y <y and x; < X4y '

@ If (x, y) is the highest cell of a tile v,, of P, and if (x, y) satisfies the conditions:
x;<xand y;, —m< y <y, then we have: x;,,; < x

e If (x, y) is the highest cell of a tile v,, of P, then we cannot have simultaneously
Xp<xand y, —m< y< y.

Let G be the set of the cells (x, y) such that (x, y) is in 7" and there exists an integer
i such that: x; < x and (x;, y) is a cell of V. The tiling P canonically gives a tiling Pg of
the figure G. Moreover, the trapeze T = T'— G has a tiling with k; and v,,, thus,
by induction hypothesis, T is fibrous. The upper fibre of 7™ is the sequence
(Bo, By, ..., B,_y, V'), where V'’ denotes the rectangle ({ — 1) x m whose upper side
is the upper side of B,, except the cell (x;,y,). Let us consider the tiling of T
obtained by the union of the tiling by fibres of T and the tiling P4. Thus, the
rectangle | x m whose upper-right corner is (xy, y;) is tiled by [ tiles v,,. We can put
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Fig. 15. A trapeze whose upper fibre has a good end, with a horizontal block.

m tiles h; instead of those tiles v,,. Thus, we obtain a tiling of 7 which contains the tile
H, a contradiction. [

The algorithm'given by this theorem takes a linear time, since we can construct the
fibres without passing more than a finite bounded number of times in each cell of T

Remark. Theorems 3.4 and 4.1 easily give new proofs of a result from L. Bougé and
M. Cosnard [6]. This result says that each coloured trapeze which has as much white
cells as black cells admits a tiling with S,.

Uniqueness of tilings of polyominoes with S —= {hyophlmz2

We suppose L, m > 2 and I + m > 4.
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The main result is the following theorem.

Theorem 4.2. If a polyomino has a single tiling with S, then its set of peaks cannot form
a chain.

This theorem needs a proof by studying different cases, so it is based on three
lemmas.

Lemma 4.3. Let P, be a polyomino having a single tiling To with S, and without peak.
Let ¢, be the leftmost cell of P, on the top row. Then the connected components of the

figure Py = Py — p, with p = h(c¢,) if ¢y € Ty, V'(cy) otherwise, are polyominoes with at
most one peak.

Proof. Let Py be a polyomino having a single tiling 7, with S. Let ¢; be the leftmost
cell of Py on the top row. Two cases occur according to ¢y e Ty, or ¢ € To,,
(necessarily, c; belongs to one of these two sets).

First case: ¢, € Ty,,.

Let P, = Py — h(c,) (P, is not empty since Py has no peak). We have to look at the
connected components of P, and at their peaks. If P, has a peak p,, this peak is
adjacent to the bar h(c,), otherwise p; would be a peak of P, (adjacent means that-at
least one cell of p, is adjacent to a cell of h(c,)), Figs. 17, 18, 19 give all the possible

il et + i fmmm e —
++| Cﬂl:: hilel) 4 +Hel o hiel) :|+ -1-1'01‘_‘ “H{cl) - DL +
H_ pl 1+ cq +  pl |c2'. el
C(pl
C{pl) C(pl) )
a) b} <)
Fig. 16. The different positions of a up peak.
EEELEEES + koo il N
fled Bl + +el hicl) | el H{eD)
' c2 + =7 - P C(pl)
el cipl) = Tlpl c(p1) H
) + +
+ +
+
c') irrelevant d) a)

Fig. 17. The different positions of a left peak.
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Fig. 18. The different positions of a right peak.

positions of p, related to k(c,). One can observe that the cell ¢, below ¢, belongs to P,,
otherwise P, would have a peak, and C(p,) is included in P,

® py is an up peak.

In a), p, is adjacent to h(c,) on the down side and contains ¢z (py can go beyond the
left side of h(c,)).

In b), p; is adjacent to k(c,) on the down side and does not contain ¢, (p, can go
beyond the right side of h(cy)).

In ¢), p, is adjacent to hic,) on the right side.

The peak p, cannot be a down peak, because in that case, it cannot be adjacent to
h(Cl).

® p, is a left peak

In¢'), p, is adjacent to h{c,) on the down side and contains c;. So, h(¢;) v C(py)isa
canonical rectangle and then P, admits another tiling, It forces us to eliminate this case,

In d), p; is adjacent to h(c,) on the down side and does not contain ¢;.

In e), p, is adjacent to h(c,) on the right side.

® p, is a right peak

Necessarily, p, is adjacent to h(cy) on the down side and contains cy.

The case g) is a borderline case of f). In that case, h(c,) w C(p,) is a rectangle but
not necessarily a canonical one because the cell on the right of h(c)) possibly is a cell of
Py, so this case can happen.

Now, let us suppose that P, admits at least two peaks. Since these peaks are
adjacent to /(c,), it is possible to order them along the outline of h(c,). Let p, and p’,
two consecutive peaks of P, along h(c;).

Claim 1. Necessarily, between p1 and p'y there is a cell ¢ which does not belong to
Po and which has at least a corner which touches h(c,).

Proof of Claim 1. We have just to scan all the possibilities for the positions of p, and
P'1i(a,b)(a, ), (a, d), (a, e} (b, c), (b, d), (b, e), (b, ), (c, ), (d, f), (e, f ), and verify the claim,
Some cases are impossible for small values of [, for example, if | = 2, the case b) is not
possible; for [ < 6 the pair (b, d) cannot occur. [J

Claim 1 implies that in P the connected components of two peaks are different,
otherwise P, would have a hole precisely containing the cell ¢ held up above. It turns
out that every connected component of P, has at most one peak.
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Second case: ¢, € Ty,.

The cell ¢; adjacent to ¢; on the right belongs to P, otherwise P, would have
a peak. Let P, = Py — v'(c;) (P, is not empty since Py has no peak). As in the first case
we look at the different positions of a possible peak of P;. We just give all the cases
and we leave the reader to verify that the same scheme of reasoning leads to the end of
the proof.

@ p; is a up peak (see Fig. 19)

In case a), p; is adjacent to v’(c;) on the right side and does not contain c5.

In case a), p; is adjacent to v'(c;) on the right side and contains c5. It leads to an
irrelevant piece because the tiling has a subtiling which tiles exactly a canonical
rectangle.

In case b), p, is adjacent to v'(¢,) on the down side.

In case c¢), p; is adjacent to v'(¢;) on the left side.

® p, is a down peak (see Fig. 20)

There is only one possibility: p, is adjacent to v'(c,) on the right side.

& p, is a left peak (see Fig. 21)

In case €), p, is adjacent to v'(c;) on the right side and contains c;.

In case f), p; is adjacent to v'(c;) on the right side and does not contain cs.

S e & + +
| ol 3 H cl Pl |+ +Hcl 4 el
R . S—
pl | | cpD) | + Pl
+ R s
: +f pl +
C(pl) irrelevant C(pl)
C(pl)
a) a') b) c)

Fig. 19. The different positions of a up peak.
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Fig. 20. The different positions of a down peak,
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Fig. 22. The different positions of a right peak.

In case g), p, is adjacent to v'(cy) on the down side.
® P, Is a right peak (see Fig. 22)

In case h), p; is adjacent to v'(c;) on the left side.

In case 1), p, is adjacent to v'(c,) on the up side. [

Proofs of Lemma 4.4 and Lemma 4.5 work with the same kind of arguments.

Lemma 4.4, Let Py be a polyomino having a single tiling Ty, with S, and having exactly
one peak p,. Then the connected components of the figure P, = P, — C(p.1) are poly-
ominoes and their set of peaks form a chain.

Lemma 4.5. Let P, be a polyomino having a single tiling Ty with 8, and whose set of
peaks form a chain of length k= 2. Then the connected components of the figure
Py =Py —C(py)— - — C(px), where py,---, Dy are the peaks of Py, are pieces without
holes and their set of peaks Jorm a chain.

Proof of Theorem 4.2, Let us suppose there exists a polyomino Py having a single
tiling, and whose set of peaks form a chain. We consider a piece of minimal size having
this property.
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e If Py, has no peak, we use Lemma 4.3. The figure P; (which is not empty,
otherwise P, would have two peaks), has connected components without holes
(otherwise P, would have a hole), with a smaller size than P,, and having a single
tiling. So, by Lemma 4.4, each of these connected components has at most one peak
which form a chain, and we get a contradiction with the minimality of P,.

e If P, has one peak, we use Lemma 4.5, and with the same kind of argument, we
get a contradiction.

o At last, if Py has a set of peaks which form a chain of length k = 2, applying
Lemma 4.5 gives in the same way a contradiction. So the proof of Theorem 4.2 is
achieved. O

Theorem 4.2. provides an algorithm to decide whether a given figure without holes
has a single tiling.

Theorem 4.6. Let P be a finite figure without holes. There is a linear algorithm to decide
whether there is a unique tiling of P and computes this tiling in the positive case.

Proof. Figure P is given as the set of words representing the outlines of its connected
components. The algorithm is the following.

(0) if P is empty, then P admits a single tiling with S, stop

(1) else look for peaks;

(2) if no peak, and P is not empty then P does not have a single tiling
(3) else remove from P the covers of all the peaks; go to (0).

This algorithm is linear in the size of P, because a first scanning of the outlines
determines all the peaks; and after, the new peaks which appear are adjacent to the
covers we have removed, so their research is a local one. If the algorithm leads to an
empty figure, the single tiling is constituted of the bars which fill the peaks’ covers we
have removed. For the implementation, we can use a two-dimensional array to code
the figure and a stack to store the peaks. O

5. Rigid and flexible tilings

In this section ! and m satisfy I, m = 2.

The second result of Section 4 leads us to study uniqueness for a tiling of a figure
(not necessarily finite) without holes.

A tiling T"with S of a figure F is said to be flexible if there exists another tiling 7" of
F which is different from T only for a finite number of elements (that means that
a finite subtiling can be changed, without changing the associated subfigure). A tiling
which is not flexible is called a rigid tiling.

So we give here a characteristic property of rigidity for tilings with S, of pieces
without holes. The main result is the following one.



20 D. Beauquier et al. | Computarional Geometry 5 (1995) 1-25

Theorem 5.1. Let F be a figure ( finite or infinite) without holes. A tiling T, of F is rigid if
and only if 'no subtiling of T, covers exactly a canonical rectangle.

Proof. The condition is clearly necessary. Let us look at the sufficient condition. If
F admits a flexible tiling T, there exists a finite piece without hole which is covered by
a subtiling of 7 and admits also another tiling, Let P, be a minimal finite piece
without hole satisfying this property. Let ¢, be the leftmost cell of P, on the highest
row. We put Q = h(cy) if c; e Ty and Q = v'(¢cy) if ¢; € T,.. Let P, = P, — Q. Since
Py has a minimal size, P, has no peak. Actually, if P, would have a peak p, then
Py — C(p) would also have several tilings (otherwise P, would have a single one), and
so Py would not be of minimal size.

If we come back to the proof of Theorem 4.2, since P, has a single tiling, each
connected component of P, has at least two peaks, but this is impossible (see the proof
of Theorem 4.2) except if we are in the situation (c, ¢’} in the first case (¢, € Ty), orin the
situation (a’, ¢) in the second case (¢, € 7,.). But in both these situations, 7, admits
a subtiling covering exactly a canonical rectangle. [J

Corollary 5.2. Every tiling of a finite piece without holes whose set of peaks forms
a chain admits a subtiling covering exactly a canonical rectangle,

Proof. It is a clear consequence of Theorem 4.2 and Theorem 5.1. [

Corollary 5.3. A tiling T, of the plane with S is rigid if and only if no finite subtiling of
Ty covers exactly a canonical rectangle.

6. Tiling arbitrary shaped finite figures with 4, v,,

In contrast to the above results showing efficient algorithms for many tiling
problems, we now show that tiling arbitrary shaped figures with any set of two bars
more complex than h, and v, is hard (provided P # NP).

Theorem 6.1. It is NP-complete to decide whether a figure can be tiled with h, and
U bars for Lm = 2 unless | = m = 2.

The proof will be given first for the simple case h,, v3 and then extended to the
general case. Membership of the problem in NP is trivial; NP-hardness will be shown
by a reduction from Planar 3-CNF Satisfiability [8].

The reduction will place gadgets corresponding to clauses and variables in a plane
figure and connect them by ‘cables’. We start by describing cables and their properties.
In the figures illustrating cables and gadgets we classify squares as belonging to six
sets a, b, ¢, d, e and f according to their x and ¥y coordinates modulo 2 and
3 respectively as shown in Fig. 23 and we show possible tilings by using lower case
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Fig. 23. The six types of square and a wire of Type a — b.

letters for squares covered by an h, domino and the corresponding upper case letters
for squares covered by a v, bar.

Fig. 1 shows a wire of type a-b, that is a sequence of squares each connected
orthogonally to its successor and none of them except possibly the first and last
connected to another square of the figure, and such that the every change of direction
(of which there must be at least one) is at a square of Type a or b. The wire has an
implied orieritation and has its first square of Type a and its last of T'ype b. As shown
in the figure the wire can be tiled with its two end squares left uncovered and so added
to the connecting gadgets (a positive signal or wire) or alternatively completely tiled
(called a negative signal transmitted on the wire or simply a negative wire). The
function of a wire in our constructions and the idea behind the terminology defined
can be explained by remarking that the existence of a wire between two sections of
a figure implies a dependency between the ways in which the two sections are paved in
any possible paving of the whole figure, namely that either both sections are paved
without a tile overlapping into the wire (negative) or each of them is paved with a tile
overlapping only as far as the first square of the wire (positive because the two end
squares are added to the section). A simpler way of describing this may be to say that
in traversing a wire of Type a-b from its start to its end, a horizontal section
composed of squares of Types a and b will be tiled by b-a tiles if the wire is positive
but by a-b tiles if negative. We can similarly define wires of types b-a, c-d etc
according to the type of squares at their beginning and end.

A cable consists of two wires of Types a-b and b—a with the a—b wire to the left of
the b—a (with respect to their common orientation). If the two wires carry the same
signal (which will always be forced in the cables in our constructed figures) then the
cable is said to be coherent and to carry this same signal.

A central concept in our constructions is that of a verifier. A verifier is a figure
included within a rectangle and having n pairs of squares designated in the row
immediately above this rectangle; these squares being of Types a and b alternately
reading from the left. We consider the question of whether the figure can be tiled as it
is or with some or all of the pairs added. The answer is evidently a function f of
n Boolean variables describing which pairs have been added, where we take variable
X to be true iff the ith designated pair has been added. The verifier is called a verifier
of . If, moreover, the figure cannot be tiled with the addition of some non-empty
subset of the designated squares other than a set of pairs, the figure is called a strong
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Fig. 24. A strong verifier of X, = X=X,

verifier. Fig. 24 illustrates a strong verifier of the function X, = X, = X,. This verifier
can be modified in an obvious way to handle a different number of variables.

By placing strong verifiers of functions in a larger figure with cables connecting
their designated pairs, we obtain a figure which can be tiled if and only if the
assignment of values to variables implicit in the paving of designated squares (true iff
the cable is positive) satisfies the functions of all the verifiers. (This is because, firstly,
by the construction of wires, each wire must carry a positive or negative signal,
secondly, since the verifiers are strong, each cable must be coherent, and finally since
the verifiers are verifiers, their functions must be satisfied by the implied assignment.)

In fact, to construct the figure which will be tilable iff a given planar 3-CNF
expression is satisfiable, we will use a slightly weaker version of this scheme. Note that
the argument of the previous paragraph is still valid if at least one of the verifiers at the
ends of each cable is strong, Accordingly we will construct a figure with a verifier (not
necessarily: strong) for each clause and, for every variable, a strong verifier of
Xy =X;=...=X,, for ¢ the number of clauses in which the variable occurs; now
joining every designated pair of a clause verifier, by a cable, to the corresponding
variable verifier will give the figure which can be tiled if and only if the expression is
satisfiable and, because the expression is planar, this construction is possible without
any need for cables to cross.

Figs. 25 to 28 show small components which are useful in constructing the required
verifiers. Firstly Fig. 25 shows how an input wire of Type a—b (all inputs in these four
figures are from the left) can fork into two wires of Types f-e and d—c, each carrying the
same signal as the input.

Fig. 26 shows a component which can be regarded as a restricted OR- gate. The left
part of the figure shows that if the lower input is negative, the upper input is passed
unchanged to the output. The right part shows the unique tiling possible if the lower
input is positive, namely with the upper input negative and the output positive. Thus
this component can be tiled if and only if at most one input is positive and its output
must be the OR of its two inputs.

Fig. 27 shows a switch which can be tiled in one of three ways (excluding those
where the input cable is not coherent). The first shows input and output cables both
positive; the second shows them both negative; but the third shows that, because of the
‘short circuit’ between the two wires, it is also possible to have a positive input and
a negative output. In summary this component makes it possible to ‘switch off’
a positive signal on its input cable.
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Fig. 25. A fork.
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Fig. 26. A restricted OR-gate.
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Fig. 27. A switch.
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Fig. 28. A partial crossing.

Fig. 28 shows a partial crossing where a wire of Type a—b crosses one of Type c—d.
The first part of the figure shows that, if the a—b wire is negative, the ¢—d may be
negative or positive. The second part shows the only possible tiling with the a—b
positive and illustrates that, in this case, the c—d must also be positive. In other words
the two wires can cross each other and must carry the same signal at the output and
the input but one combination of signals, namely a—b positive and c—d negative, is
forbidden. A similar partial crossing can be constructed with any required combina-
tion of signals as the forbidden one.

Fig. 29 shows a verifier for the function of three variables which is true when exactly
one of the three is true; the tiling is shown for the case that X, is true.

This verifier contains a number of the forks, OR-gates and partial crossings
described above. The entering a—b wires are brought together by OR-gates to end at
a wire which must be positive and the same thing happens to the c-d and e—f wires
formed by forking the three b-a inputs. The fact that the verifier is not needed to be
tiled if two inputs are positive means that the partial crossings and restricted OR-gates
never have the combination of input signals which makes it impossible to tile them.

Note that this verifier of X'; or X, or X 3 and not (any two) could be transformed into
a verifier of X', # X, simply by making X, false, namely by omitting the designated
pair of X; and not joining a cable there. If we change our point of view and regard the
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Fig. 29. A verifier of “one of X,, X, and X;".

two cables of this verifier as an ‘input’ and an ‘output’ cable, we obtain a ‘negater’ since
the output must be the opposite of the input.

To transform Fig. 29 into a verifier for the simple clause XyorX;or X;, wesimply
run each incoming cable into the input of a ‘switch’ like the one in Fig. 27 and the
output of the switch into the input of the simple verifier of Fig. 29. The resulting figure
can be tiled if one or more input cables are positive by switching off all but one of the
positive cables (and not otherwise).

Finally we obtain a verifier for a general 3 literal clause by negating those inputs
corresponding to negated variables. We do this by running their cables to the input of
a negater constructed as noted above; then the output of that negater is run to the
input of the X, or X, or X verifier. This construction completes the reduction from
Planar 3-CNF SAT to h,, v, tiling, except for trivial details of the separation of
verifiers needed to allow cables to run to their destinations without interference.

To extend the result to the general case of h; and v,, with | > 1, m > 1 but not
I'=m = 2, we note that it is sufficient io prove it for I > 1, m > 2 since it will then
follow for I > 2, m > 1 trivially. We will show a simple reduction from the A,, Uy case
to this more general case.

Let A, B, C, D, E and F denote six non empty rectangles obtained by dividing
a m by n rectangle by one vertical and two horizontal lines (e.g. ones whose respective
dimensions are (horizontal first) : (1 by 1),(I—-1by ), by I),(I — 1 by 1),(1 by m — 2)
and (I — I by m — 2). Given a plane figure P drawn on a plane with squares classified
as of Types a, b, ¢, d, e and f as above, replace every square of the plane by
a correspanding rectangle (e.g. a rectangle A for a square a) to obtain a figure P'. We
claim that P’ can be tiled by ky and v, if and only if P can be tiled by h; and vs3. In one
directioh this is clear : a bar covering part of P expands in a natural way into a number
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of the new bars covering the corresponding part of P’, for instance in the example
given a vy covering three squares dfb expands into [ — 1 bars v,, covering the three
rectangles DFB. In the other direction, consider a tiling of P’ and consider only those
bars which include the top left corner square of at least one of the rectangles A, B, C,
D, E and F. Any A, (resp. v,,) which covers one of these corner squares must necessarily
cover exactly two horizontally (resp. three vertically) adjacent such corners. Since
these corner squares correspond exactly to the squares of P, the k; and v,, which cover
them give a natural covering of P by h, and v; completing the reduction.

If we consider a case where | = m > 3, which can be regarded as a question about
one bar which can be rotated, then we have also proved the NP-completeness of the
problem perfect tile salvage (Berman et al).

It can be noted that the recent result of Laroche [14] shows that a similar reduction
is possible from planar 1-in-3 Sat, avoiding the need for switches and negaters.
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