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Abstract
We consider recognition and reconfiguration of lattice-based cellular structures by very sim-

ple robots with only basic functionality. The underlying motivation is the construction and mod-
ification of space facilities of enormous dimensions, where the combination of new materials with
extremely simple robots promises structures of previously unthinkable size and flexibility. We
present algorithmic methods that are able to detect and reconfigure arbitrary polyominoes, based
on finite-state robots, while also preserving connectivity of a structure during reconfiguration.
Specific results include methods for determining a bounding box, scaling a given arrangement,
and adapting more general algorithms for transforming polyominoes.

1 Introduction

Building and modifying large-scale structures is an important and natural objective in a
vast array of applications. In many cases, the use of autonomous robots promises significant
advantages, but also a number of additional difficulties, in particular when aiming for
construction in orbit around earth. In recent years, a number of significant advances have been
made to facilitate overall breakthroughs. One important step has been the development of
ultra-light and scalable composite lattice materials [16] that allow the construction of modular,
reconfigurable, lattice-based structures [18]. A second step has been the design of simple
autonomous robots [17,19] that are able to move on the resulting lattice structures and move
their elementary cell components, thereby allowing the reconfiguration of the overall edifice.

In this paper, we address the next step in this hierarchy: Can we enable extremely simple
robots to perform a more complex construction task for cellular structures in space, such as
patrolling and marking the perimeter, scaling up a given seed construction, and a number
of other design operations? As we demonstrate, even the extremely limited capabilities of
machines with a finite number of states suffice for these tasks. In particular, we show that
two robots suffice to construct the bounding box for a given arrangement, without losing
connectivity. This is then used for other objectives, such as scaling up a given arrangement
by a constant factor, as well as other, more general transformations.

1.1 Related Work
Assembly by simple robots has also been considered at the micro scale, where global control
is used for supplying the necessary force for moving agents, e.g., see Becker et al. [3] for
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Figure 1 Snapshots from building a bounding box for a z-shaped polyomino using a 2D simulator,
a 3D simulator, and staged hardware robots; shown are steps {0, 24, 48, 72, 96, 120}. See our
video [1] for more context and animations.

P

Figure 2 From left to right: Bounding box (gray) surrounding a polyomino (blue); the boundary
∂P (dark blue) of a shape P ; a non-simple polyomino with one hole; a disconnected arrangement.

the corresponding problem of motion planning, Schmidt et al. [20] for using this model for
assembling structures, and Balanza-Martinez et al. [2] for theoretical characterizations.

From an algorithmic view, we are interested in different models representing programmable
matter and further recent results. Inspired by the single-celled amoeba, Derakhshandeh et al.
introduced the Amoebot model [6, 10]. The Amoebot model provides a framework based on
an equilateral triangular graph and active particles that can occupy a single vertex or a pair
of adjacent vertices within that graph. Further related work to the amoebot model can be
found in [4,5, 7–9,11]. In [15], Gmyr et al. introduced a model with two types of particles:
active robots acting like a deterministic finite automaton and passive tile particles. Further
results are shown in [14]. Fekete et al. [12] introduced more complex geometric algorithms
for copying, reflecting, rotating, and scaling a given polyomino as well as an algorithm for
constructing a bounding box surrounding a polyomino. However, their algorithms do not
guarantee connectivity of intermediate arrangements. We build upon their model by allowing
multiple robots working on the same grid environment.

2 Preliminaries

We consider an infinite square grid graph G, where Z2 defines the vertices, and for every two
vertices with distance one there is a corresponding edge in G. We use the compass directions
(N,E, S,W ) for orientation when moving on the grid and may use up, right, down, and left
synonymously.
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Every vertex of G is either occupied by a tile or unoccupied. Tiles represent passive
particles of programmable matter that cannot move or manipulate themselves. The maximal
connected set of occupied vertices is called polyomino.

The boundary of a polyomino P is denoted by ∂P and includes all tiles of P that are
(horizontally, vertically or diagonally) adjacent to an empty vertex (see also Figure 2).
Polyominoes can have holes, i.e., finite maximal connected sets of empty vertices. Polyominoes
without holes are called simple; otherwise, they are non-simple. The bounding box of a given
polyomino P is defined as the boundary of the smallest rectangle enclosing P enlarged by
one unit; it will be denoted by bb(P ) (see Figure 2).

We use robots as active particles in our model. These robots work like finite deterministic
automata that can move around on the grid and manipulate the polyomino. A robot has the
abilities to move along the edges of the grid graph and to change the state of the current vertex
by placing or removing a tile on it. The robots work in a series of Look-Compute-Move (LCM)
steps. Depending on the current state of the robot and the vertex it is positioned on (Look),
the next step is computed according to a specific transition function δ (Compute), which
determines the future state of robot and vertex, and the actual movement (Move). In the move
phase, the robot can either remove a tile, place a tile (if there is not already a tile) or move to a
adjacent vertex. Moving a tile is the same as deleting the tile at the start and placing a tile after
the move sequence. In the case of multiple robots, we assume that they cannot be placed on the
same vertex at the same time. Communication between robots is limited to adjacent vertices
and can be implemented by expanding the Look phase by the states of all adjacent robots.

Connectivity is ensured if the union of all placed tiles and all used robots is connected.
Accordingly, a robot can hold two components together (see blue robot in Figure 3).

3 Constructing a Bounding Box

In this section, we describe an algorithm to construct the bounding box while keeping
connectivity of intermediate arrangements. Due to space constraints, we only sketch technical
details; see the full version of the paper [13] for a full description. To accomplish the required
connectivity, we specify, without any loss of generality, that the connection between bb(P )
and P must be on the south side of the boundary. For ease of presentation, the polyomino is
shown in blue and the bounding box in gray; the robots cannot actually distinguish between
those tiles. In the following, we assume that two robots are placed adjacent to each other on
an arbitrary tile of the polyomino P , and that the first robot R1 (shown in red in all figures)
is the leader. As we will see, the second robot R2 (blue in all figures) holds the polyomino
and the bounding box together. In practice, we would rather use a special marker, called
pebble, to mark a tile that holds P and bb(P ) together.

The construction can be split into three phases: (1) finding a start position, (2) construct-
ing the bounding box, and (3) the clean-up. To find a suitable start position, we search for a
locally y-minimal vertex that is occupied by a tile. This can be done by scanning the cur-
rent row (i.e., moving left until we find an empty vertex and then moving right) and moving
downwards whenever possible. Afterwards, R1 starts the bounding box construction one
vertex further down. This brings us to phase (2).

The construction of the bounding box is performed clockwise around P , i.e., whenever
possible, R1 makes a right turn. At some point, R1 finds a tile either belonging to P or to
the bounding box. To decide whether a tile t belongs to P or the current bounding box, we
start moving around the boundary of the shape t belongs to. At some point, R1 reaches R2.
If R1 is above R2 then t is a tile of P , otherwise t is a tile of the bounding box. To find

EuroCG’20
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Figure 3 Left: R1 (red) hits a tile belonging to P . Right: The triggered shifting process is finished.

Figure 4 Traversing a gap by building a bridge. From left to right: R1 finds a particle t not
belonging to bb(P ). R1 then picks up R2, so both can move to t. Both, R1 and R2 reached t.
Afterwards, R2 deletes remaining pieces of the old bounding box.

t again, we move below R2 and follow the construction until we cannot move any further.
From there we can carry on building bb(P ).

Now, consider the two cases: If the tile does not belong to P , we are done with phase (2)
and can proceed to phase (3). If it is a tile belonging to P , we need to shift the current line
outwards until there is no more conflict, then continue the construction (see Figure 3). If the
line to shift is the first line of the constructed bounding box, we know that there exists a tile
of P that has the same y-coordinate than the current starting position. Therefore, we build a
bridge to traverse this gap, as shown in Figure 4. Afterwards, we can restart from phase (1).

For phase (3), consider the case when R1 reaches a tile from the bounding box. If the hit
tile is not a corner tile, the current line needs to be shifted outwards until the next corner is
reached (see Figure 5(a)). Then we can search for another suitable connection between P
and bb(P ), place a tile there, and get to R2 to remove unnecessary parts of the bounding
box (see Figure 5(b)-(d)). To move to R2, we move counterclockwise around bb(P ) until we
find a tile with three adjacent tiles. From there we move north and follow the path until we
find R2. Because bb(P ) has only one tile with three adjacent tiles left, we can always find
the connection between P and bb(P ).

I Theorem 1. Given a polyominino P of width w and height h, building a bounding box
surrounding P with the need that boundary and P are always connected, can be done with two
robots in O(max(w, h) · (wh+ k · |∂P |)) steps, where k is the number of convex corners in P .

The proof of this theorem is analogous to that from [12]; see [13] for full details.

4 Scaling Polyominoes

Now we consider scaling a given shape by a factor c by building a scaled copy to the left of
the bounding box. This copy process will be done column-wise from right to left. In the
following we assume that the robot R1 already built the bounding box and is positioned on
one of its tiles.
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(a) (b) (c) (d)

Figure 5 The second case of finishing the bounding box. (a) An already constructed part of the
bounding box is hit. (b) The last boundary side is shifted. (c) R1 found a suitable new connectivity
vertex above the southern side, places a tile and retraces its path to the initial starting position. (d)
The unnecessary part of the bounding box is removed and both robots catch up to the new connection.

4.1 Scaling
The scaling process can be divided into two phases: (1) the preparation phase, and (2) the
scaling phase. In phase (1) we fill up the last column within bb(P ), add a tile in the second
last column above the south side of bb(P ) and remove the lowest tile (called column marker)
and third lowest tile (called row marker) on the east side of bb(P ) (see Figure 6). This gives
us three columns within the bounding box (including bb(P ) itself). The first (from west
to east) is the current column of P to scale. The second column, which is filled with tiles
excepting the topmost row, is used to ensure connectivity and helps to recognize the end of
the current column. The third column marks the current overall progress, i.e., we can find
the tile in the correct current column and row that we want to scale next; we only have to
move two steps to the west from the row marker to find the next vertex to scale.

In phase (2), we simply search for the vertex v to scale by moving to the column marker,
then to the row marker, and afterwards moving two steps to the west. We then place the
row marker one vertex upwards. For possible cases, see Figure 6. When we reach the top
row of the bounding box, we move the column marker one vertex to the left and place a new
row marker. Then we add a c× c square to the left of bb(P ), if v was occupied. If we did not
move the column marker, we move left from the south side of bb(P ) until we reach an end
and start moving up until we find the place to build the c× c-square. If v was empty, then
we leave out one tile within the square, e.g. the tile in the middle (see Figure 6 right).

After scaling a column that only contained empty vertices, we know that we are done
with scaling. Thus, we can start removing all tiles, proceeding columnwise within bb(P ) from
right to left. If necessary, all scaled empty tiles can also be removed by one scan through the
scaled field. A formal proof can be found in the full version [13].

I Theorem 2. After building bb(P ), scaling a polyomino P of width w and height h by a
constant scaling factor c without loss of connectivity can be done with one robot in O(wh ·
(c2 + cw + ch)) steps.

4.2 Adapting Algorithms
As shown in [12], there are algorithms that may not guarantee connectivity. An immediate
consequence of being able to scale a given shape is that we can simulate any algorithm
A within the Robot-on-Tiles model while guaranteeing connectivity: We first scale the
polyomino by three and then execute A by always performing three steps into one direction
if A does one step. If at some point the robot needs to move through empty vertices, then we

EuroCG’20
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Figure 6 Left: Configuration after the preparation phase. Right three: Different states during
phase (2): Scaling an occupied vertex, scaling an empty vertex, and reaching the end of a column.

place a 3×3-square with the middle vertex empty (if a clean up is desired at the end of A, i.e.,
removing all scaled empty vertices, we fill up the complete row/column with these squares).
This guarantees connectivity during the execution and we obtain the following theorem.

I Theorem 3. If there is an algorithm A for some problem Π in the Robots-on-Tiles model
with runtime T (A), such that the robot moves within a w′ × h′ rectangle, then there is an
algorithm A′ for Π with runtime O(wh ·(c2 +cw+ch)+max((w′−w)h′, (h′−h)w′)+c ·T (A))
guaranteeing connectivity during execution.

5 Conclusion

We demonstrated how geometric algorithms for finite automata can be used to enable very
simple robots to perform a number of fundamental but non-trivial construction tasks, such
as building a bounding box and scaling a given shape by some constant, that guarantee
connectivity between all tiles and robots during their execution.

Future work includes investigation of algorithms without the preceding bounding box
construction (e.g. scaling) or distributed algorithms that do not rely on a scaling procedure.
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