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—— Abstract

We provide the solution for a fundamental problem of geometric optimization by giving a complete

characterization of worst-case optimal disk coverings of rectangles: For any A > 1, the critical

covering area A*(\) is the minimum value for which any set of disks with total area at least

A*(\) can cover a rectangle of dimensions A x 1. We show that there is a threshold value

Ao = /VT/2—1/4 ~ 1.035797..., such that for A < My the critical covering area A*(\) is

A*(\) =37 (% + 2+ ﬁ), and for A > )Xo, the critical area is A*(\) = 7(\2 + 2)/4; these

values are tight. For the special case A = 1, i.e., for covering a unit square, the critical covering
1957

area is Szg ~ 2.39301.... The proof uses a careful combination of manual and automatic

analysis, demonstrating the power of the employed interval arithmetic technique.

‘1 Introduction

Given a collection of (not necessarily equal) disks, is it possible to arrange them so that
they completely cover a given region, such as a square or a rectangle? Covering problems
of this type are of fundamental theoretical interest, but also have a variety of different
applications, most notably in sensor networks, communication networks and wireless commu-
nication [22], surveillance, robotics, and even gardening and sports facility management, as
shown in Figure 1.

If the total area of the disks is small, it is clear that completely covering the region is
impossible. On the other hand, if the total disk area is sufficiently large, finding a covering

* This is an extended abstract of our paper Worst-Case Optimal Covering of Rectangles by Disks [15].
A video presenting the main result can be found at https://www.ibr.cs.tu-bs.de/users/fekete/
Videos/Cover_full.mp4 .
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' Figure 1 An incomplete covering of a rectangle by disks: Sprinklers on a soccer field during a
drought. (Source: dpa [13].)
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seems easy; however, for rectangles with large aspect ratio, a major fraction of the covering
disks may be useless, so a relatively large total disk area may be required. The same issue is
of clear importance for applications: What fraction of the total cost of disks can be put to
efficient use for covering? This motivates the question of characterizing a critical threshold:
For any given A, find the minimum value A*(\) for which any collection of disks with total
area at least A*(\) can cover a rectangle of dimensions A x 1. What is the critical covering
area of A x 1 rectangles? In this paper we establish a complete and tight characterization
that generalizes to arbitrary rectangles by scaling and rotating.

1.1 Related Work

Like many other packing and covering problems, disk covering is typically quite difficult,
compounded by the geometric complications of dealing with irrational coordinates that arise
when arranging circular objects. This is reflected by the limitations of provably optimal
results for the largest disk, square or triangle that can be covered by n unit disks, and hence,
the “thinnest” disk covering, i.e., a covering of optimal density. As early as 1915, Neville [27]
computed the optimal arrangement for covering a disk by five unit disks, but reported a
wrong optimal value; much later, Bezdek [6, 7] gave the correct value for n = 5,6. As recently
as 2005, Fejes Téth [33] established optimal values for n = 8,9,10. Szalkai [32] gave an
optimal solution for a small special case (n = 3) of a general problem posed by Connelly in
2008, who asked how one should place n small disks of radius r to cover the largest possible
area of a disk of radius R > r. For covering arbitrary rectangles by n unit disks, Heppes and
Mellissen [20] gave optimal solutions for n < 5; Melissen and Schuur [24] extended this for
n = 6,7. See Friedman [19] for the best known solutions for n < 12. Covering equilateral
triangles by n unit disks has also been studied. Melissen [23] gave optimal results for n < 10,
and conjectures for n < 18; the difficulty of these seemingly small problems is illustrated
by the fact that Nurmela [28] gave conjectured optimal solutions for n < 36, improving
the conjectured optimal covering for n = 13 of Melissen. Carmi, Katz and Lev-Tov [11]
considered algorithms for covering point sets by unit disks at fixed locations. There are
numerous other related problems and results; for relevant surveys, see Fejes Téth [14] (Section
8), Fejes T6th [34] (Chapter 2), Brass, Moser and Pach [10] (Chapter 2) and the book by
Boroczky [9)].

Even less is known for covering by non-uniform disks, with most previous research focusing
on algorithmic aspects. Alt et al. [3] gave algorithmic results for minimum-cost covering of
point sets by disks, where the cost function is ) TS for some o > 1, which includes the
case of total disk area for o = 2. Agnetis et al. [2] discussed covering a line segment with
variable radius disks. Abu-Affash et al. [1] studied covering a polygon minimizing the sum of
areas; for recent improvements, see Bhowmick, Varadarajan and Xue [8]. Banhelyi, Palatinus
and Lévai [4] gave algorithmic results for the covering of polygons by variable disks with
prescribed centers.

The dual question of packing unit disks into a square has also attracted attention. For
n = 13, the optimal value for the densest square covering was only established in 2003 [18],
while the optimal value for 14 unit disks is still unproven; densest packings of n disks
in equilateral triangles are subject to a long-standing conjecture by Erdés and Oler from
1961 [29] that is still open for n = 15. Many authors have considered heuristics for circle
packing problems, see [31, 21] for overviews of numerous heuristics and optimization methods.
The best known solutions for packing equal disks into squares, triangles and other shapes
are published on Specht’s website http://packomania.com [30]. Establishing the critical
packing density, i.e., the disk area that can always be packed into a unit square, for (not
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Figure 2 The critical covering density d*(A) depending on A and its values at the threshold value
A2, the global minimum /2 and the aspect ratio A at which the density becomes as bad as for the
square.

necessarily equal) disks in a square was proposed by Demaine, Fekete, and Lang [12] and
solved by Morr, Fekete and Scheffer [26, 17]. Using a recursive procedure for cutting the
container into triangular pieces, they proved that the critical packing density of disks in
a square is — —= ~ 0.539. The critical density for (not necessarily equal) disks in a disk
was recently proven to be 1/2 by Fekete, Keldenich and Scheffer [16]; see the video [5] for
an overview and various animations. The critical packing density of (not necessarily equal)
squares was established in 1967 by Moon and Moser [25], who used a shelf-packing approach
to establish the value of 1/2 for packing into a square.

For more related work, we refer the reader to the full version of our paper [15].

1.2 Our Contribution

We show that there is a threshold value Ay = 1/v/7/2 — 1/4 ~ 1.035797 ..., such that for
A < Ag the critical covering area A*(\) is A*(\) = 3w (i‘% + 3+ 256%), and for A > Ay, the

critical area is A*(\) = m(A? +2)/4. These values are tight: For any A, any collection of disks
of total area A*(\) can be arranged to cover a A x 1-rectangle, and for any a(\) < A*(A),

there is a collection of disks of total area a(\) such that a A x 1-rectangle cannot be covered.

(See Figure 2 for a graph showing the (normalized) critical covering density, and Figure 3 for
examples of worst-case configurations.) The point A = g is the unique real number greater

than 1 for which the two bounds 37 (% + 3% + 256%) and W# coincide; see Figure 2. At

this so-called threshold value, the worst case changes from three identical disks to two disks
2
— the circumcircle r? = % and a disk r3 = i; see Figure 3. For the special case A =1, i.e.,

for covering a unit square, the critical covering area is 15;’6?’ ~ 2.39301....
The proof uses a careful combination of manual and automatic analysis, demonstrating

the power of the employed interval arithmetic technique.

EuroCG’'20



5:4 Worst-Case Optimal Covering of Rectangles by Disks

51:\/47’2—1
—~ =
T
r 1 7,2_A2+1
2 1= 4
4
1
1 2 1
2 TQZ*
r 4

2 N5 9
=15t 32T mex

Figure 3 Worst-case configurations for small A < X2 (left) and for large A > A2 (right). Shrinking
r or r1 by any € > 0 in either configuration leads to an instance that cannot be covered.

2 High-Level Description

Our main theorem gives a closed-form solution for the critical covering area A*(\) for any
A > 1, ie., for any given rectangle R, we determine the total disk area that is (1) sometimes
necessary and (2) always sufficient to cover R. Due to limited space, we only sketch the
overall approach; details are contained in the full version [15] of the paper.

» Theorem 2.1. Let A > 1 and let R be a rectangle of dimensions A x 1. Let

S
RS,

2 .
_ 377—(?76_’_3752—’_256%)’ ’Lf)\<)\2,

Ay = —
2 7_‘./\2+2
1

53 A L035TOT... and A(N)

, otherwise.

(1) For any a < A*(\), there is a set D~ of disks with A(D™) = a that cannot cover R.
(2) Let D={r1,...,mn} CR, 7y =19 > ... > 1, >0 be any collection of disks identified by
their radii. If A(D) > A*(\), then D can cover R.

The critical covering area does not depend linearly on the area A of the rectangle; it also
depends on the rectangle’s aspect ratio. Figure 2 shows a plot of the dependency of the
critical covering density d*(X) := A*/\()‘), i.e., the amount of disk area required per rectangle
area, on A. In the following, to simplify notation, we factor out = if possible; instead of
working with the areas A(D) or A*(\) of the disks, we use their weight W (D), i.e., their
area divided by 7. Similarly, we work with the covering coefficient E*()\) := @ instead of
the density d*(\); a lower covering coefficient corresponds to a more efficient covering.

As shown in Figure 2, the critical covering coefficient E*(\) is monotonically decreasing
from A = 1 to /2 and monotonically increasing for A > /2. For a square, E*(1) = %;
the point A > 1 for which the covering coefficient becomes as bad as for the square is

A = 1954327 ~ 908988 . . ; for all A < A, the covering coefficient is at most $23.

2.1 Proof Components

The proof of Theorem 2.1 uses a number of components. First is a lemma that describes the
worst-case configurations and shows tightness, i.e., claim (1), of Theorem 2.1 for all A.
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» Lemma 2.2. Let A > 1 and let R be a rectangle of dimensions A x 1. (1) Two disks of
weight r3 = # and r3 = i suffice to cover R. (2) For any e > 0, two disks of weight r? —e
and 3 do not suffice to cover R. (3) Three identical disks of weight r* = i‘—; + 35+ ﬁ
suffice to cover a rectangle R of dimensions X x 1. (4) For A < Ay and any € > 0, three
identical disks of weight r% :=r? — ¢ do not suffice to cover R.

For large A, the critical covering coefficient E*(\) of Theorem 2.1 becomes worse, as large
disks cannot be used to cover the rectangle efficiently. If the weight of each disk is bounded
by some o > r?, we provide the following lemma achieving a better covering coefficient E(c)

with £*(\) < E(c) < E*()). This coefficient is independent of the aspect ratio of R.

» Lemma 2.3. Let 6 = 15003257 ~ 0.8629. Let 0 > 6 and E(0) = 3V Vo2 +1+1.
Let A\ > 1 and D = {ry,...,r,} be any collection of disks with o > r? > ... > r2 and

W(D) = Z r?2 > E(o)\. Then D can cover a rectangle R of dimensions A x 1.

Note that F(6) = égg is the best covering coefficient established by Lemma 2.3, coinciding

with the critical covering coefficient of the square established by Theorem 2.1. Thus, we can
cover any rectangle with covering coefficient ;gg
The final component is the following Lemma 2.4, which also gives a better covering

coefficient if the size of the largest disk is bounded. The bound on the largest radius that is

if the largest disk satisfies T% <é.

required for Lemma 2.4 is smaller than for Lemma 2.3; in return, the covering coeflicient
that Lemma 2.4 yields is better. We remark that the result of Lemma 2.4 is not tight.

» Lemma 2.4. Let A > 1 and let R be a rectangle of dimensions Ax 1. Let D = {rqy,...,r,},
0375 > 1 > ... > 1, > 0 be a collection of disks. If W(D) > 0.61\, or equivalently
A(D) > 0.6171A =~ 1.9164\, then D suffices to cover R.

2.2 Proof Overview

The proofs of Theorem 2.1 and Lemmas 2.3 and 2.4 work by induction on the number of disks.

For proving Lemma 2.3 for n disks, we use Theorem 2.1 for n disks. For proving Theorem 2.1
for n disks, we use Lemma 2.4 for n disks; Lemma 2.3 is only used for fewer than n disks; see
Figure 4. For proving Lemma 2.4 for n disks, we only use Theorem 2.1 and Lemma 2.3 for
fewer than n disks. Therefore, there are no cyclic dependencies in our argument; however,
we have to perform the induction for Theorem 2.1 and Lemmas 2.3 and 2.4 simultaneously.
Strategies. The proofs of Theorem 2.1 and Lemma 2.4 are constructive; they are based
on an efficient recursive algorithm that uses a set of simple strategies. We go through the
list of strategies in some fixed order. For each strategy, we check a sufficient criterion for
the strategy to work. We call these criteria success criteria. They only depend on the total
available weight and a constant number of largest disks. If we cannot guarantee that a
strategy works by its success criterion, we simply disregard the strategy; this means that our
algorithm does not have to backtrack. We prove that, regardless of the distribution of the
disks’ weight, at least one success criterion is met, implying that we can always apply at
least one strategy. The number of strategies and thus success criteria is large — more than
40 strategies considering over 500 combinatorially different placements of the largest disks,
which would presumably need to be considered in a manual analysis. This is where the need
for automatic assistance comes from.

Recursion. Typical strategies are recursive; they consist of splitting the collection of disks
into smaller parts, splitting the rectangle accordingly, and recursing, or recursing after fixing
the position of a constant number of large disks.

EuroCG’'20
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Figure 4 The inductive structure of the proof; the blue parts are computer-aided.

In the entire remaining proof, the criterion we use to guarantee that recursion works
is as follows. Given a collection D’ C D and a rectangular region R’ C R, we check
whether the preconditions of Theorem 2.1 or Lemma 2.3 or 2.4 are met after appropriately
scaling and rotating R’ and the disks. Note that, due to the scaling, the radius bounds of
Lemmas 2.3 and 2.4 depend on the length of the shorter side of R’. In some cases where
we apply recursion, we have more weight than necessary to satisfy the weight requirement
for recursion according to Lemma 2.3 or 2.4, but these lemmas cannot be applied due to
the radius bound. In that case, we also check whether we can apply Lemma 2.3 or 2.4 after
increasing the length of the shorter side of R’ as far as the disk weight allows. This excludes
the case that we cannot recurse on R’ due to the radius bound, but there is some R” D R/
on which we could recurse.

2.3 Interval Arithmetic

We use interval arithmetic to prove that there always is a strategy that works. In interval
arithmetic, operations like addition, multiplication or taking a square root are performed on
intervals [a,b] C R instead of numbers. Arithmetic operations on intervals are derived from
their real counterparts as follows. The result of an operation o in interval arithmetic is

[a1,b1] o [ag, ba] == min T1 0 Ta, max T10 Ty
z1€[a1,b1],z2€[az,b2] z1€[a1,b1],22€[az,b2]
Thus, the result of an operation is the smallest interval that contains all possible results of
x oy for & € [a1,b1],y € [az, bs]. Unary operations are defined analogously.

3 Conclusion

Our worst-case values correspond to instances with only 2 or 3 relatively large disks; if we
have an upper bound R on the size of the largest disk, this gives rise to the critical covering
area Aj(A) for A x 1-rectangles. Getting some tight bounds on A% (A) would be interesting
and useful. Establishing the critical covering density for disks and triangles is also open. We
are optimistic that an approach similar to the one of this paper can be used for a solution.
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Computing optimal coverings by disks is quite difficult. Deciding whether a given collection

of disks can be packed into a unit square, is known to be NP-hard [12], the complexity of
deciding whether a given set of disks can be used to cover a unit square is still open.
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