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—— Abstract
We provide a tight result for a fundamental problem arising from packing squares into a circular
container: The critical density of packing squares in a disk is § = 8/5= = 0.509. This implies that
any set of (not necessarily equal) squares of total area A < 8/5 can always be packed into a unit
disk; in contrast, for any € > 0 there are sets of squares of area 8/5 + ¢ that cannot be packed.
This settles the last case of packing circular or square objects into a circular or square container,
as the critical densities for squares in a square (1/2), circles in a square (7/3+v2 &~ 0.539) and
circles in a circle (1/2) have already been established. The proof uses a careful manual analysis,
complemented by a minor automatic part that is based on interval arithmetic. Beyond the
basic mathematical importance, our result is also useful as a blackbox lemma for the analysis of
recursive packing algorithms.

1 Introduction

Problems of geometric packing and covering arise in a wide range of natural applications.
They also have a long history of spawning many extremely demanding (and often still
unsolved) mathematical challenges. These difficulties are also notable from an algorithmic
perspective, as relatively straightforward one-dimensional variants of packing and covering
are already NP-hard; however, deciding whether a given set of one-dimensional segments can
be packed into a given interval can be checked by computing their total length. This simple
criterion is no longer available for two-dimensional, geometric packing or covering problems,
for which the total volume often does not suffice to decide feasibility of a set, making it
necessary to provide an explicit packing or covering.

We provide a provably optimal answer for a natural and previously unsolved case of tight
worst-case area bounds, based on the notion of critical packing density: What is the largest
number d, < 1, such that any set .S of squares with a total volume of at most d, can always
be packed into a disk C of area 1, regardless of the individual sizes of the elements in S7 We
show that the correct answer is d, = 8/5x: Any set of squares of total area at most 8/5 can be
packed into a unit disk (with radius 1), and for any value A > 8/s, there are sets that cannot
be packed. This quantity is of mathematical importance, as it settles an open problem, as
well as of algorithmic interest, because it provides a simple criterion for feasibility. It also
settles the last remaining case of packing circular or square objects into a circular or square
container, see Figure 1 for an overview.

1.1 Related Work

Problems of square packing have been studied for a long time. The decision problem whether
it is possible to pack a given set of squares into the unit square was shown to be strongly
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(a) (b) () (d)

I Figure 1 Illustration of the worst-case optimal approaches and worst case instances for packing
(a) squares into a square with SHELF PACKING by Moon and Moser [7]. (b) disks into a square by
Fekete et al. [5]. (c) disks into a disk by Fekete et al. [4] (d) squares into a disk [this paper].

NP-complete by Leung et al. [6]. Already in 1967, Moon and Moser [7] proved that the
critical packing density for squares into a square is 1/2. As illustrated in Figure 1(a), this is
best possible. Demaine, Fekete, and Lang [1] showed in 2010 that deciding whether a given
set of disks can be packed into a unit square is NP-hard. Consequently, there is (most likely)
no deterministic polynomial-time algorithm to decide whether a given set of disks can be
packed into a given container. The problem of establishing the critical packing density for
disks in a square was posed by Demaine, Fekete, and Lang [1] and resolved by Morr, Fekete
and Scheffer [5, 8]. Using a recursive procedure for partitioning the container into triangular
pieces, they proved that the critical packing density of disks in a square is 7/(3+2v2). More
recently, Fekete et al. [4] established the critical packing density of 1/2 for packing disks into a
disk by employing a number of algorithmic techniques in combination with interval arithmetic.
Note that the main objective of this line of research is to compute tight worst-case bounds.
For specific instances, a packing may still be possible, even if the density is higher; this also
implies that proofs of infeasibility for specific instances may be trickier. However, the idea of
using the total item volume for computing packing bounds can still be applied. See the work
by Fekete and Schepers [2, 3], which shows how a modified volume for geometric objects can
be computed, yielding good lower bounds for one- or higher-dimensional scenarios.

'2 A Worst-Case Optimal Algorithm

The main result is a worst-case optimal algorithm for packing squares into a unit disk.

» Theorem 2.1. Every set of squares with a total area of at most 8/5 can be packed into a
disk with radius 1. This is worst-case optimal, i.e., for every X > 8/5 there exists a set of
squares with a total area of A that cannot be packed into the unit disk.

A proof of Theorem 2.1 consists of (i) a class of instances that provide the upper bound
of 8/5 and (ii) an algorithm that achieves the lower bound by packing any set of squares with
a total area of at most 8/5 into the unit disk.
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The upper bound is implied by any two squares with a side length of \/475 + &, for
arbitrary € > 0, see Figure 1(d): When placed in the unit disk, either of them must contain
the disk center in its interior, so both cannot be packed simultaneously.

In the following, we sketch a constructive proof for the lower bound by describing an
algorithm that can pack any instance with total area 8/5. Because our proof is constructive,
it yields a constant-factor approximation algorithm for the smallest disk in which a given set
of squares can be packed.

2.1 Description of the Algorithm

In the following, we consider a set of given squares with side lengths s1,...,s,. We pack
them in sequential order by decreasing size into the unit disk D, and assume without loss of
generality that s; > --- > s,. Our algorithm distinguishes three types of instances:

1. All squares are small, i.e., s; < 0.295.
2. The first four squares are fairly large, i.e., s; < % and s+ s34+ 53 +s3 > & — %,
3. All other cases.
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Figure 2 (a) Packing in case 1. (b) Packing in case 2. (c¢) The packing in the remaining cases is
a combination of TOP PACKING (top) and BOTTOM PACKING (bottom).

In the first case, we pack all but the first four squares into a large square container
by SHELF PACKING and each of the first four squares adjacent to one of the four sides as
illustrated in Figure 2(a). In the second case, we pack the first four squares into a central
square container, achieving high enough packed area that it suffices to pack the remaining

squares into a smaller subsquare with the worst-case packing density of squares into a square.

In the third case, we make extensive use of a refined shelf packing. Specifically, the largest
square in the third case is packed into D as high as possible, see Figure 2(c) and Figure 3 for
an illustration. The bottom of this square induces a horizontal split of disk into a top and a
bottom part, which are then packed by two subroutines called ToP PACKING and BoTTOM
PACKING as described in Section 2.2. This yields the following description.

1. If 51 < 0.295, place a square of side length X = 1.388 concentric into D and place one
square of side length X; = 0.295 to each side of X, see Figure 2(a).

For i = 1,2, 3,4, pack each s; into one of the squares of side length X; = 0.295.
For i > 5, use SHELF PACKING for packing s; into X.

2. Ifs1 < % and s% + 8% + 8% + SZ > %, let X1, ..., X, be the four equally sized maximal
squares that fit into D and let be X the largest square that can be additionally packed
into D, see Figure 2(b).

For i = 1,2, 3,4, pack each s; into one of the squares of side length A;.
For ¢ > 5, use SHELF PACKING for packing s; into X.
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3. Otherwise
Pack s as far as possible to the top into D.
For ¢ > 2,
(3.1) if possible, use ToP PACKING for packing s;,
(3.2) otherwise, use BorTOM PACKING for packing s;.

Toprp PACKING
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Figure 3 Our algorithm packs squares in decreasing order. The largest (hatched) square is packed
as far as possible to the top, inducing a top and a bottom part, with the empty top space consisting
of two congruent pockets. Subsequent (white) squares are packed into these top pockets with Top
PACKING (which uses shelf packing as a subroutine) if they fit; if they do not fit, they are shown in
gray and packed into the bottom part with BoTTOM PACKING, which uses horizontal subcontainer
slicing, and vertical shelf packing within each slice.

2.2 Subroutines of Our Algorithm

In the following, we briefly describe the subroutines of our algorithm.

Refined Shelf Packing. In the classic shelf packing procedure by Moon and Moser [7],
the objects are packed in the greedy manner by decreasing size in rectangular subcontainers
called shelves; see top of Figure 1 (a). When an object does not fit in the current shelf, a new
shelf is opened; the height of a shelf is determined by the first object that it accommodates.
We use two modifications: (1) Parts of the shelf boundaries may be circular arcs; however,
we still have a supporting straight axis-parallel boundary and a second, orthogonal straight
boundary. (2) Our refined shelf packing uses the axis-parallel boundary line of a shelf as a
support line for packing squares; in case of a collision with the circular boundary, we may
move a square towards the middle of a shelf if this allows packing it.

Top Packing. The first square s; is packed as high as possible into the disk D, see
Figure 4 (a). Then the horizontal line ¢; through the bottom of s; cuts the container into
a top part that contains s;, with two congruent empty pockets Cy and C. left and right
of s1; each such pocket has two straight axis-parallel boundaries, b, and b,. We use refined
shelf packing with shelves parallel to the shorter straight boundary, as shown in Figure 4 (c)
and (d). If a square s; does not fit into either pocket, it is packed into the part below ¢;.

Bottom Packing. For packing a squares in the bottom part of D, SUBCONTAINER
SLICING subdivides the unused portion of the container disk into smaller pieces, by using
straight horizontal cuts analougous to shelf packing; see Figure 5 (Left). The height of a
subcontainer is determined by the first packed square. Within each subcontainer, (vertical)
REFINED SHELF PACKING is used; see Figure 3 for the overall picture. These shelves are
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Figure 4 (a) Packing si topmost into D. (b) The top part of D with the pockets C¢ and C, and
the size o of the largest inscribed square. (c) A pocket C¢ where b, < b, resulting in horizontal
shelf packing. (d) A pocket C; where by > by, resulting in vertical shelf packing.

packed from the longer of the two horizontal cuts, i.e., away from the boundary that is closer
to the disk center; see Figure 5 (Right) for packing the subcontainer.
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Figure 5 (Left) SUBCONTAINER SLICING partitions the lower part of D into subcontainers Cj,
with the height corresponding to the first packed square. (Right) Within each subcontainer,
SUBCONTAINER PACKING places squares into C; along vertical shelves, starting from the longer
straight cut of the subcontainer.

2.3 Correctness of the Algorithm

Similar to the argument by Moon and Moser for squares packed into a square container,
we use careful bookkeeping to prove that this algorithm only fails to pack a square in the
decreasing if the total area of all squares exceeds the critical bound. The analysis uses
an intricate combination of manual analysis and an automated analysis based on interval
arithmetic. Details are omitted due to lack of space.

3 Complexity
We present the idea of an hardness proof for packing squares into a disk.
» Theorem 3.1. [t is NP-hard to decide whether a given set of squares fits into a disk.

The proof uses a reduction from 3-PARTITION; it is somewhat similar to the one by Leung
et al. [6] for deciding whether a given set of squares fits into a given square container, and
the one by Demaine, Fekete, and Lang in 2010 [1] for deciding whether a give set of disks fits
into a given square container; see Figure 6 for an illustration.

Eight (gray) framing squares can only be packed by leaving a central rectangular pocket P
and some outside gaps. The numbers of the 3-PARTITION instance are mapped to a set of
(red) number squares of almost equal size, with small modifications of size ¢;, such that a
triple (i, j, k) of (red) number squares fits into P if and only if ¢; +¢; + ¢ <0, i.e., if there is
a feasible 3-PARTITION. For filling the gaps outside the framing squares, a set of (yellow and
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Figure 6 Illustration of the 3-PARTITION reduction.

blue) filler squares are constructed, so that no (red) number square can be packed outside P
if all filler squares are packed outside P. A detailed proof establishes the following claims.

1. Up to symmetries, the framing squares can only be packed in one canonical way, leaving
a central pocket P.

The filler squares fight tightly when packed in the canonical manner outside P.

When all filler squares are packed outside P, the number squares can only be packed
into P. This is possible if and only if there is a feasible 3-partition.

Packing a filler square inside P forces an unpackable gap preventing a feasible packing.
5. The overall construction can be realized with squares of sufficiently approximated edge
lengths of polynomial description size.

We omit details due to limited space, and the fact that the hardness proof is neither surprising
nor central to this paper.

4| Conclusions

We have established the critical density for packing squares into a disk, based on a number of
advanced techniques that are more involved than the ones used for packing squares or disks
into a square. Numerous questions remain open, in particular the critical density for packing
squares of bounded size into a disk. We are optimistic that our techniques will be useful.
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