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Abstract
We present a study on the practical nature of the NP-hard problem of finding a Minimum Weight
Triangulation (MWT) of a planar point set: Can we deliberately construct practically difficult in-
stances? This requires identifying point sets for which all of a number of previously developed ex-
act and heuristic methods simultaneously encounter a combination of pitfalls. We show that for in-
stances of medium size, this seems unlikely, implying that one of several alternative methods may
offer a path to an optimal solution. This complements recent work on the practical performance
of these heuristic methods for specific classes of large benchmark instances, indicating that MWT
problems may indeed be practically easier to solve than implied by its NP-hard complexity.

1 Introduction

The complexity of finding a minimum-weight triangulation (MWT) of a planar point set was
a famous open problem for 27 years [8], until Mulzer and Rote [16] gave an NP-hardness
proof, based in intricately constructed gadgets of considerable size.

While this shows that finding an MWT is difficult in a well-defined, theoretical sense, it
does not necessarily imply that the problem is also intractable for instances of practically
relevant size. In recent work, Haas [13] was able to extend, refine and streamline a number
of previous ideas to compute provably optimal solutions for point sets of up to 30, 000, 000
uniformly distributed points and real-world benchmark instances with up to 744, 710 points.
This suggests that the MWT may indeed be much simpler than indicated by its theoretical
complexity, at least for standard classes of instances.

We present a complimentary study on the practical nature of the theoretical hardness: Can
we deliberately construct practically difficult instances of the MWT problem? This requires
identifying point sets for which the previously developed methods simultaneously encounter
a number pitfalls. We show that for instances of medium size, this seems unlikely, implying
that one of several alternative methods may always provide a path to an optimal solution.

1.1 Related Work
There are efficient algorithms for computing optimal MWT solutions for special classes of
instances. Independently, Gilbert [9] and Klincsek [15] showed that for simple polygons,
the MWT problem can be solved in O(n3) time with dynamic programming. This can be
generalized to polygons with k inner points. Hoffmann and Okamoto [14] showed how to
obtain the MWT of such a point set in O(6kn5 logn) time. Grantson et al. [11] improved
the algorithm to O(n44kk) and showed another O(n3k!k)-time decomposition strategy [12].

For general instances, there are polynomial-time heuristics for including or excluding
edges with certain properties from an MWT. Das and Joseph [4] showed that every edge in
an MWT has the diamond property: For a point set S, an edge e cannot be in its minimum
weight triangulation MWT(S) if both of the two isosceles triangles with base e and base
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angle π/8 contain other points of S. Drysdale et al. [7] improved the angle to π/4.6. This
property can exclude large portions of the edge set and works exceedingly well on uniformly
distributed point sets, for which only an expected number of O(n) edges remain. Dickerson
et al. [5, 6] proposed the LMT-skeleton heuristic, which is based on a simple local-minimality
criterion fulfilled by every edge in MWT(S). The LMT-skeleton algorithm often yields a
connected graph, such that the remaining polygonal faces can be triangulated with dynamic
programming to obtain the minimum weight triangulation.

The combination of the diamond property and the LMT-skeleton made it possible to
compute the MWT for large, well-behaved point sets. Beirouti and Snoeyink [1] showed an
efficient implementation of these two heuristics and reported that their implementation could
compute the exact MWT of 40,000 uniformly distributed points in less than 5 minutes and
even up to 80,000 points with the improved diamond property.

In more recent work, Haas [13] refined a number of these ideas. Based on a variety of
improvements and additional data structures, he could compute provably optimal solutions
for instances with up to 30,000,000 uniformly distributed points in less than 4 minutes on
commodity hardware; the limiting factor turned out to be memory, not runtime. He achieved
the same performance for normally distributed point sets, as well real-world benchmark
instances from the TSPLIB [18] and the VLSI library of size up to 744,710 points. This
shows that a wide range of huge MWT instances can be solved to provable optimality with
the right combination of theoretical insight and algorithm engineering.

1.2 Our Results

We conduct a study of the practical difficulty of arbitrary MWT instances. In addition to
the proven methods based on diamond property and LMT-skeleton, we present an integer
program that strengthens Haas’ toolbox by providing a practically useful alternative for
determining optimal triangulation edges in unresolved faces. We also show that with this
extended set of methods, any considered instance with up to 300 points can be solved to
provable optimality within short time, even point sets deliberately constructed to be difficult.

2 Tools

Solving MWT instances to provably optimality relies on a number of different tools, which
we briefly sketch in the following. The cited Diamond Property filters out a set of only
O(n) edges that may be in an MWT. The mentioned LMT Skeleton consists of a (possibly
large) set of edges that must be contained in an MWT, but may still leave a number of
untriangulated faces; see Figure 1. These faces can be triangulated with different versions of
Dynamic Programming (Section 2.1) or with Integer Programming (Section 2.2).

2.1 Dynamic Programming (DP)

Empty faces of the LMT-skeleton can be triangulated using a dynamic programming approach
for simple polygons, in time O(n3) for an empty face with n ∈ N boundary vertices [10, 15].
For faces containing inner points, one of the following dynamic programming approaches
can be used: A non-empty face with n ∈ N boundary vertices and k ∈ N inner points can
be triangulated in O(n3k!k) [12] or a non-empty face with k ∈ N connected components
(resulting from the LMT-skeleton) can be triangulated in O(nk+2) [19], respectively.
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Empty Faces

Faces with inner vertices

Figure 1 The LMT-skeleton (a subset of MWT(S)) of a point set S may contain untriangulated
faces. These can be empty (hatched) or contain points and edges of the LMT-skeleton (filled).

2.2 Integer Programming
Another approach to compute the MWT of the remaining faces of the LMT-skeleton makes
use of the following integer program (IP); see Yousefi and Young [20] as well as Dantzig,
Hoffman and Hu [3] for related work. The objective function minimizes the sum of the
perimeters ||4|| of all triangles, used in the triangulation. The variables x4 ∈ {0, 1} indicate
whether 4 is used in the triangulation. (Note that this description is slightly simplified
because of limited space; a practically complete description provides additional adjustments
for fixed edges along face boundaries.)

min
x4

∑
4

||4|| · x4 (1)

s.t.
∑

4∈δ(e)

x4 = 1 ∀e ∈ boundary component (2)

∑
4∈δ+(e)

x4 = 1 ∀e ∈ antennas (3)

∑
4∈δ−(e)

x4 = 1 ∀e ∈ antennas (4)

∑
4∈δ+(e)

x4 −
∑

4∈δ−(e)

x4 = 0 ∀e ∈ inner edges (5)

x4 ∈ {0, 1} (6)

Given a non-triangulated face, we distinguish three kinds of edges. Boundary edges lie on
the outer face boundary or inner hole boundaries. Boundary edges are part of exactly one
triangle in the face (Equation (2)). Antenna edges have the same face on both of its sides (see
filled face in Figure 1), so they are part of two triangles in the face (Equation (3) and (4)).
The third kind are inner edges, i.e., all remaining edges inside a face that are not fixed by
the LMT-skeleton and not excluded by the diamond property. For these edges, the difference
of the number of triangles on their left side equals the number of triangles on their right side
(Equation (5)). The first three constraints imply either zero or one triangle on each side.
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Equation 2 and Equation 5 are sufficient to solve the IP for a given polygon, with the boundary
edges containing both the outer boundary and hole boundaries. Equation 3 and Equation 4 are
auxiliary constraints, fixing edges of the LMT skeleton that have the same face on both sides.

3 Hard Instances

While previous studies on large classes of specific MWT instances showed that even huge
instances can be solved optimally, this does not imply that there are no practically hard ones.
For any NP-hard problem, natural candidates for such instances are the ones constructed
in an NP-hardness reduction. However, the intricate constructions in the seminal proof
by Mulzer and Rote [16] produce instances of tremendous size: While the clause gadgets
have dimensions of 250, 000× 250, 000, the connector gadgets (representing variable-clause
incidences in a planar embedding of a 3SAT instance) require 14 points per subsegment of a
length less than 28. As a consequence, representing even a Planar 1-in-3SAT instance with
a handful of clauses (and thus, three handfuls of connector gadgets) easily requires millions
of points. Given that “... modern SAT solvers can often handle problems with millions
of constraints [i.e., clauses] and hundreds of thousands of variables” [17], it is clear that
insufficient memory becomes a limiting factor long before the algorithmic difficulty of 3SAT.

This motivates the complimentary question to the results of [13]: Can we deliberately
construct practically difficult instances of moderate size? It follows from the availability of
the tools described in the previous section that such an instance must satisfy the following
three properties.

1. It contains at least one complex face; otherwise it can be solved in O(n3).
2. The complex face must contain a relatively large number of connected components;

otherwise, it can be solved in polynomial time with Dynamic Programming.
3. The Linear Programming relaxation of the IP for a face must yield a fractional optimal

solution; otherwise, the IP is easy to solve.

We have employed a number of systematic methods to generate such instances. Figure 2
illustrates the workflow of an evolutionary strategy and a local perturbation algorithm. An
example of how this leads to more complex instances can be seen in Figure 3.

create initial
instance

generate/
mutate

offspring

evaluate
fitness

select next
generation

empty faces add
little to fitness,
non-empty faces
add more to fitness

select
point

select ε = 8,
random 
direction

pertubate
point

evaluate
statistics

ε = ε/2
lower complexity

higher complexity

Figure 2 Modifying a point set to produce more complex LMT faces: (Left) Evolutionary
strategy. (Right) Local Perturbation.

There are known classes of instances with a complex face of the LMT-skeleton that contain
many connected components; see Figure 4. On the other hand, there are also known classes of
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Figure 3 Evolving a point set to produce more complex LMT faces.
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Figure 4 Instances for which the LMT-skeleton has a complex face with many connected
components. Adapted from Belleville et al. [2].

Figure 5 Instances for which the IP has fractional solutions. Adapted from Yousefi and Young [20].

instances with one complex face of the LMT-skeleton that produce fractional solutions when
handled by the described integer program; see Figure 5. However, these instances are of quite
different nature, so it is not clear that they can be combined for instances of reasonable size.

4 Experimental Results

We investigated the practical solvability of MWT instances, with a focus on constructing
hard instances. All experiments were executed with CPLEX 12.9 on an Intel(R) Core(TM)
i7-6700K CPU 4.00GHz with 4 cores and 8 threads utilizing an L3 Cache with 8MB, and a
maximum amount of 64GB RAM. With the evolutionary strategy shown in Figure 2, we were
able to generate many instances that contain at least one complex face. In order to generate
the variables of the integer program (i.e. possible empty triangles within the complex face),
we used a heuristic that performs well in practical scenarios. The heuristic does not guarantee
to find empty triangles in every case. Therefore, we added a callback to the integer programs
that verifies that all triangles of an integer solution are empty. In the upcoming figures,
the optimization and verification time (callback time) are separated. We chose the instance
size to be 306 points, which is comparable to the one shown in Figure 4. The goal was to
produce complex faces that require large computational effort during the optimization of the
integer program. After generating an instance with a complex face, we applied random local
perturbations with respect to certain properties. The generation process was executed for
several days, producing around 17, 000 instances.

We first studied the size of the complex boundary, which includes all edges on the
boundary of the complex face, as well as hole boundary edges and antennas. Figure 6 (Left)
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shows that the number of variables of the IP increases linearly with the size of the complex
boundary. Moreover, the time to solve these instances (see Figure 6 (Right)) increases from
0.01 seconds to 0.25 seconds for complex faces with a boundary size of 300 edges.
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Figure 6 Results on instances that were generated with a large complex boundary size. (Left)
Number of IP variables as a function of the size of the complex boundary. (Right) Runtime of
the integer program. LMT + Dyn. Prog. refers to the construction of the LMT skeleton and
triangulation of the empty faces. CPX Triangle Generation and CPX IP Construction represents
the time that was necessary to generate the variables and constraints of the IP. CPX (without) CB
refers to the runtime of the optimization and the empty triangle verification.

Next we investigated the number of complex faces in an instance. As shown in Fig-
ure 7 (Left), the number of IP variables for empty triangles grows linearly in the number of
components. Figure 7 (Right) shows that runtimes for instances with < 5 complex compo-
nents differ only by 0.1 seconds compared to instances with > 30 components.

0 5 10 15 20 25 30
Number of Components

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f C
pl

ex
 V

ar
ia

bl
es

5 10 15 20 25 30
Number of Components

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ti
m

e 
(s

)

LMT + Dyn. Prog.
CPX without CB
CPX CB
CPX IP Construction
CPX Triangle Generation

Figure 7 Results on instances that were generated with a large number of components. (Left)
Number of IP variables as a function of the number of components. (Right) Runtime of the integer
program. LMT + Dyn. Prog. refers to the construction of the LMT skeleton and triangulation
of the empty faces. CPX Triangle Generation and CPX IP Construction represents the time that
was necessary to generate the variables and constraints of the IP. CPX (without) CB refers to the
runtime of the optimization and the empty triangle verification.

Despite the extensive length of the search, no instances with larger complex boundary
sizes or more complex components were found. Therefore, we extended the instance from
Figure 4 to produce instances with arbitrary numbers of complex boundary edges and
connected components. Increasing the complex boundary size to more than 13, 000 edges
showed that the runtime of the algorithm increases quadratically, see Figure 8. Further
investigation showed that the optimal solution of the LP relaxation of the integer program
for the produced instances was integral. Thus, only two of the three necessary malicious
properties from the previous section could be established at once, so all instances could be
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solved to provable optimality. In particular, only relatively degenerate instances similar to
the one from Figure 5 seem to produce complex faces with non-integer LP solutions.
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Figure 8 Runtime of the integer program for extensions of the instance in Figure 4. Note the
moderate runtime despite the size: The largest IPs have more than 6,000,000 variables. LMT + Dyn.
Prog. refers to the construction of the LMT skeleton and triangulation of the empty faces. CPX
Triangle Generation and CPX IP Construction represents the time that was necessary to generate
the variables and constraints of the IP. CPX (without) CB refers to the runtime of the optimization
and the empty triangle verification.

5 Conclusions

Our systematic study for constructing practically difficult MWT instances showed that
medium-sized point sets that simultaneously have three malicious properties seem hard
to come by. This provides further evidence to the observation that the MWT problem is
practically easier to solve than indicated by its theoretical complexity, as it shows that this
practical solvability does not only depend on benign properties of special classes of instances,
but remains intact even when we try to make instances deliberately difficult.
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