
Computing Area-Optimal Simple
Polygonalizations
Sándor P. Fekete1, Andreas Haas1, Phillip Keldenich1, Michael
Perk1, and Arne Schmidt1

1 Department of Computer Science, TU Braunschweig, Germany
{s.fekete, a.haas, p.keldenich, m.perk, arne.schmidt}@tu-bs.de

Abstract
We consider methods for finding a simple polygon of minimum (Min-Area) or maximum (Max-
Area) possible area for a given set of points in the plane. Both problems are known to be
NP-hard; at the center of the recent CG Challenge, practical methods have received considerable
attention. However, previous methods focused on heuristic methods, with no proof of optimality.
We develop exact methods, based on a combination of geometry and integer programming. As
a result, we are able to solve instances of up to n = 25 points to provable optimality. While this
extends the range of solvable instances by a considerable amount, it also illustrates the practical
difficulty of both problem variants.

1 Introduction

While the classic geometric Traveling Salesman Problem (TSP) is to find a (simple) polygon
with a given set of vertices that has shortest perimeter, it is natural to look for a simple
polygon with a given set of vertices that minimizes another basic geometric measure: the
enclosed area. The problem Min-Area asks for a simple polygon with minimum enclosed
area, while Max-Area demands one of maximum area; see Figure 1 for an illustration.

Both problem variants were shown to be NP -complete by Fekete [2,3,6], who also showed
that no polynomial-time approximation scheme (PTAS) exists for Min-Area problem and
gave a 1

2 -approximation algorithm for Max-Area.

1.1 Related Work

Most previous practical work has focused on finding heuristics for both problems. Taranilla
et al. [11] proposed three different heuristics. Peethambaran [9,10] later proposed randomized
and greedy algorithms on solving Min-Area as well as the d-dimensional variant of both
Min-Area and Max-Area. Considerable recent attention and progress was triggered by the
2019 CG Challenge, which asked contestants to find good solutions for a wide spectrum of
benchmark instances with up to 1,000,000 points; details will be described in a forthcoming
special issue of the Journal of Experimental Algorithms [1].

Despite this focus, there has only been a limited amount of work on computing provably
optimal solutions for instances of interesting size. The only notable exception is by Fekete et
al. [4], who were able to solve all instances of Min-Area with up to n = 14 and some with up
to n = 16 points, as well as all instances of Max-Area with up to n = 17 and some with up
to n = 19 points. This illustrates the inherent practical difficulty, which differs considerably
from the closely related TSP, for which even straightforward IP-based approaches can yield
provably optimal solutions for instances with hundreds of points, and sophisticated methods
can solve instances with tens of thousands of points.
36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020.
This is an extended abstract of a presentation given at EuroCG’20. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

20:2 Computing Area-Optimal Simple Polygonalizations

Figure 1 (Top) A set of 20 points. (Bottom Left) Min-Area solution. (Bottom Right) Max-Area
solution.

1.2 Our Results
We present a systematic study of exact methods for Min-Area and Max-Area polygo-
nizations. We show that a number of careful enhancements can help to extend the range of
instances that can be solved to provable optimality, with different approaches working better
for the two problem variants. On the other hand, our work shows that the problems appear
to be practically harder than other geometric optimization problems such as the Euclidean
TSP.

2 Tools

We considered two models based on integer programming: an edge-based formulation (de-
scribed in Section 2.1) and a triangle-based formulation (described in Section 2.2). In addition,
we developed a number of further refinements and improvements (described in Section 2.3).

2.1 Edge-Based Formulation
The first formulation is based on considering directed edges of the polygon boundary. As
shown in Figure 2, the area AP of a polygon P can be computed by adding the (signed)
triangle areas fe that are formed by edges e and an arbitrary, fixed reference point r.

This gives rise to an integer program in which the choice of half-edges e = (i, j) is modeled
by 0-1 variables ze = zij . In contrast to Euclidean TSP, intersections between edges must be
prevented with intersection constraints (5). The slab inequalities (6) ensure that the polygon
is oriented in a counterclockwise manner and thus the area calculation yields the correct
result. A slab D is a vertical strip bounded by the x-coordinates of two consecutive points in
the order of x-coordinates of points. The edges of slab D get ordered by the y-coordinate at
the intersection with the (centered) halving line between the points. Now the bottommost
chosen edge has to be oriented from left to right and the topmost one from right to left,

S.P. Fekete, A. Haas, P. Keldenich, M. Perk, A. Schmidt 20:3

r

(a) Triangles of the polygon

r

(b) Positive edge triangles

r

(c) Negative edge triangles

r

(d) Calculated difference between (b) and (c)

Figure 2 Area computation of a polygon using a reference point r

while chosen edges inbetween have to alternate in their direction. Furthermore, we introduce
subtour constraints (7) that enforce a polygonization that visits all points in S.

{min, max}
∑

e+∈Er

ze+ · fe −
∑

e−∈Er

ze− · fe (1)

∀si ∈ S :
∑

(j,i)∈δ+(si)

zji = 1 (2)

∀si ∈ S :
∑

(i,j)∈δ−(si)

zij = 1 (3)

∀e = {i, j} ∈ E : zij + zji ≤ 1 (4)

∀ intersecting {i, j}, {k, l} ∈ E : zij + zji + zkl + zlk ≤ 1 (5)

(∀ slabs D)(∀m = 1, . . . , |D|) :
m∑
i=1

zelr
iD

− zerl
iD

(6)

∀D (S, D 6= ∅ :
∑

(k,l)∈δ−(D) zkl ≥ 1∑
(k,l)∈δ+(D) zkl ≥ 1 (7)

∀e = {i, j} ∈ E : zij , zji ∈ {0, 1} (8)

As there are Θ(n2) possible edges, the number of intersection constraints may be as big
as Θ(n4). Moreover, the number of subtour constraints (7) may be exponential, so they are
only added when necessary in an incremental fashion.

EuroCG’20

20:4 Computing Area-Optimal Simple Polygonalizations

Figure 3 A set of five points and its ten empty triangles.

2.2 Triangle-Based Formulation

An alternative is the triangle-based formulation, which considers the set T (P) of possibly(
n
3
)
many empty triangles of a point set P ; see Figure 3 for an illustration. Making use

of the fact that a simple polygon with n vertices consists of (n − 2) empty triangles with
non-intersection interiors, we get the following IP formulation, in which the presence of an
empty triangle 4 is described by a 0-1 variable x4.

The objective function (9) is the sum over the chosen triangles areas. Triangle con-
straint (10) ensures that we choose exactly n− 2 triangles, which is the number of triangles
in a triangulation of a simple polygon. Furthermore, point constraints (11) guarantee that
a solution has at least one adjacent triangle at each point si ∈ S. Moreover, intersection
constraints (12) ensure that we only select triangles with disjoint interiors. Finally, the
subtour constraints (13) ensure that the set of selected triangles forms a simple polygon.

{min, max}
∑
4∈T

f4 · x4 (9)

∑
4∈T

x4 = n− 2 (10)

∀si ∈ S :
∑

4∈δ(si)

x4 ≥ 1 (11)

∀intersecting 4i,4j ∈ T : x4i
+ x4j

≤ 1 (12)

∀D (T, D 6= ∅, |D| ≤ n− 3 :
∑
4∈D

x4 ≤
∑

4∈δ(D)

x4 + |D| − 1 (13)

∀4 ∈ T : x4 ∈ {0, 1} (14)

As there are Θ(n3) possible empty triangles, the number of intersection constraints may
be as big as Θ(n6). Again, the number of subtour constraints (13) may be exponential, so
they are only added when necessary in an incremental fashion.

S.P. Fekete, A. Haas, P. Keldenich, M. Perk, A. Schmidt 20:5

2.3 Enhancing the Integer Programs
Given the considerable size of the described IP formulations, we developed a number
of enhancements to improve efficiency. For points on the convex hull, only a reduced
number of neighbors need to be considered. Employing good initial solutions improves the
performance in branch-and-bound searching; we used a number of greedy heuristics, as well
as the 1

2 -approximation of Fekete. The large number of corresponding inequalities made it
particularly important to deal with intersections in an efficient manner: we condensed the
constraints for cliques of intersecting objects into single inequalities, and introduced special
halfspace inequalities for the triangle-based approach. Further increases in efficiency were
obtained by careful choices of how to branch on variables and careful maintenance of
subtour constraints.

3 Experiments

Based on the described approaches, we ran experiments on some machines with some
specifications and parameters. We used CPLEX on an Intel(R) Core(TM) i7-6700K CPU
4.00GHz with four cores and 8 threads utilizing an L3 Cache with 8MB. The solver was able
to use a maximum amount of 64GB RAM.

3.1 Edge-Based Solvers
EdgeV1 is a basic integer program of the edge-based approach. It adds all intersection
constraints before starting the solving process and adds subtour constraints in every integer
solution. This integer program is an improvement to the edge-based MinArea integer
program presented by Papenberg et al. [4, 8]. In the former approach cycle based subtour
constraints were added after an optimal solution has been found. This resulted in poor
computing times even for small point sets. EdgeV2 extends the previous version by adding
intersection constraints at interim solutions. Moreover, this version includes a branching
extension where branching on a variable ze results in intersecting edges getting branched to
zero. We also utilize properties of the convex hull to exclude certain variables, i.e., edges
that connect two non-adjacent points on the convex hull, from the computation. EdgeV2
makes use of this concept by setting these variables to zero. Fekete et al. [4] introduced the
concept of a boundary index. Their results indicate small improvements in computation time
when adding the constraints. EdgeBIV2 extends the previous version by adding boundary
index constraints. The upcoming sections will show that the boundary index constraints
will increase the computation time of our integer program. Because of this, we removed
the concept in favor of version three. In EdgeV3 we additionally search for subtours in
fractional interim solutions and add slab constraints during the solving process. Furthermore,
we pass a start solution to the solver which was generated by an abstraction of the Greedy
Min-Area heuristic of Taranilla et al. [11].

3.2 Triangle-Based Solvers
TriangulationV1 is the first version of the triangle-based approach. Compared to the
basic triangulation approach of Papenberg [8], we have fewer variables and different subtour
constraints (13). Similar to the edge-based approaches, we pass a start solution obtained
from Greedy Min-Area as an input to the solver. We added further halfspace inequalities
as well as equalities for edges which connect non-adjacent vertices of the convex hull.

EuroCG’20

20:6 Computing Area-Optimal Simple Polygonalizations

In TriangulationV1 we add subtour constraints and intersection constraints in every
integer solution. TriangulationV2 extends the first version with so-called subtour angle
constraints. These are added at every integer solution. We are able to reuse the connected
components we need to compute along the way. This allows us to add constraints (13) without
much additional computation time. TriangulationV3 makes use of additional results on
ineffective subtour constraints. In addition to the constraints of TriangulationV2, we add
point-based subtour constraints to every intermediate integer solution.

3.3 Results for Minimization

As Figure 4a shows, our various enhancements result in a considerable reduction of the
computation times, compared to the approach by Papenberg et al. [4, 8]. Furthermore, it
turned out that the triangle-based approach was able to compute optimal solutions for larger
instances, as shown in Figure 5.

5 6 7 8 9 10 11 12 13 14 15
instance size

10−2

10−1

100

101

102

103

tim
e

(s
)

EdgeV1
EdgeBIV2
EdgeV2
EdgeV3
TriangulationV1
TriangulationV2
TriangulationV3
MinArea

(a)

15 16 17 18 19
instance size

101

102

103

104
tim

e
(s

)
EdgeV2
EdgeV3
TriangulationV1
TriangulationV3

(b)

Figure 4 Computation times of Min-Area of the implemented solver versions. The computing
time values are the average over 5 instances for each size. (a) Comparison with the MinArea version
of Papenberg [8] for random instances of size 5 − 15. MinArea operated on different instances than
the rest. (b) Comparison of the best solver versions of both approaches for random instances of
size 16 − 19.

19 20 21 22 23 24
instance size

0

20000

40000

60000

80000

tim
e

(s
)

TriangulationV1

Figure 5 Computation time of TriangulationV1 of both approaches for random instances of
size 19 − 24. Shown are the minimum and maximum computation time needed to optimality.

S.P. Fekete, A. Haas, P. Keldenich, M. Perk, A. Schmidt 20:7

3.4 Results for Maximization
For Max-Area, the edge-based approach turned out to be more useful: As Figure 6a
shows, the runtime for the triangle-based solvers grew significantly faster. This seems to be
mostly due to the fact that for the maximization version, intersections of “fat” intermediate
subpolygons occur more frequently than for the “skinny” ones in the minimization version.
Furthermore, we were able to expand the size of solvable instances in reasonable time to 23,
as shown in Figure 7b.

5 6 7 8 9 10 11 12 13 14 15
instance size

10−2

10−1

100

101

102

103

tim
e

(s
)

EdgeV1
EdgeV2
EdgeV3
TriangulationV1
TriangulationV2
TriangulationV3

(a)

5 6 7 8 9 10 11 12 13 14 15
instance size

10−2

10−1

100

101

tim
e

(s
)

EdgeV1
EdgeV2
EdgeV3

(b)

Figure 6 Computation times of all solver versions of Max-Area using both approaches for
random instances of size 5 − 15. The computing time values are the average over 10 instances for
each size. (a) Comparison of solver version from both approaches. (b) Comparison of all edge-based
solver versions

16 17 18 19
instance size

0

500

1000

1500

2000

2500

tim
e

(s
)

EdgeV1
EdgeV2
EdgeV3

(a)

20 21 22 23 24 25
instance size

0

20000

40000

60000

80000

tim
e

(s
)

EdgeV1

(b)

Figure 7 Computation time of Max-Area using different edge-based solver versions. (a) The
computing time of all edge-based solver versions on random instances of size 16 − 19. The values are
the average over 5 instances for each size. (b) Range of computation time for EdgeV1 for random
instances of size 20 − 25.

4 Conclusions

While our work shows that with some amount of algorithm engineering, it is possible to
extend the range of instances that can be solved to provable optimality, it also illustrates the
practical difficulty of the problem. This reflects the limitations of such IP-based methods:

EuroCG’20

20:8 Computing Area-Optimal Simple Polygonalizations

The edge-based approach makes use of an asymmetric variant of the TSP, which is known
to be harder than the symmetric TSP, while the triangle-based approach suffers from its
inherently large number of variables and constraints. Furthermore, the non-local nature
of Min-Area and Max-Area polygons (which may contain edges that connect far-away
points) makes it difficult to reduce the set of candidate edges.

As a result, Min-Area and Max-Area turn out to be prototypes of geometric optimiza-
tion problems that are difficult both in theory and practice. This differs fundamentally from
a problem such as Minimum Weight Triangulation, for which provably optimal solutions
to huge point sets can be found [7], and practically difficult instances seem elusive [5].

References
1 Erik D. Demaine, Sándor P. Fekete, and Joseph S.B. Mitchell. The 2019 CG Challenge:

Area-optimal polygonalizations. Manuscript, 2020.
2 Sándor P. Fekete. Geometry and the Travelling Salesman Problem. Ph.D. thesis, Depart-

ment of Combinatorics and Optimization, University of Waterloo, Waterloo, ON, 1992.
3 Sándor P. Fekete. On simple polygonizations with optimal area. Discrete & Computational

Geometry, 23(1):73–110, 2000.
4 Sándor P. Fekete, Stephan Friedrichs, Michael Hemmer, Melanie Papenberg, Arne Schmidt,

and Julian Troegel. Area-and boundary-optimal polygonalization of planar point sets. In
European Workshop on Computational Geometry (EuroCG), pages 133–136, 2015.

5 Sándor P. Fekete, Andreas Haas, Dominik Krupke, Yannic Lieder, Eike Niehs, Michael Perk,
Victoria Sack, and Christian Scheffer. Hard instances of the minimum-weight triangulation
problem. Submitted to European Workshop on Computational Geometry (EuroCG 2020).

6 Sándor P. Fekete and William R. Pulleyblank. Area optimization of simple polygons. In
Symposium on Computational Geometry (SoCG), pages 173–182, 1993.

7 Andreas Haas. Solving large-scale minimum-weight triangulation instances to provable
optimality. In Symposium on Computational Geometry (SoCG), pages 44:1–44:14, 2018.

8 Melanie Papenberg. Exact Methods for area-optimal Polygons. Master’s thesis, University
of Technology Braunschweig, 2014.

9 Jiju Peethambaran, Amal Dev Parakkat, and Ramanathan Muthuganapathy. A random-
ized approach to volume constrained polyhedronization problem. Journal of Computing
and Information Science in Engineering, 15(1):011009, 2015.

10 Jiju Peethambaran, Amal Dev Parakkat, and Ramanathan Muthuganapathy. An empir-
ical study on randomized optimal area polygonization of planar point sets. Journal of
Experimental Algorithmics (JEA), 21:1–10, 2016.

11 Maria Teresa Taranilla, Edilma Olinda Gagliardi, and Gregorio Hernández Peñalver. Ap-
proaching minimum area polygonization. In Congreso Argentino de Ciencias de la Com-
putación (CACIC), pages 161–170, 2011.

	Introduction
	Related Work
	Our Results

	Tools
	Edge-Based Formulation
	Triangle-Based Formulation
	Enhancing the Integer Programs

	Experiments
	Edge-Based Solvers
	Triangle-Based Solvers
	Results for Minimization
	Results for Maximization

	Conclusions

