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Abstract
In this video, we motivate and visualize a fundamental result for covering a rectangle by a set
of non-uniform circles: For any λ ≥ 1, the critical covering area A∗(λ) is the minimum value for
which any set of disks with total area at least A∗(λ) can cover a rectangle of dimensions λ× 1. We
show that there is a threshold value λ2 =

√√
7/2− 1/4 ≈ 1.035797 . . ., such that for λ < λ2 the

critical covering area A∗(λ) is A∗(λ) = 3π
(

λ2

16 + 5
32 + 9

256λ2

)
, and for λ ≥ λ2, the critical area is

A∗(λ) = π(λ2 + 2)/4; these values are tight. For the special case λ = 1, i.e., for covering a unit
square, the critical covering area is 195π

256 ≈ 2.39301 . . .. We describe the structure of the proof, and
show animations of some of the main components.
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1 Introduction

Given a collection of (not necessarily equal) disks, is it possible to arrange them so that they
completely cover a given region, such as a square or a rectangle? Problems of this type have
a variety of applications, but are notoriously difficult; see our related conference paper [1] for
a more detailed overview.

In this contribution, we illustrate a fundamental result: If the total area of the disks
is sufficiently large, they can always cover the region. More precisely, for any given λ, we
identify the minimum value A∗(λ) for which any collection of disks with total area at least
A∗(λ) can cover a rectangle of dimensions λ× 1. We call A∗(λ) the critical covering area
for λ × 1 rectangles and give a complete and tight characterization, along with a visual
illustration of the involved proof techniques.
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Figure 1 The critical covering density d∗(λ) depending on λ and its values at the threshold value
λ2, the global minimum at

√
2 and the skew λ at which the density becomes as bad as for the square.

I Theorem 1. Let λ ≥ 1 and let R be a rectangle of dimensions λ× 1. Let

λ2 =

√√
7

2 −
1
4 ≈ 1.035797 . . . , and A∗(λ) =

3π
(
λ2

16 + 5
32 + 9

256λ2

)
, if λ < λ2,

π λ
2+2
4 , otherwise.

(1) For any a < A∗(λ), there is a set D− of disks with A(D−) = a that cannot cover R.
(2) Let D = {r1, . . . , rn} ⊂ R, r1 ≥ r2 ≥ . . . ≥ rn > 0 be any collection of disks identified by

their radii. If A(D) ≥ A∗(λ), then D can cover R.

See Figure 1 for a graph showing the (normalized) critical covering area, called critical
covering density d∗(λ) = A∗(λ)/λ, and Figure 2 for examples of worst-case configurations.
The point λ = λ2 is the unique real number greater than 1 for which the two bounds
3π
(
λ2

16 + 5
32 + 9

256λ2

)
and π λ

2+2
4 coincide; see Figure 1. At this so-called threshold value,

the worst case changes from three identical disks to two disks, which are the circumcircle
r2

1 = λ2+1
4 and a disk r2

2 = 1
4 ; see Figure 2. The intuition behind the behavior of d∗(λ) is

as follows. The three-disk worst case is bad due to the fact that one of the three disks has
to cover an entire edge of the rectangle. The efficiency of this placement improves when
λ increases, because the size of the largest disk increases as well, while the length of the
shorter edge remains constant. For the two-disk worst case, increasing λ initially improves
the density, because the constant area contributed by the second disk becomes less significant.
After this initial improvement, the quadratic growth of the largest disk compared to the
linear growth of the rectangle dominates, leading to an overall linear increase in density.

2 High-level description

As shown in the video and illustrated in Figure 3, the proof consists of several components.
In addition, there are a number of lemmas, which we describe first for easier reference.

2.1 Mathematical components
First is a lemma that describes the worst cases and shows tightness of our result.
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Figure 2 Worst-case configurations for small λ ≤ λ2 (left) and for large skew λ ≥ λ2 (right).

Figure 3 The different proof components. (Left) Individual covering routines. (Center) Recursive
logic of the overall algorithmic approach. (Right) Case analysis for the computer-assisted proof.

I Lemma 2. Let λ ≥ 1 and let R be a rectangle of dimensions λ×1. (1) Two disks of radius
r1 =

√
λ2+1

4 and r2 = 1
2 suffice to cover R. (2) For any ε > 0, two disks of radius r1 − ε

and r2 do not suffice to cover R. (3) Three identical disks of radius r =
√

λ2

16 + 5
32 + 9

256λ2

suffice to cover R. (4) For λ ≤ λ2 and any ε > 0, three identical disks of radius r− := r − ε
do not suffice to cover R.

For large λ, the critical covering coefficient E∗(λ) := A∗(λ)
λπ of Theorem 1 becomes worse,

as large disks cannot be used to cover the rectangle efficiently. If the weight, i.e., squared
radius, of each disk is bounded by some σ ≥ r2

1, we provide the following lemma achieving a
better covering coefficient E(σ) for large λ.

I Lemma 3. Let σ̂ := 195
√

5257
16384 ≈ 0.8629. Let σ ≥ σ̂ and E(σ) := 1

2

√√
σ2 + 1 + 1. Let

λ ≥ 1 and D = {r1, . . . , rn} be any collection of disks with σ ≥ r2
1 ≥ . . . ≥ r2

n and
W (D) :=

n∑
i=1

r2
i ≥ E(σ)λ. Then D can cover a rectangle R of dimensions λ× 1.

The final component is the following Lemma 4, which also gives a better covering coefficient
if the size of the largest disk is bounded. The bound required for Lemma 4 is smaller than
for Lemma 3, yielding a better covering coefficient in return.

I Lemma 4. Let λ ≥ 1 and let R be a rectangle of dimensions λ× 1. Let D = {r1, . . . , rn},
0.375 ≥ r1 ≥ . . . ≥ rn > 0 be a collection of disks. If W (D) ≥ 0.61λ, or equivalently
A(D) ≥ 0.61πλ ≈ 1.9164λ, then D suffices to cover R.

SoCG 2020
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2.2 Proof overview
The proofs of Theorem 1 and Lemmas 3 and 4 work by induction on the number of disks.
For proving Lemma 3 for n disks, we use Theorem 1 for n disks. For proving Theorem 1
for n disks, we use Lemma 4 for n disks; Lemma 3 is only used for fewer than n disks. For
proving Lemma 4 for n disks, we only use Theorem 1 and Lemma 3 for fewer than n disks.
Therefore, there are no cyclic dependencies in our argument; however, we have to perform
the induction for Theorem 1 and Lemmas 3 and 4 simultaneously.

The proofs of our result are constructive; they are based on an efficient recursive algorithm
that uses a set of simple routines. These routines were derived by hand, in many cases based
on problematic instances that were identified by the automatic prover and could not be
handled by the routines that were already present. We go through the list of routines in
some fixed order. For each routine, we check a sufficient criterion for the routine to work.
We call these criteria success criteria. They only depend on the total available weight and a
constant number of largest disks. If we cannot guarantee that a routine works by its success
criterion, we simply disregard the routine; this means that our algorithm does not have to
backtrack. We prove that, regardless of the distribution of the disks’ weight, at least one
success criterion is met, implying that we can always apply at least one routine. The number
of routines and thus success criteria is large; this is where the need for automatic assistance
comes from.

Typical routines are recursive; they consist of splitting the collection of disks into smaller
parts, splitting the rectangle accordingly, and recursing, or recursing after fixing the position
of a constant number of large disks. As a success criterion for recursion, we check whether
Theorem 1 or Lemma 3 or 4 can be applied.

2.3 Interval arithmetic
We use interval arithmetic to prove that there always is a routine that works. In interval
arithmetic, operations like addition, multiplication or taking a square root are performed on
intervals [a, b] ⊂ R instead of numbers. After proving our result manually for large λ, this
allows us to check a finite, discrete set of cases, instead of the continuum of all possible radii
and λ. See our main paper [1] for details.

3 The video

The video starts with a motivation of the basic problem of covering a rectangle by disks,
followed by a description of the main result. After an overview of the main three aspects of
the proof (individual covering routines, recursive logic, case analysis), these are explained
and illustrated in detail.
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