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Abstract
In this video, we consider recognition and reconfiguration of lattice-based cellular structures by
very simple robots with only basic functionality. The underlying motivation is the construction and
modification of space facilities of enormous dimensions, where the combination of new materials
with extremely simple robots promises structures of previously unthinkable size and flexibility. We
present algorithmic methods that are able to detect and reconfigure arbitrary polyominoes, based on
finite-state robots, while also preserving connectivity of a structure during reconfiguration. Specific
results include methods for determining a bounding box, scaling a given arrangement, and adapting
more general algorithms for transforming polyominoes.
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1 Introduction

Building and modifying large-scale structures is an important and natural objective in a
vast array of applications. In many cases, the use of autonomous robots promises significant
advantages, but also a number of additional difficulties. This is particularly true in space,
where the difficulties of expensive supply chains, scarcity of building materials, dramatic
costs and consequences of even small errors, and the limitations of outside intervention in
case of malfunctions pose a vast array of extreme challenges.

In recent years, a number of significant advances have been made to facilitate overall
breakthroughs. One important step has been the development of ultra-light and scalable
composite lattice materials [29] that allow the construction of modular, reconfigurable, lattice-
based structures [35]; see Figure 1. A second step has been the design of simple autonomous
robots [32, 34] that are able to move on the resulting lattice structures and move their cell
components, allowing the reconfiguration of the overall edifice; see Figure 2.

Figure 1 (a) An assembled cuboctahedral lattice specimen, made from octahedral unit cells
(highlighted), termed voxels. (c) A single injection molded voxel. (See [29].)

Figure 2 (Left) Modular reconfigurable 3D lattice structure and mobile robots; note how robots
are similar in size to lattice cells, and the parallel use of multiple robots. (See [7].) (Right) A
sequence of images from the video: a BILL-E robot moving on an expanding row of voxels. (See [31].)

We address the next step in this hierarchy: Can we enable extremely simple robots to
perform a more complex spectrum of construction tasks for cellular structures in space, such
as patrolling and marking the perimeter, scaling up a given seed construction, and a number
of other design operations? As we demonstrate, finite automata can achieve these tasks.

2 Related Work

The structures considered in this work are based on ultra-light material, as described by
Cheung and Gershenfeld [6] and Gregg et al. [29]. Modular two-dimensional elements
mechanically link in 3D to form reversibly assembled composite lattices. This process is
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not limited by scale, and it enables disassembly and reconfiguration. As shown by Cramer
et al. [8] and Jenett et al. [33], large but light-weight structures can be built from these
components. Jenett et al. have developed autonomous robots that move on the surface [32, 31]
or within the cellular structure [34]. With the help of these robots, individual cells can be
attached to an existing assembly, or moved to a different location [31]. An approach for
global optimization of a corresponding motion plan has been described by Costa et al. [7],
while the design of hierarchical structures was addressed by Jenett et al. [36].

Assembly by simple robots has also been considered at the micro scale, where global
control is used for supplying the necessary force for moving agents, e.g., see Becker et al. [2]
for the corresponding problem of motion planning, Schmidt et al. [39] for using this model
for assembling structures, and Balanza-Martinez et al. [1] for theoretical characterizations.
On the algorithmic side, work dealing with robots or agents on graphs includes Blum and
Kozen [4], who showed that two finite automata can jointly search any unknown maze.
Other work has focused on exploring general graphs (e.g.,[38, 23, 20]), as a distributed or
collaborative problem using multiple agents (e.g. [3, 21, 9, 5]) or with space limitations (e.g.
[22, 23, 17, 24, 25]).

From an algorithmic view, we are interested in different models representing programmable
matter and further recent results. Inspired by the single-celled amoeba, Derakhshandeh et al.
introduced the Amoebot model [11] and later a generalized variant, the general Amoebot
model [15]; see [13, 10, 16, 14, 12] for various results in this model. Other models with active
particles were introduced in [40] as the Nubot model and in [30] with modular robots. In
[26], Gmyr et al. introduced a model with two types of particles: active robots acting like
a deterministic finite automaton and passive tile particles. Furthermore, they presented
algorithms for shape formation [28] and shape recognition [27] using robots on tiles.

3 Results for Finite Automata

We consider a set of N two-dimensional orthogonal tiles that form a polyomino P of total
width w and height h. We use robots as active particles, which work like finite deterministic
automata that can move between adjacent grid positions, where they can place or remove a
tile. We assume that different robots cannot occupy the same position at the same time, and
communication between robots is limited to adjacent positions. A basic step for recognizing
and possibly reconfiguring P is based on constructing its bounding box bb(P ), which is the
boundary of the smallest axis-aligned rectangle enclosing but not touching P ; this implies
that there is a gap of one tile between the two, so we use a robot to keep the two parts
connected.

The first result demonstrated in the video deals with constructing the bounding box, and
thus recognizing the extent of a shape. See [19, 18, 37] for technical details.

I Theorem 1. Given a polyomino P of width w and height h, we can build a bounding box
surrounding P with the boundary and P always being connected, with two finite-state robots
in O(max(w, h) · (wh + k · |∂P |)) steps, where k is the number of convex corners in P .

The second result demonstrated in the video achieves scaling of a given shape.

I Theorem 2. After building bb(P ), scaling a polyomino P of width w and height h by a
constant scaling factor c without loss of connectivity can be done with one finite-state robot
in O(wh · (c2 + cw + ch)) steps.

Further reconfiguration results mentioned in the video are as follows.

SoCG 2020
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I Theorem 3. Copying a polyomino P columnwise can be done within O(wh2) steps using
O(N) of auxiliary particles and O(wh) additional space in O(h) extra rows and columns.

I Theorem 4. Reflecting a polyomino P horizontally can be done in O(w2h) steps, using
O(w) of additional space and O(w) auxiliary particles.

I Theorem 5. There is a strategy to rotate a polyomino P by ±π2 within O((w + h)wh)
steps, using O(w + h + |w−h|h) of additional space in O(|w−h|+ 1) extra rows and columns
and O(w + h) auxiliary particles.

Finally, the video demonstrates how we can carry out any geometric transformation by
finite-state robots, if and only if there is a corresponding Turing machine for transforming
the corresponding one-dimensional string S(P1) (arising from a row-wise scan of P1) into
S(P2).

I Theorem 6. Let P1 and P2 be two polyominos with |P1| = |P2| = N . There is a strategy
transforming P1 into P2 if there is a Turing machine transforming the corresponding one-
dimensional string S(P1) into S(P2). The finite-state robot needs O(∂P1 + ∂P2 + STM )
auxiliary particles, O(N4 + TTM ) steps, and Θ(N2 + STM ) of additional space, where TTM
and STM are the number of steps and additional space needed by the Turing machine.

4 The Video

The video starts with a discussion of the problems faced when building large-scale structures
in space, and an introduction of digital, ultra light-weight materials and simple robots
currently developed at MIT and NASA. This is followed by a description of finite automata
corresponding to finite-state robots. As a first algorithmic demonstration, the connected
construction of the bounding box of a given polyomino shape is shown, followed by producing
a scaled copy of a shape. Then we show how general constructions can be built based on
methods of Turing machines. The video concludes with a 3D simulation.
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