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Abstract

Motivation: Disease module mining methods (DMMMs) extract subgraphs that constitute candidate
disease mechanisms from molecular interaction networks such as protein-protein interaction (PPI)
networks. lIrrespective of the employed models, DMMMs typically include non-robust steps in their
workflows, i.e., the computed subnetworks vary when running the DMMMs multiple times on equivalent
input. This lack of robustness has a negative effect on the trustworthiness of the obtained subnetworks
and is hence detrimental for the wide-spread adoption of DMMMs in the biomedical sciences.

Results: To overcome this problem, we present a new DMMM called ROBUST (robust disease module
mining via enumeration of diverse prize-collecting Steiner trees). In a large-scale empirical evaluation,
we show that ROBUST outperforms competing methods in terms of robustness, scalability and, in most
settings, functional relevance of the produced modules, measured via KEGG gene set enrichment scores
and overlap with DisGeNET disease genes.

Availability: A Python 3 implementation and scripts to reproduce the results reported in this paper are
available on GitHub: https://github.com/bionetslab/robust, https://github.com/bionetslab/robust-eval.
Contact: david.b.blumenthal@fau.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction emerged to untangle these connections and to pinpoint the molecular basis
Over the last decades, high-throughput molecular profiling technologies of complex diseases (Barabdsi ef al., 2011; Roy et al., 2012). This task is
complicated by the fact that molecular omics data such as gene expression
data are generally noisy and overdetermined. Disease-causing alterations

such as mutations typically have a cascading effect on the expression

have generated an immense amount of omics data, enabling the generation
of detailed interaction networks. Motivated by the possibility to uncover

the pathobiology of complex diseases, the field of network medicine has ) A ” .
of genes and proteins that form the nodes of most interaction networks

with typically hundreds or thousands of differentially expressed genes.
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Additionally, not all of the genes triggering a certain disease might be
differentially expressed in an experiment because the expression profiles
are limited to a snapshot of the cell state. Therefore, the discovery of disease
genes using simple statistical tests is infeasible. Consequently, disease
module mining methods (DMMMs) haven been developed to combine
analyses of gene expression profiles with mining of prior knowledge
encoded in protein-protein interaction (PPI) and other networks.

DMMMs try to identify significantly enriched subnetworks by
projecting the expression data on a molecular interaction network. Since
solving the underlying mathematical models to optimality is typically
NP-hard (Ideker et al., 2002), heuristic algorithms are used in practice,
where different weight and scoring metrics are applied to the network
components. Using these algorithms, subnetworks can be identified that
are significantly associated with a certain disease, even when some of
the individual nodes have a negligible score. Various DMMMs have been
proposed in the past years (Batra et al., 2017; Lazareva et al., 2021).
They have enabled new insights into complex diseases like type-2 diabetes
(Sharma et al., 2018; Ferndndez-Tajes et al., 2019), pulmonary arterial
hypertension (Samokhin et al., 2018), coronary heart disease (Wang and
Loscalzo, 2018), and asthma (Sharma et al., 2015).

Despite these success stories, existing DMMMs are known to be
subject to several limitations. For instance, Levi et al. (2021) have shown
that most DMMMSs do not fully exploit the information contained in
the gene expression data. Lazareva et al. (2021) have demonstrated that
most DMMMs mainly learn from the node degrees rather than from the
biological knowledge encoded in the edges of the PPI networks.

Here, we draw attention to an additional issue which has not been
addressed yet: Existing DMMMEs lack robustness and are subject to random
bias. The reason for this is that all DMMMs we are aware of include non-
robust steps in their workflows, although this aspect is often not explicitly
mentioned and sometimes not immediately obvious. For instance, for some
methods, changing the order of the input data leads to dramatically different
results. Other methods show variations of the resulting subnetworks when
run multiple times on identical input. This lack of robustness is a major
limitation, because reliable output is crucial to achieve a widespread
adoption of DMMMs in the biomedical research community: Biomedical
scientists without a strong background in computer science or mathematics
often find it difficult to trust in tools that do not reliably produce the
same output and, when confronted with non-robust disease modules, are
therefore often less inclined to invest time and money in downstream wet
lab validation. Note that simply ordering the input in some canonical but
biologically meaningless way (e.g., by sorting based on gene or protein
names) does not resolve this problem but merely hides it.

A straightforward approach for robustifying any DMMM is to run the
DMMM n times on shuffled input and to then return the subgraph induced
by nodes contained in many of the returned modules. However, this naive
approach has the disadvantage that the runtime increases by a factor of
n. Moreover, it is not guaranteed to be effective, because the modules
obtained for the shuffled input might not be sufficiently diverse to ensure
robustness (see Section 3.2 for results showing that this is a real and not
only a hypothetical problem).

To address this issue, we present a new DMMM called ROBUST
(robust disease module mining via enumeration of diverse prize-collecting
Steiner trees). Unlike the naive approach, ROBUST ensures robustness by
enumerating pairwise diverse rather than merely pairwise non-identical
disease modules. Large-scale tests on data for 829 diseases show that,
unlike all tested competitors, ROBUST achieves almost perfect robustness
(best-possible robustness already at the first quartile). ROBUST is also
faster than its competitors and manages to compute disease modules
for up to 400 seeds in less than 30 seconds. Tests on gene expression
data for amyotrophic lateral sclerosis (ALS), non-small cell lung cancer
(LC), ulcerative colitis (UC), Chron’s disease (CD), and Huntington’s

disease (HD) demonstrate that, in most settings, ROBUST outperforms its
competitors in terms of the returned modules’ functional relevance, which
we measured via KEGG (Kanehisa et al., 2016) gene set enrichment w.r.t.
known disease-associated pathways and overlap with DisGeNET (Pifiero
et al.,2020) disease genes. Finally, a case study in multiple sclerosis (MS)
shows how ROBUST can be used for hypothesis generation.

2 Methods

2.1 Modeling disease modules via generalized Steiner
trees

Two strategic decisions have to be made when designing a new DMMM.
Firstly, one has to decide which input should be expected. In addition
to a PPI network, existing DMMMs use various types of input data
such as normalized expression data (Nacu et al., 2007; Ma et al., 2011;
Larsen et al., 2020), gene scores (Reyna et al., 2018; Barel and Herwig,
2020), sorted lists of genes (Breitling et al., 2004), indicator matrices of
differentially expressed genes (List et al., 2016), or binary input in the
form of sets of disease-associated or differentially expressed seed genes
(Ghiassian et al., 2015; Ding et al., 2018; Sadegh et al., 2020; Levi et al.,
2021). For ROBUST, we chose the latter option for the following reasons:

e Sets of seed genes are very user-friendly input. They can be computed
via standard differential gene expression analysis or be obtained from
public databases such as OMIM (Amberger et al., 2019) or DisGeNET
(Pifiero et al., 2020), which provide disease-gene associations obtained
from genome-wide association studies (GWAS).

e Levi et al. (2021) have shown that DMMMs using seed sets as input
tend to outperform DMMMs operating on non-binary input data.

Nonetheless, there might be scenarios where binarization is not
desirable because of the arbitrariness in selecting the cutoff and the
resulting loss of information. In such settings, ROBUST is not applicable.

The second question is how the disease module mining problem should
be modeled mathematically. Informally, our model can be viewed as a
generalized minimum-weight Steiner tree (MWSTs) model (relaxation is
explained below). Recall that an MWST for a weighted network G =
(V, E,w) and a set of seed nodes S C Visatree T = (Vp,Er)
with S C Vi C V, Ep C E, and minimum total weight ZeeET w(e).
Steiner trees have been used for disease module mining before, e. g., by the
DMMMs DOMINO (Levi et al., 2021) and MuST (Sadegh et al., 2020).
Computing MWSTs is NP-hard, but approximation algorithms exist, e. g.,
the classical 2-approximation by Kou et al. (1981) or the currently best
1.39-approximation by Byrka et al. (2013).

From a biological point of view, using MWSTs to model the disease
module mining problem is promising. Functionally related genes or
proteins tend to be close to each other in the molecular interaction network,
and it could be shown that pairwise shortest paths of known disease
genes show a considerable left shift in their distribution compared to the
random expectation (Menche et al., 2015). A reasonable hypothesis is
hence that the shortest paths between these disease genes overlap with
causal molecular pathways (Barabadsi et al., 2011). Since MWSTs can be
viewed as generalizations of shortest paths to settings whith more than two
endpoints, a disease module constructed using MWSTs can be expected
to cover a large fraction of the disease-relevant molecular pathways.

As mentioned above, we use a generalized MWST model, which
means that we do not strictly enforce S C Vi but allow that some seeds
are left uncovered (see Section 2.3 for the formal specification of our
model). This is because, in the context of disease module mining, the
seeds are potentially noisy due to false positives in GWAS or differential
gene expression analysis. Moreover, we are eventually interested in the
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Algorithm 1: ROBUST
Input: Graph G = (V, E), seeds S C V, parameters n € N,
a€(0,1],8€[0,1), 7 € (0,1].
Output: Robust disease module for seeds S.
1 T + enumerate_diverse(G, S, n,a, 8);
2 M—{veV|{VreT|lveVr}>1-|T|}h
3 return G[M];

subgraph G[V7r] induced by the node set of the tree T' = (Vp, E) rather
than in T itself. The reason is that also edges between nodes from V- which
are not contained in E'7 might pinpoint to causal disease mechanisms and
are hence potentially of interest.

2.2 Ensuring robustness via enumeration with diversity

The main limitation ROBUST is designed to overcome is the lack of
robustness of existing DMMMs. However, our generalized MWST model
alone does not ensure this. For a given seed set .S, the PPI network
G typically contains multiple near-optimal generalized Steiner trees. If
we simply returned the subgraph induced by the node set of one cheap
generalized Steiner tree, the output would hence again depend on the
random storage order of the input, hampering the robustness of our
approach.

To address this problem, our DMMM ROBUST is designed to provide a
solution for the following problem specification: Given a weighted network
G = (V,E,w) and a set of seed nodes S C 'V, compute an induced
subgraph G[M|, where M C V contains nodes that appear in many
diverse near-optimal generalized Steiner trees for S. ROBUST’s overall
approach is detailed in Algorithm 1 and visualized in Figure 1. Instead of
computing just one near-optimal generalized Steiner tree, we enumerate
up to n of them and ensure that their node sets are pairwise diverse (see
Section 2.3). We then return the subgraph induced in GG by nodes contained
in at least 100 - 7 % pairwise diverse Steiner trees, where both n € N and
7 € (0, 1] are hyper-parameters.

Two aspects should be highlighted at this point: Firstly, the subgraph
G[M] is in general not connected and its connected components hence
potentially represent disjoint or complementary disease mechanisms. To
allow separate downstream analyses, our implementation therefore labels
G[M]’s connected components via node attributes in the output file.
Secondly, note that the above specification of the problem solved by
ROBUST is imprecise, as we did not formally define the qualifiers
“diverse”, “near-optimal”, and “generalized”. Several possible formal
specifications are discussed in the supplement.

2.3 Enumerating cheap and diverse generalized Steiner
trees

Let us consider how a set of diverse, low-weight networks that connect
most of the seed nodes (generalized Steiner trees) can be computed.
Naively, we can compute a Steiner tree 7" on G to obtain our first network.
To obtain a different network, we simply remove a Steiner node or edge
in T from G and compute a new Steiner tree 7" that now differs in at
least one position from 7T". As mentioned above, the currently best known
algorithm for the MWST problem is the 1.39-approximation by Byrka
et al. (2013), but even with a better algorithm, the results may not be as
hoped: If the removed edge or node is in a dense part of the graph, it can
easily be circumvented and the resulting solution will nearly be the same.
If it is in a sparse part and an important connection, the resulting solution
will be expensive. This naive approach is employed by the DMMM MuST
(Sadegh et al., 2020), which uses the 2-approximation for MWST by Kou

Fig. 1: Visualization of how enumeration with diversity ensures robustness.
The bounding circle represents the set of all nodes contained in any
near-optimal generalized Steiner tree. The sets Vr, represent the node
sets of three pairwise diverse near-optimal generalized Steiner trees. For
T > 2/3, the set M corresponds to the intersection of the sets VTi. The
sets Vs represent the node sets of three randomly sampled near-optimal
generalized Steiner trees. Nodes contained in M are contained in almost
all of the sets VT7/.

et al. (1981), iteratively removes Steiner edges, and eventually returns the
union of all computed Steiner trees.

The alternative we propose is to not just focus on one seed node whichis
removed but instead to make all of the previously used nodes less attractive
depending on how often they have been used. To achieve this, we use prize-
collecting Steiner trees (PCSTs) where we assign every seed a high value
and every other node a low but not negligible value. If a non-seed node
is returned in a solution, we decrease its value to make it less attractive
for future solutions. The seeds’ high values encourage a PCST algorithm
to include them in the solution. The low, decreasing values of the other
nodes, encourage the algorithm to integrate less-used nodes. By keeping
the values below the edge costs, this approach avoids randomly integrating
nodes at the cost of a more expensive network. More details on the seed
values are provided in the supplement.

Computing an optimal PCST is unfortunately also NP-hard. Therefore,
we use the primal-dual approximation algorithm by Goemans and
Williamson (1995) and an implementation by Hegde et al. (2015). It has
an guaranteed approximation factor of at most 2 and a runtime complexity
in O(d|E|log|V]), where d refers to the encoding size in bits for the
weight and values. In practice, this algorithm yields very natural solutions,
because it is based on a linear programming relaxation which captures a lot
of structure and not only the objective value (see supplement for details).
The implementation is remarkably fast and solves instances with multiple
hundreds of thousand edges within seconds (often even less than a second),
as shown by Hegde et al. (2014).

Let pcst_apx be a PCST algorithm that receives a graph G = (V, E),
positive edge weights w : £ — Ry, and non-negative node values
p: V. — Ry, and returns a tree T' = (V, Er) with Vp C V and
Er C E, minimizing 3° . 5. w(e) + ZUEV\VT p(v). Note that, in
the context of disease module mining, edges are typically unweighted, i.e.,
w(e) = lholdsforalle € E. However, some DMMM s use edge weights
that penalize edges towards high-degree nodes in the PPI network (Sadegh
et al., 2020). While we have designed ROBUST with unweighted edges
in mind, we here present the more general weighted version.

Our proposed algorithm is defined in Algorithm 2. As input, it expects a
graph G = (V, E), aseed set S, edge weights w, a number of desired trees
n, as well as tuning parameters « € (0, 1] and 3 € [0, 1) explained below.
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Algorithm 2: enumerate_diverse

Input: Graph G = (V, E), seeds S C V, edge weights
w: E — Rxq, parametersn € N, a € (0,1], 8 € [0,1).

Output: Set 7 of diverse PCST node sets.

1 for v € S do p(v) + 2 - diam(G) - max.cg w(e);

2forv eV \ Sdop(v) < o min.cg w(e);

3T« 0

4 while |T| < ndo

s | (Vp, Er) < pcst_apx(G,w, p);

6 | if Vp € T then break ;

7| T+ TU{Vr}h

8 | forve Vp\ Sdop(v) < B-p(v);

9 return 7

The first step is to define the initial values p to be passed to pcst_apx.
To give the algorithm a high incentive to integrate all seeds, we determine
their value based on the diameter of the graph and the maximum edge
weight (line 1). The initial values of the non-seeds are defined as « times
the minimum edge weight (line 2). Note that, in the unweighted case, both
the minimum and the maximum edge weight equals 1.

After initializing the node values, the algorithm repeatedly calls
pcst_apx to compute a new PCST (Vp, Ep) dissimilar to the ones
computed before until » PCSTs have been computed (line 4) or Vi is
identical to the node set of a PCST computed before (line 6). Dissimilarity
is ensured by multiplying the values of all non-seeds contained in Vi by a
factor 8 € [0, 1), thereby making them less attractive for subsequent calls
to pcst_apx (line 8). If connecting a seed s € S to the remaining seeds
would incur a very high cost, it might happen that V.- — and therefore also
the final disease module G[M] returned by ROBUST — does not contain
s. This can be viewed as an unsupervised data cleaning step built into
ROBUST: It automatically discards seeds which are very badly connected
to the remaining seeds and are hence potentially unreliable. An alternative
which enforces full Steiner trees is described in the supplement.

2.4 Influence of the hyper-parameters

ROBUST has four hyper-parameters: the desired number of PCSTs n,
the threshold 7, and the tuning parameters « and (. The effects of these
parameters can be summarized as follows:

o Intuitively, the desired number of trees n € N controls the extent to
which the disease module computed by ROBUST covers the space of
all near-optimal generalized Steiner trees. Setting n to a rather large
value is hence desirable but detrimental for the runtime.

e The threshold 7 € (0, 1] provides a trade-off between robustness and
explorativeness. The larger 7, the more robust but less explorative the
disease module computed by ROBUST.

e The parameter o € (0, 1] modifies the initial values for integrating
non-seeds into the tree. This implicitly represents the allowed diversion
from the cheapest Steiner tree. For av = 0, the algorithm would only
return the best Steiner tree it can find but not allow any diversion from
it. The larger «, the more diverse and but also more expensive the
returned Steiner trees are allowed to become.

e The parameter 8 € [0, 1) modifies the decrease of the values for
integrating non-seeds into the trees. Setting 5 = 0 will only give
a value to a non-seed until its first appearance in one tree. This can
quickly exhaust the available non-seeds and then has the same problem
as a = 0. A too high value, on the other hand, might not be able
to reduce the values sufficiently to make the other non-seeds more
attractive. Hence, more trees need to be generated to achieve diversity.

3 Results and discussion
3.1 Compared methods

We compared ROBUST to the state-of-the-art DMMMs DIAMOnD
(Ghiassian et al., 2015), MuST (Sadegh et al., 2020), and DOMINO (Levi
etal., 2021). These methods were selected for the following reasons:

e They all expect binary input (i.e., lists of differentially expressed or
disease-associated seed genes) and are hence directly comparable to
our method ROBUST.

DOMINO has been shown to outperform other DMMMs in two
independent studies (Levi et al., 2021; Lazareva et al., 2021) and can
hence be considered to be one of the best available methods.

e Based on the number of citations, DIAMOnD is arguably one of the
most widely used DMMMs.

e MuST serves as a baseline model for extracting disease modules via
Steiner trees without the improvements of ROBUST.

Moreover, we compared ROBUST to a baseline implementing the
naive approach at robustification outlined in the introduction. More
precisely, instead of enumerating diverse prize-collecting Steiner trees as
detailed above, we enumerate multiple Steiner trees by simply shuffling
the input data and running the classical 2-approximation algorithm by
Kou et al. (1981) several times. In the sequel, this naive baselinee is
called R-MuST (randomized MuST). An AIMe report (Matschinske et al.,
2021) with further details on the empirical evaluation is available at
https://aime-registry.org/report/VMOhhS.

3.2 Robustness

3.2.1 Protocol and data used for robustness tests
The methods were tested on a human PPI network obtained from IID
(Kotlyar et al., 2019) filtered for experimentally validated interactions.
The network consists of 329 215 edges between 17666 proteins. Sets
of disease-associated seed genes were constructed for 929 diseases by
merging disease-gene associations from OMIM (Amberger et al., 2019)
and DisGeNET (Pifiero et al., 2020). For the hyper-parameter evaluation of
ROBUST (Section 3.2.2), 100 of the seed sets were used and subsequently
excluded for the comparison of ROBUST to its competitors (Section 3.2.3).
Robustness was measured by running each DMMM ALG twenty times
on each seed set S. In each iteration, the input PPI network was randomly
permuted before running ALG, yielding twenty disease modules. Let
MfLG’S be the node set of the i" disease module computed by ALG on S.
Then, we quantified ALG’s robustness on U using the mean Jaccard index

_119 20 ‘MALG,SHM};LG,S|

rs(ALG) == (22()) Z Z z

ALG,S ALG,S |’
o1 =it M UM
i.e., 7g(ALG) € [0, 1] and large values of rg(ALG) indicate that ALG is
robust to random storage order on the seed set S.

3.2.2 Effect of hyper-parameters

For testing ROBUST’s robustness w.r.t. the hyper-parameters, we
varied « € {0.25,0.5,0.75}, 8 € {0.1,0.3,...,09}, 7 €
{0.1,0.2,...,0.9}, and n € {5,10,...,30}. Supplementary Figure
1 shows the full results. While increasing « significantly deteriorated
the robustness, increasing § marginally improved it. Therefore, we
focus on the results for = 0.25 and 8 = 0.9, which are shown
in Figure 2. Unsurprisingly, we observe that the robustness improved
when increasing the threshold 7 and the number of trees n. However, for
n = 30, we observe large robustness coefficients already for small values
of 7. Keeping 7 small is prima facie desirable as it allows ROBUST
to compute more exploratory disease modules. Moreover, ROBUSTS’s
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Fig. 2: Effect of the number of trees n and the threshold 7 on the robustness
of ROBUST for « = 0.25 and 8 = 0.9.

runtime requirements increase only very moderately with increasing n
(see Section 3.4). For these reasons, we selected the hyper-parameter setup
(e, B,m, ) = (0.25,0.9,30,0.1) for all further experiments. Note (a)
that the 100 seed sets used to select these hyper-parameters were not used
for evaluating ROBUST’s robustness in comparison to its competitors and
(b) that we tuned the hyper-parameters only for robustness and not for
functional relevance.

3.2.3 Robustness in comparison to competitors

M
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Fig. 3: Robustness of ROBUST with hyper-parameter setup («, 3, n, 7) =
(0.25,0.9,30,0.1) in comparison to its competitors. Like ROBUST,
MuST and R-MuST were setup to run with (n, 7) = (30,0.1).

Figure 3 shows the distribution of the 829 mean Jaccard indices for each
of the compared DMMMs. Of all tested DMMMs, only ROBUST yielded
almost perfectly robust disease modules with a robustness coefficient
of rg = 1.0 at the first quartile. ROBUST is clearly superior to
its precursor MuST, to the naive baseline implementation R-MuST,
and, most importantly, also to the state-of-the-art DMMM DOMINO.
DIAMOnD yielded remarkably high robustness coefficients, especially
considering that its hyper-parameters were not tuned for robustness.
Nonetheless, its robustness coefficients were still statistically significantly
lower than the ones obtained for ROBUST (see Table 1). The superiority

of ROBUST to MuST and R-MuST shows that it is indeed necessary to
ensure diversity when enumerating (generalized) Steiner trees. Merely
enumerating pairwise different trees does not yield the desired robustness.
More generally, the rather bad performance of R-MuST shows that the
above-mentioned naive approach for robustification (run DMMM n times
on shuffled input and then return subgraph induced by nodes contained in
many modules) is not guaranteed to be effective.

Table 1. P-values obtained by comparing the robustness coefficients from two
DMMMs via the Mann-Whitney U test (alternative hypothesis: DMMM 1
yields larger robustness coefficients than DMMM 2). Note that the P-values
should be interpreted carefully, because the Mann-Whitney U test is a rank-
based test and can hence yield very small P-values even if the quantitative
differences between the compared populations are small.

DMMM 1 DMMM 2 P-Value

ROBUST DOMINO 1.668 x 10—278
ROBUST MuST 3.847 x 10226
ROBUST R-MuST  4.460 x 10~98

ROBUST DIAMOnD 6.796 x 10—6

3.3 Functional relevance

3.3.1 Protocol and data used for functional relevance tests

Functional relevance tests were conducted by implementing custom
wrappers for the DMMM test suite introduced by Lazareva et al. (2021).
In the test suite, gene expression datasets with case/control information
for five complex diseases are used, namely amyotrophic lateral sclerosis
(ALS), non-small cell lung cancer (LC), ulcerative colitis (UC), Chron’s
disease (CD) and Huntingtons disease (HD). The seed genes are obtained
by applying a two-sided Mann-Whitney U test on the case/control
expression vectors and extracting all genes with Bonferroni-adjusted P-
values smaller than 0.001. Each set of seed genes was projected onto one
of the five widely used PPI networks BioGRID (Oughtred et al., 2019),
APID (Alonso-Lopez et al., 2016; Alonso-Lépez et al., 2019), STRING
(Szklarczyk et al., 2019) with high confidence interactions only, HPRD
(Keshava Prasad et al., 2009) and IID (Kotlyar et al., 2019). Functional
relevance was evaluated via gene set enrichment P-values w.r.t. KEGG
pathways (Kanehisa et al., 2016) corresponding to the diseases and via
overlap coefficients with the disease-associated DisGeNET (Piiero et al.,
2020) gene sets. For more details, we refer to Lazareva et al. (2021).

3.3.2 Functional relevance in comparison to competitors

Figure 4 shows the distributions of the functional relevance scores for
ROBUST, MuST, DIAMOnD and DOMINO run on the five disease
networks. The baseline implementation R-MuST was excluded from the
tests due to high runtime requirements and poor robustness results. Overall,
ROBUST outperformed the other three DMMMs w.r.t. both functional
relevance scores. The CD dataset is the only case where DIAMOnD clearly
yielded better results than ROBUST.

The test suite introduced by Lazareva et al. (2021) also supports
permutation tests to assess to which extent DMMMs are potentially biased
towards hub nodes in the PPI networks (for details, we refer to the
original publication). This was also tested for ROBUST, DIAMOnD, and
DOMINO, the results are shown in Supplementary Figure 2 (MuST was
excluded because of its high runtime and the large number of runs required
for the permutation tests). In this dimension, ROBUST performed similarly
to DIAMOnD but was outperformed by DOMINO. To reduce the risk of
including false positives into the solution, it might hence be advisable to
run ROBUST on context-specific networks, e. g., by keeping edges only for
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Fig. 4: Distribution of the functional relevance scores for ROBUST, MuST,
DIAMOnD, and DOMINO. A: Overlap coefficients of the disease modules
and the DisGeNET disease genes, split by disease. B: KEGG gene set
enrichment P-values split by disease. C: Overlap coefficient distributions
over all networks and disease seed sets. D: KEGG gene set enrichment
distributions over all networks and disease seed sets.

PPIs experimentally validated in tissue relevant for the disease of interest.
We followed this approach for our case study in MS (Section 3.5).

3.4 Scalability

3.4.1 Protocol and data used for scalability tests

As for the robustness tests, we used a human PPI network obtained from
IID, filtered based on experimental validation. We randomly generated
seed sets of sizes k = 25, 50, . .., 400, ran all compared DMMMs on all
of them, and measured the runtimes. For ROBUST, MuST, and R-MuST,
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Fig. 5: Runtime of the DMMMSs vs. number of seeds (all DMMMSs) and
number of seeds and trees (MuST, R-MuST and ROBUST). The line plots
visualize the mean runtimes.

we additionally varied the number of trees n € {5, 10, ...,30}. For all
DMMMs except MuST and R-MuST and each seed set size k, runtimes
were measured on 10 random seeds sets of size k. MuST and R-MuST
were evaluated only on one seed set for each k, because of their high
runtime requirements.

3.4.2 Scalability in comparison to competitors
Figure 5 shows the results of the scalability tests. The most important
observations are the following:

e MuST and R-MuST are around two orders of magnitude slower than
DIAMOnD, DOMINO, and ROBUST.
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e While, for ROBUST and DOMINO, the runtime increases sub-linearly
with the number of seeds, we observe a linear increase in runtime for
DIAMOnD.

e Increasing the number of trees affects ROBUST’s runtime only very
moderately.

In sum, ROBUST hence exhibits the best runtime behaviour even if
the number of trees is set to n = 30 as suggested above: For small seed
sets, ROBUST is approximately as fast as DIAMOnD and around five
times faster than DOMINO. For large seed sets, it is around twice as fast
as DIAMOnD and between three and four times faster than DOMINO.

3.5 Case study in multiple sclerosis

In addition to the quantitative evaluation reported in the previous sections,
we performed a case study in multiple sclerosis (MS) to showcase how
to use ROBUST for hypothesis generation. First, we constructed a
context-specific PPI network from IID by filtering for the interactions
experimentally validated in brain tissue. Then, proteins associated with MS
were obtained by merging DisGeNet and OMIM annotations. This yielded
42 seeds, 26 of which were contained in the context-specific network.

Running ROBUST on these 26 seeds yielded a disease module with
90 additional proteins (Supplementary Figure 3), including galectin-1,
which was found in each of the 30 trees. It has been shown that galectin-
1 plays an important regulatory role in MS patients (Starossom et al.,
2012). We then took a closer look at the 2-hop neighborhood of galectin-1
within the computed diseases module (Supplementary Figure 4). In this
submodule, we found thioredoxin (TXN), Peroxiredoxin-2 (PRDX2), the
mitochondrial Thioredoxin-dependent peroxide reductase (PRDX3), and
DJ-1 (extended findings in the supplement).

TXN, PRDX2, PRDX3, and DJ-1 are antioxidant molecules related
to oxidative stress, a sign of various neurological disorders including MS
(Liu et al., 2020). TXN has been found to be significantly upregulated
in MS patients compared to healthy controls (Mahmoudian et al., 2017).
PRDX2 and PRDX3 are enzymes which reduce H2 O3 and hydroperoxides
using TXN as substrate (Kamariah et al., 2016; Cao et al., 2007). PRDX2
was shown to be upregulated in white matter MS lesions (Voigt et al.,
2017). While DJ-1 is not directly linked to TXN, the two molecules share
downstream targets and it has been suggested that there is some cross-talk
between these two systems (Raninga et al., 2014) and various studies have
linked DJ-1 to MS (Hirotani et al., 2008; van Horssen et al., 2010). These
findings show how ROBUST can identify a submodule related to oxidative
stress in MS whose participants share common pathways.

4 Conclusions, limitations, and outlook

In this paper, we have presented a novel DMMM called ROBUST which,
unlike existing approaches, computes almost perfectly robust disease
modules when run multiple times on equivalent input. ROBUST is also
faster than its competitors and, in most settings, outperforms them in terms
of functional relevance of the computed modules.

We conclude this paper by pointing out three limitations of ROBUST
which constitute challenges for future work. Firstly, ROBUST supports
only binary input and so future work is needed to overcome the robustness
deficit in disease module detection with continuous input. Secondly,
ROBUST is outperformed by DOMINO w.r.t. resistance to hub node bias
and it hence remains an open algorithmic challenge to design a DMMM
which is both immune to hub node bias and robust w.r.t. random storage
order. Thirdly, it would be interesting from a theoretical point of view
to investigate whether the Steiner tree enumeration problem underlying
ROBUST can be formalized such that it allows for approximation
algorithms with provable approximation guarantees.
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