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Abstract— For biomedical applications in targeted therapy
delivery and interventions, a large swarm of micro-scale
particles (“agents”) has to be moved through a maze-like
environment (“vascular system”) to a target region (“tumor”).
Due to limited on-board capabilities, these agents cannot move
autonomously; instead, they are controlled by an external global
force that acts uniformly on all particles.

In this work, we demonstrate how to use a time-varying
magnetic field to gather particles to a desired location. We use
reinforcement learning to train networks to efficiently gather
particles. Methods to overcome the simulation-to-reality gap
are explained, and the trained networks are deployed on a
set of mazes and goal locations. The hardware experiments
demonstrate fast convergence, and robustness to both sensor
and actuation noise. To encourage extensions and to serve as a
benchmark for the reinforcement learning community, the code
is available at Github.

I. INTRODUCTION

Delivering active substances to a specific location in an
organism is a crucial challenge for a wide range of important
problems, such as the treatment of cancer, localized infec-
tions, or internal bleeding. Typically, this requires dealing
with navigation through complex, maze-like environments,
such as a vascular system. However, the size of particles
necessary for passage through these vessels prohibits suf-
ficient individual energy storage or computational power.
A promising alternative is offered by employing a global
external force, e.g., an electromagnetic field,

This paper investigates a method using magnetism to
gather dispersed micro-particles at a desired target loca-
tion. Biomedical applications of collecting magnetic particles
include delivering chemotherapy to tumors [1], building
localized embolisms (i.e., forming an artificial clot) [2],
thrombolysis (delivering medication to remove a clot) [3],
local hyperthermia [4], and enhanced imaging [5]. In these
applications, external electromagnetic coils are used to create
a time-varying magnetic field across a workspace. This
magnetic field then generates forces and/or torques on any
ferrous or magnetic components in the workspace. Because
the actuation is external, these components do not require
motors, internal power sources, or computation. Instead, the
components are often particles whose shapes, composition,
and coatings are selected for the particular application.
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Fig. 1. a: Annotated photo of the magnetic manipulator used in this study.
Inset: microscope photo of microparticles. b: Aggregating particles in the
Coronary workspace. Underneath each picture, the next direction of the
global force is shown. For further details, see the experimental section and
the supplementary video.

Magnetic aggregation uses a small number of electro-
magnetic coils (usually 4 to 8) to control a much larger
number of particles (102 to 109), making this problem
severely underactuated.

A. Related Work

Current work on aggregation has focused on four methods.
(1) Using large gradients to collect particles at a desired

position: Because magnetic monopoles do not exist, this ap-
proach is usually applied above or below a 2D workspace [6].
The same actuation is used in children’s toys, in which the
child uses a permanent magnet to drag iron particles into
new configurations.

(2) Pulling particles out of solution to form aggregates:
Luo et al. used spatially-varying magnetic fields to cause
1 µm diameter superparamagnetic particles in flowing fluid to
aggregate [2]. They showed how this can generate embolisms
in vascular phantoms and porcine tissue in areas with the
magnetic field stronger than a critical value. Lowering the

https://github.com/NeoExtended/gym-gathering
https://youtu.be/CyVGlIrOFEA


magnetic field allowed the aggregates to fall apart and dis-
perse. However, magnetic gradients decay more rapidly with
distance than magnetic torque, much current work focuses
on using the latter to aggregate and manipulate particles.

(3) Exploiting fluidic vortices caused by rotating the
magnetic field: Wang et al. [4] investigate aggregating Fe3O4

microparticles for local hyperthermia treatment. They moved
a clump of microparticles in water along the bottom of
the container by using a 3D rotating magnetic field to
induce fluidic vortices that clumped the particles, shrinking
the swarm of particles to a third of the initial radius in
80 seconds. By changing the pitch angle of the rotation
for movement, they generated movement speeds of up to
1.8 µm/s. Similar approaches were used in [3], [5].

(4) Using a rotating magnetic field to walk particles in
a desired direction: Yigit et al. [7] studied using a rotating
global magnetic field (with a precessing axis) to move self-
assembled chains of superparamagnetic microparticles (about
5 µm in diameter) in unison along the bottom of a container
filled with water, with speeds of up to 10 µm/s. They showed
that obstacles could compress the swarm by around 30%.

Most of these experimental approaches emphasized either
locally aggregating particles at a desired location, or moving
a single aggregation along a desired path. This differs from
our paper, which focuses on the gathering problem: bringing
all particles in the workspace to the goal. Mahadev et
al. [8] described an algorithm that delivers all particles in
a grid environment with n grid cells to a target in at most
O(n3) actuator steps. This showed that delivery can always
be achieved; however, a delivery time of this magnitude
is usually impractical, and actually minimizing this time
is an NP-hard problem, as shown by Becker et al. [9].
Heuristics based on RRTs were implemented in hardware
to aggregate iron particles in [10], aggregating the majority
of iron particles (30 µm diameter) near a goal location in a
20mm×20mm maze in an average of 22.5min. The theory
for aggregation in grid-environments was extended in [9]
using an algorithmic strategy for gathering all particles with
a worst-case guarantee of at most O(kD2) steps; here k
denotes the number of convex corners in the workspace and
D is the maximum distance between any two points in the
workspace. Both k and D are usually much smaller than the
number n of grid locations, representing a large performance
increase over [8]. In [9], the authors introduced a reinforce-
ment learning technique for aggregating the particles, which
outperformed the algorithmic approaches in simulation.

B. Contributions

The primary contribution of this paper is to quickly and
robustly gather particles that are spread in a 2D workspace at
a desired location using camera feedback. This paper investi-
gates methods using reinforcement learning (RL). Gathering
has not been extensively studied in the RL community,
so this work is also meant to serve as a benchmark for
the field. To encourage reuse and expansion, the code is
shared [11]. Previous reinforcement work [9] was performed
only in simulation, using a grid world with no sensing or

actuation noise, with particles that collapsed into a single
particle whenever there was a collision. This paper uses a
more accurate particle model. The training process is flexible
and independent of the shape of the workspace. The resulting
models can handle domain shift, including variations to
particle motion, vision artifacts, and delays in timing.

Finally, the RL techniques were successfully tested on
a hardware platform, demonstrating fast and robust perfor-
mance under real-world conditions. There is a non-trivial
simulation-to-reality gap that required augmenting our RL
approach, and our paper documents the techniques used to
overcome these challenges.

II. BACKGROUND

We use Reinforcement Learning (RL) to solve the gath-
ering problem. This section provides a problem description
and a definition of the RL terms used.

A. Reinforcement Learning

RL is a field of unsupervised machine learning in which
the goal is to train a neural network to learn specific behavior
in an environment without any human interaction. Instead of
learning from (labeled) training data, an RL agent learns by
a sequence of interactions with an environment E . In each
time step t of this interaction, the agent chooses an action
at from a set of valid actions A, based on an observation
ot of the environment and its policy π(ot). The agent then
receives the next observation (e.g. an image), representing
the state of the environment and a feedback signal called
reward rt in return. This interaction between the agent and
the environment is typically modeled as a large but finite
Markov Decision Process (MDP), with each sequence of
interaction defining a single state.

Using reward as feedback, the goal of the training process
is to estimate an optimal policy π∗ to maximize the expected
future return Rt =

∑T
t′=t γ

t′−trt, with future rewards dis-
counted by a factor γ. Being in a state s and selecting action
a, we define the value of the next state as the action-value
function Q(s, a). If the value of Q(s, a′) for each action
a′ ∈ A was known in advance, we could always choose
an action that maximizes the expected reward. In modern
reinforcement learning, a neural network with weights θ is
used as a function approximator. This allows using a policy
that greedily selects the next action as a = maxaQθ(s, a).
Many modern RL architectures like A2C [12] additionally
make direct estimates about the best action.

B. Problem Description

In this work, we consider gathering in a 2-dimensional grid
environment (called the workspace) with free and blocked
integer positions (called pixels). The workspace contains a
set of particles which can be controlled by a global input
which uniformly moves all particles in a specific direction
(north, north-east, east, south-east, south, south-west, west,
north-west). A particle will move if it is not blocked by a
stationary obstacle or other particles. This makes it possible
to change the shape of the particle swarm: Given a specific
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Fig. 2. Ablation study analysis on the Corridor environment showing
performance during training. The performance is measured as the average
episode length until all particles are gathered at the goal position. Measure-
ments are done during training at an interval of 200k steps and use data
from 64 episodes with randomly distributed particles. Standard deviation
from different trials is indicated by lighter areas. The data is smoothed with
an exponential moving average with α = 0.5.

Corridor [9] Coronary
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Fig. 3. Default test workspaces with size and, in parenthesis, percentage
of non-blocked area. The target position is marked with a red circle.

workspace, a set of particle positions, and a target position,
our objective is to find a control sequence that gathers in
minimum time all particles at the target position.

To train agents without requiring large numbers of hard-
ware experiments, we need a simulator which behaves simi-
lar to the real-world problem. Otherwise agents will not per-
form due to the large domain shift. The domain shift mainly
occurs in two areas: particle behavior and observations. For
the experiments we specifically augmented our simulation
to reduce domain shift in both areas (see Section III-A and
Section III-C for details).

III. IMPLEMENTATION

To train the RL agent and test different configurations, we
created a modular Python environment that is compatible
with OpenAI Gym [13]. The code is on GitHub [11].

An agent trained with RL usually has trouble when
transitioning from a simulated to a real-world environment.
To reduce this effect, we specifically augment the simulation
to mimic the behavior of physical particles and real-world
observations.

To analyze the effect of the augmentations, we perform
an ablation study. The results can be found in Fig. 3, which
shows the performance of agents without certain components
in the same simulated environment. To verify our assump-
tions, the impact of these changes is further analyzed in an
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Fig. 4. Real-world experimental ablation study on the Corridor environ-
ment (default goal position) showing the performance of the final agent. The
performance is measured as the average time to gather all particles at the
goal position. Each experiment has been repeated three times; thick lines
show the average value while the lighter lines show individual experiments.

ablation study performed on the hardware experiment, which
shows similar effects (see Fig. 4 and Section V for details).

A. Particle Model

Previous work [8], [9] used a simplified algorithmic
particle model where particles get directly moved. Also,
particles collapsed into a single particle, if they entered the
same integer position. Real particles behave differently from
this simplified model. They have individual weights and
exhibit second order dynamics that include momentum and
gradual acceleration. Particles experience increased friction
near walls. When particles collide with each other they do
not fuse together and can split apart later. Particles also often
build up in lumps which only slowly break up again.

To make the domain shift as small as possible, while
also keeping a reasonable training speed, we implemented
a basic physical properties model. Particles have a floating
point position and an individual random weight. A uniform
force is used to accelerate the particles instead of directly
changing their positions. Particles also keep their velocity
and particle-particle collision is modelled if more than three
particles enter the same integer position. Since particles have
different weights they may split up again after being merged
into the same position.

B. Rewards

In this work, we present a simple yet efficient reward
system which gives the agent valuable feedback without the
need to handcraft milestones for each individual workspace.
The reward is directly calculated from the change in two
basic metrics: the sum of distances of all particles to the
target position and the maximum distance of any particle to
the target position. Both metrics are calculated with respect
to the integer grid position of the particles. To balance the
reward produced by these metrics, we use a normalization
which approximately scales both metrics to the interval [0, 1].
The normalization for the sum of distances is the average
distance of any free pixel multiplied by the number of
particles, and for the maximum distance we use the distance
of the particle-containing free pixel that is the farthest away
from the target.



We also use a time penalty to encourage the agent to
bring the particles to the target as fast as possible. We found
that using the same time penalty for every workspace can
be a problem, as larger workspaces also require more steps
for solving. Because other metrics are bound to the interval
[0, 1], the proportion between time penalty and other metrics
would change depending on the minimal episode length. We
therefore estimate a time penalty to be also approximately
in the interval of [0, 1] independent of the workspace by

episode length ≈ a · dmax · log(davg · k), (1)

where dmax is the maximum distance between any two free
pixels of the workspace and davg is the average distance
between any pixel and the target position. The parameter
k is the number of convex corners of the current workspace
and we set a to 0.75 for all experiments.

We also experimented with other reward components, in-
cluding reward for decreasing the number of unique particles,
curiosity reward [14], or goal-based rewards, as well as other
normalization terms, but found that the simple continuous
system yielded better results. For more details, see [15].

C. Observations

Observations are generated as images xt ∈ Rd, with d
being the number of pixels in the workspace. This vector
is binary and encodes the current integer positions of the
particles (1 if at least one particle is present in the pixel, 0
otherwise). RL agents are able to learn the goal position from
the reward signal and the shape of the environment from the
absence of particles in blocked pixels.

During the hardware experiments, we track the position of
the particles with a camera. Particles are extracted from the
image using thresholding. The camera resolution exceeds the
resolution of the simulated workspace, and real-world parti-
cles may be smaller than simulated particles. As the camera
is imperfect, the particle extraction includes some false-
positive and false-negative detections. The camera image is
cropped to the region of the workspace, but this cropping
process results in slight image shifts, or size changes.

To harden the agent to these effects, we specifically
alter the observations from the simulated environment to
mimic real-world errors during training. This includes the
addition of static dirt (i.e. particles which will never move),
Gaussian noise, slight image shifting and cropping, particle
detection errors, and artifacts from image downscaling and
thresholding.

Finally, since particles may have a certain velocity, it is
harder to make predictions based on a single still image. We
therefore apply frame-stacking, and provide the agent with
a combination of the last two observations. This ensures the
agent receives information about the current trajectory of the
particles without requiring a recurrent network architecture.

D. Agent Architecture and Training Details

All our agents are trained using the Proximal Policy Opti-
mization algorithm (PPO) [16]. To ensure easy comparison,
we used the implementation of stable-baselines3 [17]. We

train on 128 parallel environments to stabilize the training
process. During training, the learning rate is scheduled to de-
crease linearly from 8.5× 10−5 to 5.0× 10−5 over the first
4% of training. The learning rate decreases to 2.0× 10−5

after 20% and to 5.0× 10−6 after 95% of training. The
discount factor γ is set to 0.99, the GAE parameter λ to
0.95 and the clipping ε to 0.1. We train on large batches of
size 2048 samples and perform 16 epochs of optimization.

The neural network consists of a small convolutional
feature encoder with three layers with 32 (8 × 8, s = 2),
64 (4× 4, s = 2) and 64 (4× 4, s = 1) filters respectively,
followed by a single fully connected layer with 512 neurons.
Both feature extractor and the fully connected layer are
shared between the actor and the critic. After each layer we
apply the scaled exponential linear unit activation function.

To slightly reduce the impact of altered observations on the
overall training time, we decided to make use of curriculum
learning [20] and introduce noise gradually during training:
The amount of noise is linearly increased from zero after half
of the training is finished and reaches its maximum value at
90% of the training time. This allows the agent to learn basic
behavior, before learning how to deal with noisy inputs.

Observations are preprocessed before being fed into the
network by a pipeline commonly used to train agents for
Atari games [18]. With frame-skipping, agents experience
the environment at lower frame-rate by repeating actions
for k consecutive steps. We use k = 4 for all simulated
experiments and k = 6 for all agents trained for the hardware
experiments. To reduce the computational complexity, obser-
vation are scaled down to 84×84 pixels. Finally, observations
get normalized by xt → xt/255 to the interval [0, 1].

During training, collected rewards get normalized by a
running mean. This prevents discouraging all actions in
episodes which generate mostly negative reward. These sit-
uations often occur during earlier stages of the training pro-
cess, when the negative time-penalty dominates the returned
reward. Additionally, episodes longer than 2000 steps are
truncated. This ensures that agents will not get stuck in sub-
optimal environment states. Each training episode generated
100 to 350 particles with uniformly random positions. For the
Corridor environment we trained the agent for 25 M steps,
while we used 140 M steps for the Coronary environment.

IV. HARDWARE SETUP

The experimental platform used ferrous particles actuated
by a magnetic manipulator. Ferromagnetic microparticles
were scattered into an air-filled plastic workspace. An ex-
ternal magnetic system generates a flux density of 3mT
that actuates the microparticles. When the magnetic field is
applied, the microparticles self-assemble into small clumps.
A rotating magnetic field is used to roll these assemblies to
gather at the goal position.

A. Experiment Setup

1) Magnetic manipulator: These experiments used the
lab-built magnetic manipulator system shown in Fig. 1.
Figure 5a shows the block diagram of the hardware. The
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Fig. 5. Block diagram of the overall system. a: Physical system. b:
Controller module. c: Mapping from directions to actions. Inset: Reference
frame linked to the electromagnets.

experimental apparatus was extensively presented in [19], so
it is only described briefly in the present paper. The system
contains six electromagnets (EMs) with internal radii of
180mm and external radii of 215mm. The EMs are arranged
in a cube shape and separated by a distance of 300mm. A
total of twelve Kepco BOP 20-50MG power supplies are
used to power the electromagnets. Each power supply can
generate 50V and 20A. Each electromagnet is powered by
a set of two power supplies connected in series. The magnetic
manipulator system’s large working distance and significant
magnetic field strength enable the use of a larger workspace
and provide enough torque to actuate a larger amount of
microparticles than in [10].

The system’s hardware also includes a host computer,
an industrial controller NI IC-3173, and a Basler acA800
camera (see Fig. 5a). The industrial controller executes a
LabVIEW program to actuate the microparticles with an
external rotating magnetic field. The power supplies are
controlled via an external analog signal generated by the
industrial controller and are connected to the EMs with
power cables. The camera views the workspace from the
top and allows monitoring the microparticles.

Figure 5b shows the controller module. The industrial
controller acquires images and shares them every 0.5 s with
the host computer. A Python program executed on the host
computer loads the images and uses them as input for the
neural network. This program calculates the action a to take
and sends this information back to LabVIEW via TCP/IP.
The calculation of the rotating magnetic field is discussed
in Section IV-B. The mapping from direction to actions is
shown in Fig. 5c.

2) Workspaces design: Two workspaces were used to
experimentally validate the simulation results: the Corridor
workspace and the Coronary workspace. Each workspace
is made of two layers of acrylic cut using a Universal
Laser Cutter. The base layer is 3mm thick and the up-
per layer is 6mm thick, with obstacle-free areas cut out
by the laser cutter. These layers are bonded by WELD-
ON 4 Acrylic Adhesive. The Corridor workspace is a

100×100mm2 square workspace with 8mm wide channels.
This maze is a 5× scaled-up version of the experimental
platform demonstrated in [10]. The Coronary workspace
is a 100×76mm2 workspace. The smallest channel width
is 1.5mm and the largest channel width is 7mm. The
microparticles used in this study are Fe3O4 iron filings. The
size of microparticles is not consistent and ranges from 150
to 700 µm in length (see Fig. 1a). For the experiments we
used 148 mg of microparticles. If we assume the particles
are spheres with an average radius of 0.1 mm (see Fig. 1),
there are approximately 4484 particles.

B. Calculation of the Rotating Magnetic Field

This subsection describes the calculation of the voltage
to apply to the EMs to produce a rotating magnetic field in
the commanded direction (see Fig. 5c) The voltage applied
on an EM is proportional to the time derivative of the flux
density minus the voltage drop created by Joule effect. This
information is used to calculate the voltage that will produce
a field rotating around the y axis (action 0: East) using the
following equation:

Vxn
Vzp
Vxp
Vzn
Vyp
Vyn

 = V0 ·


sin(ωt)
sin(ωt− π/2)
sin(ωt− π)
sin(ωt− 3π/2)

0
0

 , (2)

Vp =
[
Vxp Vyp Vzp

]T
, (3)

Vn =
[
Vxn Vyn Vzn

]T
. (4)

Here V0 is the maximum voltage applied to the EMs (100
V in our case) and ω = 2πf , where f is the frequency of
the rotation of the field which can be adjusted manually. A
rotation matrix R is then used to calculate the voltages that
will produce a field rotating in the commanded direction:

R =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 , (5)

VpOut = R · Vp, for [x+, y+, z+] coils, (6)

VnOut = R · Vn, for [x−, y−, z−] coils. (7)

The angle α is calculated using 45◦ ·a, where a is the action
computed by the neural network. The reference frame linked
to the electromagnets is shown in Fig. 5.

The current inside each electromagnet can be calculated
using I = V/Z, where Z = R + jωL is the complex
impedance of the load. In this equation, j represents the
complex operator (j2 = −1), R is the electrical resistance
and L is the inductance. The experiment was performed at a
relatively low frequency (4Hz). The impedance of the circuit
is low at these frequencies and, as a result, the current is
large enough to cause the electromagnets to overheat after a
few minutes of use. Thermocouple temperature sensors glued
on the EMs allow monitoring the temperature of the electro-
magnets. To prevent hardware damage, the experiments were
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the next direction of the global force calculated from the neural network is shown. See https://youtu.be/CyVGlIrOFEA for videos of these demonstrations.

paused when the temperature of an EM reached 80 °C, and
then resumed when the coils cooled down to 40 °C.

V. EXPERIMENT RESULTS

A series of experiments were conducted to validate the
simulation results. Figure 6 shows the experiment results
in the Corridor workspace. In addition, refer to Fig. 1b
for aggregating particles in the Coronary workspace. The
frequencies used in these experiments are 4Hz. While other
frequencies can be used as well, using a frequency of 4Hz
closely matches our simulation which has a fixed force
applied to the particles at each step. We therefore chose
to use a frequency of 4Hz for all workspaces and goal
positions. Figure 6a shows an experimental result of moving
a clump of microparticles from the top left corner to the
bottom right goal position (default goal position) in 75
seconds. Figure 6b shows collecting a dispersed group of
microparticles to the default goal position in 71 seconds.
Plots showing the number of detected particles gathered and
not gathered over time for these experiments is shown in
Fig. 7a and b. Particle positions are directly extracted from
the camera image by thresholding. Because the particles
clump and disperse, the number of detected particles is not
constant. We demonstrated the robustness of our system by
repeating experiments of aggregating a spread apart swarm
to the default goal position 10 times, as shown in Fig. 7b10.

Figure 6c shows collecting a dispersed group of micropar-
ticles into a different goal corridor on the right side. This goal
configuration is considerably harder than the previous goals,
and requires 363 seconds of control. The RL agents for this
experiment also required more training time and used 140 M
training steps. Figure 7c plots the gathering process. Figure
7d shows gathering on the Coronary workspace shown in
Fig. 1, which requires 179 seconds of control. Flat areas

of the plots in Fig. 7c and d occur when the magnetic
manipulator overheated and was turned off. Removing these
cooling periods provides the control times shown in Fig. 6.

Figure 4 shows the real world experimental ablation study
analysis on the Corridor workspace (default goal position).
We ran the experiments three times for each model. The
baseline model performs the fastest, and can reach the goal
position in the Corridor environment in 97 s on average. The
other models each remove an element from the baseline. Un-
der the No Framestack and No Noise Curriculum models, the
particles can reach the goal position but require more time.
However, the No Noise model sometimes cannot move all
particles to the goal position, which matches the simulation
results shown in Fig. 3.

VI. CONCLUSION

This paper advanced methods for gathering particles in
a 2D maze using reinforcement learning agents to plan
gathering sequences and an external time-varying magnetic
field for particle control. We presented a new approach
that robustly and efficiently gathers particles in a hardware
platform. The gathering time required was reduced from tens
of minutes to tens of seconds.

The RL approach might allow calculating the difficulty
of gathering particles at each position in the workspace.
Such information could be useful for higher-level motion
planners that use gathering as a primitive. Biological systems
are complex, and most would require larger workspaces
than presented here. Since training time increases super-
linearly with workspace size, there is room for improve-
ment. There are many exciting avenues for future work,
including applying these methods to 3D workspaces, using
bio-compatible sensing methods such as CT or ultrasound,
handling disturbances such as blood flow, and improving
training time for new mazes and new goals.

https://youtu.be/CyVGlIrOFEA


0 20 40 60 80
Time (seconds)

0

500

1000

1500

2000

2500

3000

3500
# 

De
te

ct
ed

 P
ar

tic
le

s

Particle Location Over Time
Remaining Particles
Gathered Particles(a)

0 10 20 30 40 50 60 70
Time (seconds)

0

500

1000

1500

2000

2500

3000

3500

# 
De

te
ct

ed
 P

ar
tic

le
s

Particle Location Over Time
Remaining Particles
Gathered Particles(b)

0 20 40 60 80
Time (seconds)

0

500

1000

1500

2000

2500

3000

3500

# 
De

te
ct

ed
 P

ar
tic

le
s

Remaining Particles Over Time
Mean(b10)

0 100 200 300 400
Time (seconds)

0

250

500

750

1000

1250

1500

1750

# 
De

te
ct

ed
 P

ar
tic

le
s

Particle Location Over Time
Remaining Particles
Gathered Particles(c)

0 50 100 150 200
Time (seconds)

0

500

1000

1500

2000

# 
De

te
ct

ed
 P

ar
tic

le
s

Particle Location Over Time
Remaining Particles
Gathered Particles(d)

Fig. 7. Number of particles gathered over time for 13 hardware experi-
ments. Red dashed lines are at 5% of the maximum number of particles
detected. (a), (b), and (c) plot data from the experiments shown in Fig. 6 on
the Corridor workspace. (d) shows gathering on the Coronary workspace
shown in Fig. 1. (b10) shows 10 applications of (b). For (b10) experiments
were stopped if less than 5% of the maximum particles were remaining. The
shaded region is ±1 standard deviation. Dotted vertical lines show when
control was paused.
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