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Abstract. We study parallel online algorithms: For some fixed integer
k, a collective of k parallel processes that perform online decisions on the
same sequence of events forms a k-copy algorithm. For any given time
and input sequence, the overall performance is determined by the best of
the k individual total results. Problems of this type have been considered
for online makespan minimization; they are also related to optimization
with advice on future events, i.e., a number of bits available in advance.

We develop Predictive Harmonic3 (PH3), a relatively simple family
of k-copy algorithms for the online Bin Packing Problem, whose joint
competitive factor converges to 1.5 for increasing k. In particular, we
show that k = 6 suffices to guarantee a factor of 1.5714 for PH3, which is
better than 1.57829, the performance of the best known 1-copy algorithm
Advanced Harmonic, while k = 11 suffices to achieve a factor of 1.5406,
beating the known lower bound of 1.54278 for a single online algorithm.
In the context of online optimization with advice, our approach implies
that 4 bits suffice to achieve a factor better than this bound of 1.54278,
which is considerably less than the previous bound of 15 bits.
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1 Introduction

When dealing with unknown future events, optimization with incomplete infor-
mation typically considers the competitive factor of an online algorithm as its
performance measure; the objective becomes to develop a single strategy that
performs reasonably well against the worst case. This focus on just one option is
more restrictive than hedging strategies in a wide variety of other scientific and
application fields; these typically make use of several parallel choices, thereby
increasing the chance that one of them will yield satisfactory results. Examples
include scenarios from biology, where a large and diverse progeny increases the
odds of surviving offspring; finance and insurance, where a suitable combination
of investment strategies is employed to balance a portfolio against extreme losses;
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and engineering, where redundancy is used to protect against catastrophic fail-
ure, either on individual components (such as parts in a machine) or on whole
systems (such as automata in a robot swarm or spacecraft in a group of satel-
lites), where it suffices that just one machine delivers a good outcome.

In this paper, we consider such parallel online strategies: Instead of making
a single sequence of decisions, we consider k parallel processes for some fixed
integer k, which we call a k-copy algorithm; the objective is to make the best of
these k outcomes as good as possible, even in the worst case. We demonstrate the
potential of this approach for the well-studied Bin Packing Problem, for which it
is known that no single deterministic online algorithm can achieve a competitive
factor below 1.5401.

1.1 Our Results

We define a family of k-copy algorithms for the online Bin Packing Problem,
called Predictive Harmonic3 (PH3), whose asymptotic competitive ratio con-
verges to 1.5 for large k. We show that k = 6 suffices to guarantee a factor of
1.5714, which is better than 1.57829, the performance of the best known 1-copy
algorithm Advanced Harmonic [3]. Moreover, k = 11 suffices to achieve a com-
petitive ratio of 1.5406 beating the known lower bound of 1.54278 for a 1-copy
algorithm [4]. In the context of online optimization with advice, our approach
implies that 4 bits suffice to achieve less than 1.5401, which is considerably less
than the previous bound of 16 bits of RedBlue by Angelopoulos et al. [2]; in
fact, for k = 16 (corresponding to four bits of advice) PH3 achieves a ratio of
1.5305, compared to 3.3750 for RedBlue, while k = 65, 536 (corresponding to
16 bits of advice) yields a factor of 1.5001 for PH3, but 1.5293 for RedBlue.

1.2 Related Work on Online Bin Packing

There is a wide range of online algorithms for bin packing. The Next Fit algo-
rithm [9] achieves a competitive ratio of 2, whereas “Almost Any Fit” algo-
rithms [13] like First Fit or Best Fit achieve competitive ratios of 1.7.

An important online bin packing algorithm is HarmonicM , introduced by
Lee and Lee [15], which achieves a competitive ratio of less than 1.692 for M →
∞. Based on HarmonicM , Son Of Harmonic by Heydrich and van Stee [12]
achieves a competitive ratio of 1.5816. The currently best known algorithm is
Advanced Harmonic, which achieves a competitive ratio of 1.57829 [3].

For lower bounds, Yao [20] established a value of 3/2 that was later improved
to 1.536, independently by Brown [8] and by Liang [16]. Using a generalization
of their methods, van Vliet [19] proved a lower bound of 1.5401. Balogh et al. [4]
improved the lower bound to 1.54278.

1.3 Related Work on Online Bin Packing with Advice

In the context of online algorithms with advice, Boyar et al. [7] showed that
an online algorithm with n�log(OPT (I))� bits of advice is sufficient and that
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at least (n − 2OPT (I)) · log(OPT (I)) bits of advice are necessary to achieve
optimality. In the same paper, they presented an online bin packing algorithm,
namely ReserveCritical, with O(log(n))+o(log(n)) bits of advice that is 1.5-
competitive and an algorithm with 2n+o(n) bits of advice that is 4

3 -competitive.
Zhao and Shen [21] developed an algorithm using 3n+o(n) bits of advice achiev-
ing a competitive ratio of 5

4opt + 2. Renault et al. [18] developed an (1 + ε)-
competitive algorithm using O( 1ε log 1

ε ) bits of advice per request.
Based on ReserveCritical, Angelopoulos et al. [2] developed the algorithm

RedBlue with constant advice that is 1.5-competitive. Their second algorithm
achieves a competitive ratio of 1.47012 + ε with finite advice that is exponen-
tially dependent of ε. However, to beat the competitive ratio of 1.5 already an
enormous amount of advice is needed, which makes the algorithm impractical.

In terms of lower bounds, Boyar et al. [7] proved that no competitive ratio
better than 9/8 can be reached by any algorithm that uses sub-linear advice.
Angelopoulos et al. [2] improved this bound to 7/6.

1.4 Related Work on Parallel Online Algorithms

Parallel algorithms have already been considered in the field of online algorithms
with advice. Boyar et al. [6] presented an algorithm for the online list update
problem, making use of 2 bits of advice to choose one out of three algorithms.
This algorithm achieves a competitive ratio of 5/3, beating the lower bound for
conventional online algorithms of 2. A practical application of this algorithm
was shown by Kamali and Ortiz [14], who applied it in the Burrows-Wheeler
transform compression. More work on parallel online algorithms include parallel
scheduling [1], finding independent sets [11] and the “multiple-cow” version of
the linear search problem [17].

While online algorithms with advice mostly focus on the amount of advice
to allow classification of online algorithms and problems, k-copy online algo-
rithms focus on small finite values for k and thus small finite amounts of advice,
with more emphasis on practical application. The perspective on different algo-
rithms running in parallel instead of abstract arbitrary information facilitates
finer optimization in some cases.

Also, when considering online algorithms with advice, the number of algo-
rithms can only be doubled by increasing the amount of advice by one bit. The
perspective of k-copy algorithms allows arbitrary k ∈ N for the number of algo-
rithms.

2 Preliminaries

2.1 k-Copy Online Algorithms

In this paper, we consider k online algorithms A1, . . . , Ak, each of them process-
ing the same input list I in parallel. We call the set A := {A1, . . . , Ak} a k-copy
online algorithm.
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For an input list I and an online algorithm A, let A(I) denote the number of
bins used by A and opt(I) denote the number of bins used in an optimal offline
solution. The absolute competitive ratio RA for a k-copy online algorithm A is
defined as

RA = sup
I

{
minA∈A A(I)

opt(I)

}
.

The asymptotic competitive ratio R∞
A for algorithm A is defined as

R∞
A = lim

n→∞ sup
I

{
minA∈A A(I)

opt(I)

∣∣∣∣ opt(I) = n

}

As already stated by Boyar et al. [5], any k-copy online algorithm can be
converted into an online algorithm with advice, and vice versa.

Lemma 1. Any k-copy online algorithm can be converted into an online algo-
rithm with l = �log2(k)� bits of advice that achieves the same competitive ratio.
Conversely, any online algorithm with l ∈ N bits of advice can be converted into
a k-copy online algorithm without advice with k = 2l that achieves the same
competitive ratio.

Proof. Let A = {A1, A2, . . . , Ak} be a k-copy algorithm. Construct the online
algorithm A′ that gets a value i ∈ {1, 2, . . . , k} as advice, specifying the index i
of the algorithm Ai ∈ A that performs best on the given input sequence. The
value i can be encoded using �log2(k)� bits. A′ then behaves like Ai and thus
achieves the same competitive ratio as A.

Let A be an online algorithm that gets l ∈ N bits of advice. Construct the
online k-copy algorithm A′ with k = 2l algorithms Ai, i ∈ {1, 2, . . . , k}. For each
i ∈ {1, 2, . . . , k}, the algorithm Ai behaves like A given i encoded in binary
as advice. As the values i ∈ {1, 2, . . . , k} cover every possible configuration of
the advice bits, for any advice given to A, there is an algorithm Ai ∈ A′, that
assumes this advice. Accordingly, there is an algorithm Ai ∈ A′, that performs
as well as A, i.e., the best algorithm Aj ∈ A that performs at least as well as A.
Thus, A′ performs at least as well as A.

2.2 Bin Packing

In the online version of bin packing, we are given a list of items I := 〈a1, . . . , an〉
with ai ∈ (0, 1] for i ∈ {1, . . . , n}. These items must be packed by an algorithm,
one at a time, without any information on subsequent items and without the
possibility to change previous decisions. The goal is to pack all items into a
minimum number of bins with unit capacity.

Definition 1 (Item size).
Let S =

[
0, 1

3

]
, M =

(
1
3 , 1

2

]
, L =

(
1
2 , 2

3

)
and XL =

[
2
3 , 1

]
. We call items in

S small, items in M medium, items in L large and items in XL extra large.
For a list I = 〈a1, a2, . . . an〉, the set of items Set(I) ∩ XL is noted as IXL for
improved readability. The subsets IL, IM and IS are used analogously.
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Definition 2 (Size function). Let S be a set (or list) of items. Then,
size(S) :=

∑
i∈S i. For a bin b, we refer to size(b) as the size of the bin, i.e., the

sum of items already packed in b.

Definition 3 (Sub-bins).
Given a bin b, it can be split into two parts b1 and b2, such that the sum of

their capacities is equal to the capacity of b. We refer to b1 and b2 as sub-bins.
We call a sub-bin with capacity C a C-sub-bin.

As sub-bins are not packed with an amount larger than their capacity, each
sub-bin can be packed independently from the other.

3 PREDICTIVE HARMONIC3

Now we introduce the algorithm Predictive Harmonic3 (PH3). Although
developed independently, it bears many similarities to ReserveCritical and
RedBlue. PH3 uses the same classifications as the other two algorithms and
tries to pack all large items with small items, such that the corresponding bins
are packed to a level of at least 2/3. However, in contrast to RedBlue, the
information needed by PH3 does not depend on the result of ReserveCritical,
but only on the number and size of certain item types, and can be calculated in
linear time.

The main idea of PH3 is to guess the ratio of how many small items must
be packed with large items to obtain a packing density of 2/3. Having multiple
instances of PH3, every instance can guess a different ratio to get close to a
competitive ratio of 1.5.

Algorithm 1 Predictive Harmonic3. Given a list I = 〈a1, a2, . . . , an〉 of
items ai ∈ (0, 1], i ∈ 1, . . . , n, and a ratio rL ∈ [0, 1], the algorithm packs the
items as follows:

– Extra large items are packed into individual bins. These bins are called XL-
bins, the set of all XL-bins is called BXL.

– Large items are packed into individual bins. These bins are called L-bins,
the set of all L-bins is called BL. Furthermore, we split each L-bin into a
2
3 -sub-bin (for large items) and a 1

3 -sub-bin (for small items).
– Medium items are packed into separate bins together with other medium

items (note that at most two of them fit into one bin). These bins are called
M-bins, the set of all M-bins is called BM .

– Small items are packed into a 1
3 -sub-bin of L-bins in a next fit manner, if the

size of small items packed into L-bins is smaller than rL times the total size
of small items packed so far; otherwise we pack the small item into S-bins.

3.1 Competitive Ratio

Using simple bounds for an optimal solution and performing a case analysis,
we can prove the following theorem. Due to space constraints, the proof can be
found in the full version [10].
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Theorem 2. Let r∗
L = min

{
|IL|

6 size(IS) , 1
}
1 and δ = rL − r∗

L. PH3 achieves the
asymptotic competitive ratio

R∞
PH3 ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3
2

+ min

{
1

4r∗
L

,
3

6r∗
L + 2

}
(−δ) for δ ≤ 0

3
2

+ min

{
3

4r∗
L

,
9

6r∗
L + 2

}
δ for δ ≥ 0.

3.2 Tightness

Theorem 3. For any rL, r∗
L ∈ [0, 1], the asymptotic competitive ratio given in

Theorem 2 is tight.

Proof sketch: Let 〈a1, a2, . . . ak〉× n with n ∈ N denote n repetitions of the
sequence 〈a1, a2, . . . ak〉. Let I be a sequence consisting of concatenated sub-
sequences IS , IM and IL, where IS is a sequence consisting of two interleaved
sub-sequences ISL and ILL. With N ∈ N and ε = 1/(12N + 2), we define

IL =
(

1
2

+
ε

2

)
× nL with nL = �4r∗

LN�

IM =
(

1
3

+
ε

2

)
× nM with nM =

{
0 for r∗

L ≤ 1/3
�(6r∗

L − 2)N
 for r∗
L ≥ 1/3

ISS =
(

1
3

− 2ε,
1
6

− ε,
1
6

− ε, 12ε

)
×nSS with nSS = �n′

SS� = �(1 − rL)N�

ISL =
(

1
6

− ε, 3ε

)
× nSL with nSL = �n′

SL� = �4rLN�

The proof is based on a case analysis of which item appears next and in
which bin this item is packed by PH3. Due to space constraints, a full proof can
be found in the full version [10].

4 Parallel PREDICTIVE HARMONIC3

4.1 Competitive Ratio for PH3 as 1-Copy Online Algorithm

To optimize the performance for PH3 as a 1-copy algorithm, we determine the
optimal value for rL with respect to minimizing the asymptotic competitive ratio
over all r∗

L ∈ [0, 1].

1 The intuition of this value is that at least 1/2 of each 1/3-sub-bin must be filled to
guarantee a packing density of 2/3. Therefore, for |IL| bins, we have to fill up a total

capacity of |IL|
6

with small items.
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Lemma 2 (Monotonicity of competitive ratio of PH3). For any fixed
rL ∈ [0, 1], the competitive factor is monotonically decreasing for r∗

L ∈ [0, rL]
and monotonically increasing for r∗

L ∈ [rL, 1].

Proof. Assume rL to be fixed. Let r+,<, r−,< : [0, 1/3] → R and r+,>, r−,> :
[1/3, 1] → R with

r−,<(r∗
L) =

3
2

+
3

6r∗
L + 2

(−δ) = R∞
PH3 for δ ≤ 0, r∗

L ≤ 1
3

r−,>(r∗
L) =

3
2

+
1

4r∗
L

(−δ) = R∞
PH3 for δ ≤ 0, r∗

L ≥ 1
3

r+,<(r∗
L) =

3
2

+
9

6r∗
L + 2

δ = R∞
PH3 for δ ≥ 0, r∗

L ≤ 1
3

r+,>(r∗
L) =

3
2

+
3

4r∗
L

δ = R∞
PH3 for δ ≥ 0, r∗

L ≥ 1
3

Consider the derivative of r−,< and r−,>.

∂

∂r∗
L

r−,<(r∗
L) =

∂

∂r∗
L

(
3
2

+
3

6r∗
L + 2

(−δ)
)

=
∂

∂r∗
L

(
3(r∗

L − rL)
6r∗

L + 2

)

=
18rL + 6

(6r∗
L + 2)2

≥ 0 for 0 ≤ rL ≤ r∗
L ≤ 1

3
∂

∂r∗
L

r−,>(r∗
L) =

∂

∂r∗
L

(
3
2

+
1

4r∗
L

(−δ)
)

=
∂

∂r∗
L

(
r∗
L − rL

4r∗
L

)

=
rL

4(r∗
L)2

≥ 0 for 0 ≤ rL ≤ r∗
L and

1
3

≤ r∗
L ≤ 1

As the derivatives of r−,< and r−,> are both non-negative in their respective
domains, they are both monotonically increasing. Because r−,<( 13 ) = r−,>( 13 ),
we conclude that the competitive ratio is monotonically increasing for r∗

L ∈
[rL, 1].

Now consider the derivative of r+,< and r+,>.
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∂

∂r∗
L

r+,<(r∗
L) =

∂

∂r∗
L

(
3
2

+
9

6r∗
L + 2

δ

)

=
∂

∂r∗
L

(
9(rL − r∗

L)
6r∗

L + 2

)

=
−54rL − 18
(6r∗

L + 2)2
≤ 0 for r∗

L ≤ rL ≤ 1 and 0 ≤ r∗
L ≤ 1

3
∂

∂r∗
L

r+,>(r∗
L) =

∂

∂r∗
L

(
3
2

+
3

4r∗
L

δ

)

=
∂

∂r∗
L

(
3(rL − r∗

L)
4r∗

L

)

=
−3rL

4(r∗
L)2

≤ 0 for
1
3

≤ r∗
L ≤ rL ≤ 1

As the derivatives of r+,< and r+,> are both non-positive in their respective
domains, they are both monotonically decreasing. Because r+,<( 13 ) = r+,>( 13 ),
we conclude that the competitive ratio is monotonically decreasing for r∗

L ∈
[0, rL].

Because of Lemma 2, the competitive ratio does not decrease with r∗
L increas-

ing for δ ≤ 0. Thus, as an upper bound on the competitive ratio for δ ≤ 0, only
the competitive ratio for r∗

L = 1 has to be considered.

R∞
PH3 ≤ 3

2
+

1
4
(−δ) for δ ≤ 0

=
3
2

+
1
4
(1 − rL)

=
7
4

− rL

4

For δ ≥ 0, the competitive ratio does not decrease with r∗
L decreasing. In

this case, the competitive ratio for r∗
L = 0 is an upper bound on the competitive

ratio.

R∞
PH3 ≤ 3

2
+

9
2
δ for δ ≥ 0

=
3
2

+
9
2
(rL − 0)

=
3
2

+
9
2
rL

At the same time, these values are lower bounds on the overall competitive
ratio. Given these bounds, this linear program can be formulated to minimize
the competitive ratio:
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Minimize R∞
PH3

Subject to R∞
PH3 ≥ 7

4
− rL

4

R∞
PH3 ≥ 3

2
+

9
2
rL

rL ≥ 0
rL ≤ 1

The optimal solution for this linear program is rL = 1/19 and R∞
PH3 =

33/19 < 1.7369. Figure 1 shows the asymptotic competitive ratio of PH3 over r∗
L

for rL = 1/19.
Compared to other known algorithms for online bin packing, PH3 is not

a good choice for worst-case behavior. Among the classical algorithms, only
NF and WF, both of which are 2-competitive, are worse than PH3. Any AAF
algorithm achieves an asymptotic competitive ratio R∞

AAF = 1.7 [9] and thus
performs slightly better than PH3. The best-performing online algorithm for
bin packing currently known, Son Of Harmonic, is 1.5816-competitive and
thus clearly superior to PH3 [12].

However, if we know in advance that r∗
L is restricted to some interval Ir =

[a, b] ⊂ [0, 1], the above argument can be used to prove a better competitive
ratio.

4.2 Competitive Ratio for PH3 as k-Copy Online Algorithm

PH3’s property of achieving a better competitive ratio for r∗
L being further

restricted can be used to create a set of k ∈ N algorithms achieving a better
competitive ratio. For this purpose, the interval [0, 1] is split into k sub-intervals
I1, . . . , Ik ⊂ [0, 1] with ∪i∈{1,...,k}Ii = [0, 1]. Each interval Ii is covered by one
instance of the algorithm PH3 Ai, such that Ai achieves a targeted competitive
ratio R ∈ (3/2, 33/19) for r∗

L ∈ Ii.
R is restricted to (3/2, 33/19), because any competitive ratio above or equal

to 33/19 can be achieved with the instance of PH3 shown above, and k-copy PH3
cannot achieve a competitive ratio of 3/2 or less with finitely many algorithms.

To calculate the number k of algorithms needed to achieve a given competitive
ratio R, the following iterative approach can be used.

Let A be a set of algorithms. Initially, A := ∅. We initialize our iterative
approach with i = 0 and set r0max = 0. Then, while ri

max < 1, we increase i by
one and we compute three values ri

min, ri
L and ri

max. With these three values
we can define algorithm Ai for which ri

L denotes the value of rL, ri
min denotes

the minimal and ri
max denotes the maximal value for r∗

L for which Ai is still R-
competitive. By Lemma 2, Ai will be R-competitive for the interval [ri

min, ri
max].

All three values are computed as follows. We set ri
min = ri−1

max. Given ri
min, ri

L

can be computed:
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Fig. 1. Competitive ratio of the optimal 1-copy PH3 algorithm dependent on r∗
L for a

fixed rL.

If ri
min ≤ 1/3, we have R = 3

2 + 9
2+6ri

min
(ri

L − ri
min). Solving this equa-

tion for ri
L we get ri

L = ri
min +

(
R − 3

2

) (
2+6ri

min

9

)
. If ri

min ≥ 1/3, we have

R = 3
2 + 3

4ri
min

(ri
L − ri

min). Solving this equation for ri
L yields ri

L = ri
min +(

R − 3
2

) (
4ri

min

3

)
.

Having ri
L, we can compute ri

max. Because the competitive ratio is the min-
imum of two values, we get two candidates ri

max,1 and ri
max,2 for ri

max. We can
take the maximum of those two candidates, i.e., ri

max = max(ri
max,1, r

i
max,2),

because it is sufficient to be R-competitive in one case. In the first case
( 3
6r∗

L+2 < 1
4r∗

L
) we obtain ri

max,1 = 3ri
L−3+2R
12−6R and in the second case we get

ri
max,2 = ri

L

7−4R .
Now consider the case when ri

max ≥ 1. Because each algorithm A� with 1 ≤
� ≤ i is R-competitive for the interval [r�

min, r�
max] = [r�−1

max, r�
max] with r0min = 0,

there is an algorithm Am for any r∗
L ∈ [0, 1] that is R-competitive. Therefore, we

have a i-copy online algorithm for bin packing achieving the competitive factor
R.

Following this method, we see that k = 6 algorithms are sufficient to guaran-
tee a competitive ratio R = 1.5815. This beats the currently best 1-copy online
algorithm Son Of Harmonic with a competitive ratio of 1.5816. Figure 2 shows
the competitive ratio achieved by the individual algorithms over r∗

L ∈ [0, 1] for
R = 1.5815. Note that 1.5815 is not the best competitive ratio achievable by
6-copy PH3, as shown below in Fig. 3. Using k = 12 algorithms, a competitive
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Fig. 2. 6-copy PH3 beats the best 1-copy online algorithm known to date, achieving
an asymptotic competitive ratio R∞

PH3 < 1.5815.

ratio R = 1.5402 < 1.5403 can be achieved, beating the highest known lower
bound for 1-copy online algorithms.

To compute the best competitive ratio achievable by k ∈ N algorithms, we use
binary search on R starting in the interval [3/2, 33/19] and test in each iteration
if we can guarantee R-competitiveness with at most k algorithms. Figure 3 shows
the best competitive ratios achievable by k-copy PH3.

1 2 3 4 5 6 7 8 9 10 11 12
k

1.50

1.55

1.60

1.65

1.70

1.75

co
m
pe
tit
iv
e
ra
tio

1-copy lower bound: 1.54278
Advanced Harmonic: 1.57829

Son Of Harmonic: 1.5816

AAF: 1.7
1.7369

1.6741

1.6297

1.6022
1.5844

1.5714
1.5622 1.5548 1.5492 1.5445 1.5406 1.5374

Fig. 3. k-copy PH3 performance dependent on k.

4.3 Comparison to Related Algorithms

Because k-copy online algorithms can be translated to an online algorithm with
advice and vice versa (see Lemma 1), it seems natural to compare these two
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variants, even though k-copy allows a more precise analysis on the competitive
ratio. In this subsection we compare our algorithm to the best known online
algorithm with constant advice, namely RedBlue introduced by Angelopoulos
et al. [2]. Their second algorithm is 1.47012-competitive (and thus beats our
algorithm), but the amount of advice needed by this algorithm is too large. As
the focus of k-copy algorithms is to provide good solutions for small k, it is
reasonable to only compare k-copy PH3 to RedBlue.

Table 1 shows a comparison between RedBlue and k-copy PH3 for small
amounts of advice. The competitive ratios given are rounded up to the fourth
decimal place. The competitive ratios for RedBlue are computed using the
upper bound on the competitive ratio 1.5 + 15/(2�/2+1). The competitive ratios
for k-copy PH3 are calculated using binary search as described above.

Table 1. Comparison of the performance of k-copy PH3 and RedBlue.

Advice in bits k R∞
RedBlue R∞

PH3

4 16 3.3750 1.5305

5 32 2.8258 1.5155

6 64 2.4375 1.5078

7 128 2.1629 1.5040

8 256 1.9688 1.5020

9 512 1.8315 1.5010

10 1024 1.7344 1.5005

11 2048 1.6657 1.5003

12 4096 1.6172 1.5002

13 8192 1.5829 1.5001

14 16384 1.5586 1.5001

15 32768 1.5414 1.5001

16 65536 1.5293 1.5001

Table 1 clearly shows the advantage of k-copy PH3 over RedBlue for few bits
of advice. With as few as 5 bits of advice, or k = 32, k-copy PH3 achieves a better
competitive ratio than RedBlue with 16 bits of advice, which corresponds to
k = 65536 algorithms when used as k-copy algorithm.

Although RedBlue and k-copy PH3 work in a similar way, k-copy PH3
achieves a better competitive ratio due to the more precise analysis of the inter-
vals for r∗

L, in which each algorithm achieves the competitive ratio. By avoiding
overlaps in these intervals, fewer algorithms are needed.

On the other hand, RedBlue simply splits an interval for its parameter β
evenly into 2�/2 intervals; translated into a k-copy setting, this leads to overlaps
in the intervals covered by each algorithm.
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5 Conclusion

We studied the concept of parallel online algorithms for the Bin Packing Prob-
lem. We developed a k-copy online algorithm named PH3 and showed that PH3
has an asymptotic competitive ratio of 1.5 for large k; in particular, k = 11
suffices to break through the lower bound of a single online algorithm. We also
considered the relationship to online algorithms with advice and achieved a con-
siderable improvement compared to a previous algorithm.

There are various directions for future work. We saw that PH3 is (1.5 + ε)-
competitive if |IL|

6 size(IS) ≤ 1, i.e., when there is a surplus of small items. If there
are too few small items, PH3 is asymptotically (1.5 + ε)-competitive. Can we
make better use of the second case for an improvement? Can we guarantee an
absolute competitive ratio of 1.5(+ε)?

How does the asymptotic competitive ratio of PH3 depend on k? It seems to
be something like 3

2 +O
(

1
k+log2(k+1)

)
. Translated to an online algorithm with �

bits of advice, this would yield an asymptotic competitive ratio of 3
2 +O

(
1

2�+�

)
.

We also believe that the concept of k-copy algorithms is useful for a wide
range of other problems.
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