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Abstract— We investigate algorithmic approaches for tar-
geted drug delivery in a complex, maze-like environment, such
as a vascular system. The basic scenario is given by a large
swarm of micro-scale particles (“agents”) and a particular
target region (“tumor”) within a system of passageways. Agents
are too small to contain on-board power or computation and
are instead controlled by a global external force that acts
uniformly on all particles, such as an applied fluidic flow or
electromagnetic field. The challenge is to deliver all agents to
the target region with a minimum number of actuation steps.
We provide a number of results for this challenge. We show
that the underlying problem is NP-hard, which explains why
previous work did not provide provably efficient algorithms. We
also develop a number of algorithmic approaches that greatly
improve the worst-case guarantees for the number of required
actuation steps. We evaluate our algorithmic approaches by
a number of simulations, both for deterministic algorithms
and searches supported by deep learning, which show that the
performance is practically promising.

I. INTRODUCTION

A crucial challenge for a wide range of vital medical prob-
lems, such as the treatment of cancer, localized infections
and inflammation, or internal bleeding is to deliver active
substances to a specific location in an organism. The tradi-
tional approach of administering a sufficiently large supply of
these substances into the circulating blood may cause serious
side effects, as the outcome intended for the target site may
also occur in other places, with often undesired, serious
consequences. Moreover, novel custom-made substances that
are specifically designed for precise effects are usually in too
short supply to be generously poured into the blood stream.
In the context of targeting brain tumors (see Fig. 1), an
additional difficulty is the blood-brain barrier. This makes
it necessary to develop other, more focused methods for
delivering agents to specific target regions.

Given the main scenario of medical applications, this
requires dealing with navigation through complex vascular
systems, in which access to a target location is provided
by pathways (in the form of blood vessels) through a maze
of obstacles. However, the microscopic size of particles
necessary for passage through these vessels makes it pro-
hibitively difficult to store sufficient energy in suitably sized
microrobots, in particular in the presence of flowing blood.
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Fig. 1. (Left) An MRI image of a brain tumor (marked by the red circle),
located in the cerebellum. (Right) How can the swarm of particles (indicated
by yellow dots) be delivered to the target region?

A promising alternative is offered by employing a global
external force, e.g., a fluidic flow or an electromagnetic
field. When such a force is applied, all particles move in
the same direction by the distance, unless they are blocked
by obstacles in their way. While this makes it possible to
move all particles at once, it introduces the difficulty of
using uniform forces for many particles in different locations
with different local topology to navigate them to one final
destination. In this paper, we investigate how this objective
can be achieved with a small number of actuator steps.

Previous work [14] described a basic approach that de-
livers all particles in a grid environment with n grid cells
to a target in at most O(n3) actuator steps. This shows that
delivery can always be achieved; however, a delivery time
of this magnitude is usually impractical, which is why we
investigate possible improvements.

Our Contribution. We provide a number of insights:

• We prove that minimizing the length of a command
sequence for gathering all particles is NP-hard, even
for environments that consist of grid cells in the plane,
so no polynomial-time algorithms can be expected. This
explains the observed difficulty of the problem and also
implies hardness for the related localization problem.

• We develop an algorithmic strategy for gathering all
particles with a worst-case guarantee of at most O(kD2)
steps; here D denotes the maximum distance between
any two points of the environment and k the number
of its convex corners. Both k and D are usually much
smaller than the number n of grid locations in the
environment: n may be in Ω(D2), for two-dimensional
and in Ω(D3) for three-dimensional environments.

• For the special case of hole-free environments, we can
gather all particles in O(kD) steps.



• We successfully apply deep learning to search for short
command sequences in individual, complex instances.

• We perform a simulation study of the various ap-
proaches, evaluating the respective performance for
application-inspired instances.

A. Related Work

This paper seeks to understand control for large numbers
of microrobots, and uses a generalized model that could ap-
ply to a variety of drug-carrying microparticles. An example
are particles with a magnetic core and a catalytic surface for
carrying medicinal payloads [13], [18]. An alternative are
aggregates of superparamagnetic iron oxide microparticles,
9 µm particles that are used as a contrast agent in MRI
studies [17]. Real-time MRI scanning can allow feedback
control using the location of a swarm of these particles.

Steering magnetic particles using the magnetic gradient
coils in an MRI scanner was implemented in [15], [18].
3D Maxwell-Helmholtz coils are often used for precise
magnetic field control [17]. Still needed are motion plan-
ning algorithms to guide the swarms of robots through
vascular networks. To this end, we build on the techniques
for controlling many simple robots with uniform control
inputs presented in [5]–[7]; see video and abstract [4] for
a visualizing overview. For a recent survey on challenges
related to controlling multiple microrobots (less than 64
robots at a time), see [10]. Further related work includes
assembling shapes by global control (e.g., see [3], [8]) or
rearranging particles in a rectangle of agents in a confined
workspace [19], [20].

As the underlying problem consists of bringing together
a number of agents in one location, a highly relevant algo-
rithmic line of research considers rendezvous search, which
requires two or more independent, intelligent agents to meet.
Alpern and Gal [1] introduced a wide range of models and
methods for this concept as have Anderson and Fekete [2]
in a two-dimensional geometric setting. Key assumptions
include a bounded topological environment and robots with
limited onboard computation. This is relevant to maneuvering
particles through worlds with obstacles and implementation
of strategies to reduce computational burden while calcu-
lating distances in complex worlds [16]. In a setting with
autonomous robots, these can move independent of each
other, i.e., follow different movement protocols, called asym-
metric rendezvous in the mathematical literature [1]. If the
agents are required to follow the same protocol, this is called
symmetric rendezvous. This corresponds to our model in
which particles are bound by the uniform motion constraint;
symmetry is broken only by interaction with the obstacles.
For an overview of a variety of other algorithmic results
on gathering a swarm of autonomous robots, see the recent
survey by Flocchini [11]; note that these results assume a
high degree of autonomy and computational power for each
individual agent, so their applicability for our scenarios is
quite limited.

II. PRELIMINARIES

The “robots” in this paper are simple particles without
autonomy. We assume that their size is insignificant com-
pared to the elementary cells in the workspace P . Due to
the limited space of this paper, our description focuses on
planar workspaces P , consisting of orthogonal sets of cells,
so-called pixels, that form an edge-to-edge connected domain
in the integer planar grid, i.e., a polyomino. (As we sketch
in appropriate places, an extension to three-dimensional
workspaces is largely straightforward.) An Example of a
polyomino is illustrated in Fig. 2. Pixels in the planar grid
not belonging to P are blocked: They form obstacles for
particles that stop the motion from an adjacent pixel.

The particles are commanded in unison: In each step, all
particles are relocated by one unit in one of the directions
“Up” (u), “Down” (d), “Left” (l), or “Right” (r), unless the
destination is a blocked pixel; in this case, a particle remains
in its previous pixel. A motion plan is a command sequence
C = 〈c1, c2, c3, . . . 〉, where each command ci ∈ {u, d, l, r}.
For a command sequence C and a non-negative integer `,
we denote the command sequence consisting of ` repetitions
of C by C`.

Because the particles are small, many of them can be
located in the same pixel. During the course of a command
sequence, two particles π1 and π2 may end up in the same
pixel p, if π1 moves into p, while π2 remains in p due
to a blocked pixel. Once two particles share a pixel, any
subsequent command will relocate them in unison—they will
not be separated, so they can be considered to be merged.

The distance dist(p, q) between two pixels p and q is
the length of a shortest path on the integer grid between
p and q that stays within P . The diameter of a polyomino P
describes the maximum distance between any two of its
pixels; we denote it by D.

A configuration of P is a set of pixels containing at least
one particle. The set of all possible configurations of P is
denoted by P . We call a command sequence gathering if it
transforms a configuration A ∈ P into a configuration A′

such that |A′| = 1, i.e., if it merges all particles in the same
pixel.

III. ALGORITHMIC APPROACHES

In this section, we investigate several algorithmic ap-
proaches for two-dimensional scenarios. As the main focus
of this paper is the practical relevance and applicability of
the overall challenge, the theoretical details are omitted due
to limited space. We start by showing that the problem is
computationally hard – for several variants.

A. The problem is hard

We show that the following decision problem, which we
call MIN-GATHERING, is hard: Given a polyomino P and a
set of particles, is there a gathering sequence of length `?

Theorem 1. MIN-GATHERING is NP-hard, even for the case
of polyominoes.



Proof. We reduce from 3-SAT, i.e., the problem of deciding
of whether a given boolean formula has a truth assignment;
for more background see [12]. For every instance Φ of 3-
SAT, we construct a polyomino PΦ as follows: For every
variable, we insert a variable gadget as indicated in Fig. 2.
We join all variable gadgets vertically in row to a variable
block; we call the top row of each variable gadget its
variable row. For every clause, we construct a clause gadget
that contains a left (right) arm for each incident positive
(negative) literal in the corresponding variable row and an
exit arm in the bottom. To obtain PΦ, we join all clause
gadgets from left to right by a bottom row and insert a
variable block at the left and right end of the bottom row.
For an illustration, consider Fig. 2.

x1
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x4

variable block

clause gadget

variable gadget

Fig. 2. The polyomino PΦ for the 3-SAT-instance Φ = (x1 ∨x2 ∨x3)∧
(x2∨x3∨x4). A sequence that merges the two red particles with 1

2
(D+b)

commands corresponds to a variable assignment of Φ.

Let I be the instance of MIN-GATHERING consisting
of PΦ where the top row is filled with particles. We call
the two leftmost particles above the variable blocks, the red
particles and denote the length of the bottom row by b. Note
that the distance between the red particles is the diameter D.

Claim. I has a gathering sequence of length ` := 1
2 (D+ b)

if and only if Φ is satisfiable.

Details for this claim are omitted for space reasons; they
can be found in the full version of our paper (to appear).

Note that the left pixel of the bottom row is one of two
possible merge location for a gathering sequence of length
1
2 (D+b). Therefore, the same reduction shows that problem
remains hard if a target location is prescribed. In fact, an even
stronger statement holds true: An instance of the polyomino
PΦ where all pixels are filled has a gathering sequence of
length 1

2 (D− b) if and only if Φ is satisfiable. This implies
that the decision problem of ROBOT LOCALIZATION is also
hard. In an instance of this problem, we are given a sensorless
robot r in a polyomino, and wonder whether there exists
a command sequence of length ` such that we know the
position of r afterwards. The above observations yield:

Corollary 2. ROBOT LOCALIZATION is NP-hard.

B. Merging Two Particles

We start with a special class of polyominoes. We call a
polyomino P simple if decomposing P with horizontal lines
through pixel edges results in a set of rectangles R such
that the edge-contact graph C(R) of R is a tree. The edge-
contact graph of a set of rectangles in the plane contains a
vertex for each rectangle and an edge for each side contact;
a corner contact does not result in an edge. A hole of a
polyomino P is a maximal set of blocked cells (cells not
contained in P ) that are connected such that there exists a
closed walk within P surrounding it. As usual, simplicity of
a polyomino captures the feature of not containing holes. A
shortest path from a pixel p in P to a rectangle R in R is
a shortest path from p to a pixel q in R such that dist(p, q)
is minimal.

Theorem 3. For any two particles in a simple polyomino P ,
there exists a gathering sequence of length D.

Proof. Let R be a decomposition of P into rectangles by
cutting P with horizontal lines through pixel edges. Then,
because P is simple, the edge-contact graph C(R) of the
rectangles R is a tree. For an example, consider Fig. 3.

π

π′

Fig. 3. A simple polyomino P , and its edge-contact graph C(R) (in
gray). When the red particle π moves towards the green particle π′, π and
π′ follow the respective red and green paths. The dotted lines separate the
pixels.

For every t, let Rt and R′t be the rectangles of P contain-
ing the two particles π and π′ after applying t commands,
respectively. Moreover, let St be a shortest path from Rt to
R′t in C(R); and let St(1) be the successor of Rt on St (if
it exists, i.e., Rt 6= R′t).

We use the following strategy:
Phase 1: While Rt 6= R′t, compute a shortest path St from
Rt to R′t in C(R). Move π to St(1) via a shortest path in P .
Update Rt and R′t.
Phase 2: If Rt = R′t, merge π and π′ by moving π
towards π′ by a shortest (horizontal) path; note that this
gathering sequence merges the particles within Rt.

In fact, the resulting sequence has the following property;
details of the proof are omitted due to space limits.

Claim. For every s > t, the rectangles Rs and R′s are either
equal to Rt or lie in the connected component C of C(R\Rt)
containing R′t.

This claim implies that the merge location and R′t lie in C
or are equal to Rt. Consequently, in every step, π moves
towards the merge location on a shortest path and thus that
the gathering sequence is at most of length D.



In the remainder, we call the strategy used to prove
Theorem 3 DYNAMICSHORTESTPATH (DSP): Move one
particle towards the other along a shortest path; update the
shortest path if a shorter one exists. The example in Fig. 4
shows that DSP may perform significantly worse in non-
simple polyominoes.

Proposition 4. The strategy DSP may not yield a gathering
sequence of length O(D) in non-simple polyominoes.

Proof. By the symmetry of P , the distance between the two
particles decreases for the first time when one of them is at
the left or right side of P . Therefore, denoting the number
of holes by H where each hole is of height h and width w
as indicated in Fig. 4, the length of the gathering sequence
C is H(6h + w) + 3, while the diameter is bounded by
D ≤ (H − 2)w + 6h + 2w + 4 = Hw + 6h + 4. Choosing
h := cw/6 for some constant c ≥ H , the ratio of |C| and |D|
can be arbitrarily large: cHw+Hw+3

Hw+cw+4 ≥
H(c+1)
H+c+1 ≥

H
2 .

h

w

Fig. 4. When the red particle π moves towards the green particle π′ by
shortest paths, π visits the entire bottom path.

Nevertheless, DSP always merges two particles; the proof
is omitted due to limited space.

Proposition 5. For every polyomino P with n pixels and
diameter D and every configuration with two particles, DSP
yields a gathering sequence of length O(nD).

Using a different strategy yields a better bound: The
strategy MOVETOEXTREMUM (MTE) iteratively moves an
extreme particle (e.g. bottom-leftmost) to an opposite ex-
treme pixel (e.g. top-rightmost) along a shortest path.

Theorem 6. For any two particles in a polyomino P , MTE
yields a gathering sequence of length at most D2.

Proof. Let q be the top-rightmost pixel of P . To merge
the two particles in q, our strategy is as follows: Identify
the particle π that is bottom-leftmost. Apply a command
sequence that moves π to q on a shortest path. Repeat.

Claim. In each iteration, the sum of the distances ∆ of the
two particles to q decreases.

Note that ∆ decreases when the other particle π′ has a
collision. If π′ had no collision, there exist a pixel that is
higher or more to the right than q, contradicting the choice of
q. Consequently, the sum of distances ∆, which is at most 2D
at start, decreases at least by 1 for every D steps. Hence after
O(D2) steps, ∆ is reduced to 0.

Note that there exist polyominoes, e.g., a square, where
the number of pixels n is in Ω(D2). Therefore, Theorem 6
significantly improves the bound of O(n3) in [14].

Finally, we note that a shortest gathering sequence for two
particles in a non-simple polyomino may need to exceed D.

Proposition 7. Let P be a polyomino with two particles. A
shortest gathering sequence may be of length 3

2D−O(
√
D).

See Fig. 5 for the idea; technical proof details are omitted
due to limited space.

h
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Fig. 5. A polyomino consisting of a base and S chimneys.

C. Reducing the number of particles

Now we show how to significantly decrease the number
of particles with few commands to a parameter proportional
to the complexity of the polyomino, namely the number of
convex corners. This is particularly relevant for establishing
the existence of oblivious gathering strategies that are capa-
ble of merging all particles in an efficient manner, even if
their initial configuration is not known. (See Section IV-C.)

Lemma 8. Let P be a polyomino with diameter D and k
convex corners. For every configuration A ∈ P , there exists
a command sequence of length 2D which transforms A to a
configuration A′ ∈ P such that |A′| ≤ k/4.

Proof. We distinguish four types of convex corners; north-
west (NW), northeast (NE), southwest (SW), southeast (SE).
By the pigeon hole principle, one of the types occurs at
most k/4 times; without loss of generality, let this be the
NW corners.

We show that after applying the sequence 〈l, u〉D, every
particle lies in a NW corner: Consider a particle π in pixel p.
Unless π lies in a NW corner, it moves for at least one
command in {l, u}. Because P is finite, there exists an `
large enough such that π ends in a NW corner q when the
command sequence 〈l, u〉` is applied, i.e., there exists an
pq-path consisting of at most ` commands of types l and u,
respectively. Because a monotone path is a shortest path, it
holds that ` ≤ D.

D. General Upper Bounds

Combining Lemma 8 and Theorem 3 yields:

Corollary 9. For a set of particles in a simple polyomino P
with diameter D and k convex corners, there exists a
gathering sequence of length O(kD).

Lemma 8 and Theorem 6 imply the following fact:

Corollary 10. For any set of particles in a polyomino P with
diameter D and k convex corners, there exists a gathering
sequence of length at most O(kD2).

By analyzing cuboids instead of rectangles, six directions
of motion instead of four, and corners in eight quadrant



directions instead of four, we obtain the analogous result
for three-dimensional settings. Details are omitted from this
short paper.

IV. EVALUATION IN SIMULATION

A. Overview of Evaluated Approaches

In this section, we evaluate the performance of the follow-
ing approaches on practical instances in simulation.
• The approach STATICSHORTESTPATH (SSP) iteratively

merges pairs of particles by moving one to the position
of the other along a shortest path, see Alg. 2 in [14].

• The approach DYNAMICSHORTESTPATH (DSP).
• The approach MOVETOEXTREMUM (MTE). Among

the eight options, we choose an extremum that mini-
mizes the initial sum of distances to both particles.

• The heuristic MINSUMTOEXTREMUM (MSTE) gener-
alizes the idea of MTE. It selects an extremum with
the smallest initial sum of distances to all particles
and iteratively performs a command that decreases this
sum the most. If no command decreases the sum, two
particles are selected and merged by MTE. Afterwards,
MSTE resumes.

• Additionally, we evaluate a machine learning approach
REINFORCEMENTLEARNING (RL) based on a deep
learning network for Q-learning that is trained via
reinforcement learning to solve an instance; for details,
we refer to Section IV-D.

In addition to the commands {u, d, l, r}, we also allow
diagonal motions in the experiments. Moreover, a target
location for the particles is prescribed. While the strategy
REINFORCEMENTLEARNING directly supports this, in all
other strategies, the particles are merged in any location of
the polyomino and then transported to the target location
along a shortest path in unison.

For the strategies SSP, DSP, and MTE, a significant
parameter is the choice of the next pair of particles to be
merged. For these strategies, we evaluate the options of
(a) choosing a pair uniformly at random (RANDOMPAIR) or
(b) choosing the pair with maximal distance (DISTANTPAIR).

B. Simulation Results

We evaluated our approaches on the three polyominoes
depicted in Fig. 6 that are inspired by vascular networks.
For each algorithm and polyomino, we carried out at least
128 trials with exactly 1000 randomly distributed distinct
particles that were to be gathered in a target pixel.
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Fig. 6. The polyominoes Corridor, Capillary, and Brain on which
we evaluate the approaches. Target locations are indicated by a red dot.

Overall, REINFORCEMENTLEARNING shows a signifi-
cantly better performance than the other approaches, see
Fig. 7; note that this comes at the expense of significant time
spent on local optimization by carrying out extensive train-
ing for each individual polyomino, while the combinatorial
algorithms takes considerably less computation time. Among
these, DISTANTPAIR show on average a better performance
than RANDOMPAIR for nearly all instances and algorithms.
Moving particles to a corner first, as suggested by Lemma 8,
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Fig. 7. Comparison of the algorithms on the three environments with
1000 uniformly random particles. The boxes show the upper and lower
quartile, the whiskers the range, the orange line the median, and the circles
the outliers. For Brain, RANDOMPAIR is shown for SSP, DSP, and MTE;
otherwise, DISTANTPAIR is shown.

most of the time led to an increase in steps. This is due
to most steps being used to merge the last few remaining
particles, as discussed in the next section.

C. Oblivious Merging

In practice, it may be expensive to determine the position
of the individual particles; therefore, oblivious approaches
that do not need this information may be of interest. Such a
setting is equivalent to the situation where initially, each pixel
contains a particle; a gathering sequence for all particles is
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Fig. 8. Number of particle groups over time using MINSUMTOEXTREMUM
on Capillary (7169 pixel). This shows that the number of start particles
(7000, 6000, . . . , 1000) has negligible impact on the number of steps
needed. Collecting larger amounts of particles can be slightly quicker in
some cases due to the involved randomness and the non-optimal method.

certainly a gathering sequence for any other (partial) initial
distribution of particles. Recall that Corollary 2 implies that
this problem remains NP-hard. In order to estimate the cost
of this restriction in practice, we study how the number of
populated grid cells behaves over time, depending on the
initial number of particles; see Figs. 8 and 9.
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Fig. 9. The process of gathering 1000 particles in the target location with
MINSUMTOEXTREMUM. Gathered particles aggregate to a single particle.

Because the number of populated grid cells decreases
very sharply in the beginning and almost all steps are used
to merge the few remaining groups of particles, we can
conclude that missing knowledge of the position of the indi-
vidual particles has negligible cost for uniform distributions.

D. Deep Learning Implementation

The reinforcement learning approach uses the synchronous
Advantage Actor-Critic (A2C) method combined with an
intrinsic curiosity mechanism (ICM). We use the OpenAI
implementation of A2C [9] with slightly different data pre-
processing and hyperparameter settings. The environment
wrapper begins by applying sticky actions and max pooling
and then scales the gray-scale image to a 84 × 84 format.
Then the neural network is fed a stack of four successive
frames.

The feature extraction uses four convolutional layers with
32 (8 × 8, s = 4), 64 (4 × 4, s = 2), and 64 (2 × 2, s = 1)
filters, respectively. The output of each layer is activated by
a leaky rectified linear unit (Leaky ReLU). After flattening,
the output of the last convolutional layer is mapped to the
policy (dimension = 4 or 8, depending on available actions)
via a fully connected layer (512 units). The value function is
also mapped from the last convolutional layer, with output
dimension 1. A2C employs 128 parallel agents with different
particle distributions to collect experience. The learning rate
is set to 0.0001. Each agent collects 2048 rollouts (steps)
before the four-epoch update in network weights. During
each update, the mini batch size is set to 32.

V. CONCLUSIONS

We have described a spectrum of methodological progress
on an important problem of great practical relevance. This
exposition focuses on two-dimensional scenarios, but a
generalization to three-dimensional settings appears to be
straightforward. In addition, we point out three other relevant
directions for future research.

Firstly, our algorithmic simulations indicate the strength
of our methods. However, the different outcomes for deter-
ministic as well as ML approaches indicate that further, more
detailed algorithmic studies are warranted to understand the
most successful line of attack; this includes studies of the
necessary tradeoff between computation time and number of
actuation steps, but also includes modified models in which
an actuation step may be able to move particles by more
than an elementary distance. Secondly, how can we deal with
random errors in actuation and navigation? Our insights into
oblivious methods clearly indicate that these should remain
tractable, but more detailed considerations for frequency and
amount of errors should provide quantifications and error-
correcting approaches. Finally, it is typically not necessary
for our application scenarios to gather all particles in a target
area; moving an appropriate fraction should usually suffice.
Fig. 8 visualizes a slightly different aspect, but still highlights
the prospect that a considerably reduced number of actuation
steps may be achieved.
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