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Abstract
We provide the solution for a fundamental problem of geometric optimization by giving a complete
characterization of worst-case optimal disk coverings of rectangles: For any λ ≥ 1, the critical covering
area A∗(λ) is the minimum value for which any set of disks with total area at least A∗(λ) can cover
a rectangle of dimensions λ × 1. We show that there is a threshold value λ2 =

√√
7/2− 1/4 ≈

1.035797 . . ., such that for λ < λ2 the critical covering area A∗(λ) is A∗(λ) = 3π
(

λ2

16 + 5
32 + 9

256λ2

)
,

and for λ ≥ λ2, the critical area is A∗(λ) = π(λ2 + 2)/4; these values are tight. For the special case
λ = 1, i.e., for covering a unit square, the critical covering area is 195π

256 ≈ 2.39301 . . .. The proof uses
a careful combination of manual and automatic analysis, demonstrating the power of the employed
interval arithmetic technique.
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Figure 1 An incomplete covering of a rectangle by disks: Sprinklers on a soccer field during a
drought. (Source: dpa [16].)

1 Introduction

Given a collection of (not necessarily equal) disks, is it possible to arrange them so that they
completely cover a given region, such as a square or a rectangle? Covering problems of this type
are of fundamental theoretical interest, but also have a variety of different applications, most
notably in sensor networks, communication networks, wireless communication, surveillance,
robotics, and even gardening and sports facility management, as shown in Fig. 1.

If the total area of the disks is small, it is clear that completely covering the region is
impossible. On the other hand, if the total disk area is sufficiently large, finding a covering
seems easy; however, for rectangles with large aspect ratio, a major fraction of the covering
disks may be useless, so a relatively large total disk area may be required. The same issue is
of clear importance for applications: What fraction of the total cost of disks can be put to
efficient use for covering? This motivates the question of characterizing a critical threshold:
For any given λ, find the minimum value A∗(λ) for which any collection of disks with total
area at least A∗(λ) can cover a rectangle of dimensions λ× 1. What is the critical covering
area of λ× 1 rectangles? In this paper we establish a complete and tight characterization.

1.1 Related Work
Like many other packing and covering problems, disk covering is typically quite difficult,
compounded by the geometric complications of dealing with irrational coordinates that arise
when arranging circular objects. This is reflected by the limitations of provably optimal
results for the largest disk, square or triangle that can be covered by n unit disks, and hence,
the “thinnest” disk covering, i.e., a covering of optimal density. As early as 1915, Neville [37]
computed the optimal arrangement for covering a disk by five unit disks, but reported a wrong
optimal value; much later, Bezdek[6, 7] gave the correct value for n = 5, 6. As recently as
2005, Fejes Tóth [45] established optimal values for n = 8, 9, 10. The question of incomplete
coverings was raised in 2008 by Connelly, who asked how one should place n small disks of
radius r to cover the largest possible area of a disk of radius R > r. Szalkai [44] gave an
optimal solution for n = 3. For covering rectangles by n unit disks, Heppes and Mellissen [28]
gave optimal solutions for n ≤ 5; Melissen and Schuur [34] extended this for n = 6, 7. See
Friedman [25] for the best known solutions for n ≤ 12. Covering equilateral triangles by
n unit disks has also been studied. Melissen [33] gave optimality results for n ≤ 10, and
conjectures for n ≤ 18; the difficulty of these seemingly small problems is illustrated by
the fact that Nurmela [38] gave conjectured optimal solutions for n ≤ 36, improving the
conjectured optimal covering for n = 13 of Melissen. Carmi et al. [11] considered algorithms
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for covering point sets by unit disks at fixed locations. There are numerous other related
problems and results; for relevant surveys, see Fejes Tóth [17] (Section 8), Fejes Tóth [46]
(Chapter 2), Brass et al. [10] (Chapter 2) and the book by Böröczky [9].

Even less is known for covering by non-uniform disks, with most previous research focusing
on algorithmic aspects. Alt et al. [3] gave algorithmic results for minimum-cost covering of
point sets by disks, where the cost function is

∑
j r

α
j for some α > 1, which includes the case

of total disk area for α = 2. Agnetis et al. [2] discussed covering a line segment with variable
radius disks. Abu-Affash et al. [1] studied covering a polygon minimizing the sum of areas;
for recent improvements, see Bhowmick et al. [8]. Bánhelyi et al. [4] gave algorithmic results
for the covering of polygons by variable disks with prescribed centers.

For relevant applications, we mention the survey by Huang and Tseng [29] for wireless
sensor networks, the work by Johnson et al. [30] on covering density for sensor networks, the
algorithmic results for placing a given number of base stations to cover a square [13] and a
convex region by Das et al. [14]. For minimum-cost sensor coverage of planar regions, see
Xu et al. [47]; for wireless communication coverage of a square, see Singh and Sengupta [42],
and Palatinus and Bánhelyi [40] for the context of telecommunication networks.

The analogous question of packing unit disks into a square has also attracted attention.
For n = 13, the optimal value for the densest square covering was only established in
2003 [24], while the optimal value for 14 unit disks is still unproven; densest packings of n
disks in equilateral triangles are subject to a long-standing conjecture by Erdős and Oler
from 1961 [39] that is still open for n = 15. Other mathematical work on densely packing
relatively small numbers of identical disks includes [26, 32, 22, 23], and [41, 31, 27] for related
experimental work. The best known solutions for packing equal disks into squares, triangles
and other shapes are published on Specht’s website http://packomania.com [43].

Establishing the critical packing density for (not necessarily equal) disks in a square was
proposed by Demaine, Fekete, and Lang [15] and solved by Morr, Fekete and Scheffer [36, 21].
Using a recursive procedure for cutting the container into triangular pieces, they proved that
the critical packing density of disks in a square is π

3+2
√

2 ≈ 0.539. The critical density for
(not necessarily equal) disks in a disk was recently proven to be 1/2 by Fekete, Keldenich and
Scheffer [19]; see the video [5] for an overview and various animations. The critical packing
density of (not necessarily equal) squares was established in 1967 by Moon and Moser [35],
who used a shelf-packing approach to establish the value of 1/2 for packing into a square.

1.2 Our Contribution

We show that there is a threshold value λ2 =
√√

7/2− 1/4 ≈ 1.035797 . . ., such that for

λ < λ2 the critical covering area A∗(λ) is A∗(λ) = 3π
(
λ2

16 + 5
32 + 9

256λ2

)
, and for λ ≥ λ2, the

critical area is A∗(λ) = π(λ2 + 2)/4. These values are tight: For any λ, any collection of disks
of total area A∗(λ) can be arranged to cover a λ× 1-rectangle, and for any a(λ) < A∗(λ),
there is a collection of disks of total area a(λ) such that a λ× 1-rectangle cannot be covered.
(See Fig. 2 for a graph showing the (normalized) critical covering density, and Fig. 3 for
examples of worst-case configurations.) The point λ = λ2 is the unique real number greater
than 1 for which the two bounds 3π

(
λ2

16 + 5
32 + 9

256λ2

)
and π λ

2+2
4 coincide; see Fig. 2. At

this so-called threshold value, the worst case changes from three identical disks to two disks –
the circumcircle r2

1 = λ2+1
4 and a disk r2

2 = 1
4 ; see Fig. 3. For the special case λ = 1, i.e., for

covering a unit square, the critical covering area is 195π
256 ≈ 2.39301 . . ..

The proof uses a careful combination of manual and automatic analysis, demonstrating
the power of the employed interval arithmetic technique.
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Figure 2 The critical covering density d∗(λ) depending on λ and its values at the threshold value
λ2, the global minimum

√
2 and the skew λ at which the density becomes as bad as for the square.
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Figure 3 Worst-case configurations for small λ ≤ λ2 (left) and for large skew λ ≥ λ2 (right).
Shrinking r or r1 by any ε > 0 in either configuration leads to an instance that cannot be covered.

2 Preliminaries

We are given a rectangular container R, which we assume w.l.o.g. to have height 1 and
some width λ ≥ 1, which is called the skew of R. For a collection D = {r1, . . . , rn} of radii
r1 ≥ r2 ≥ · · · ≥ rn, we want to decide whether there is a placement of n closed disks with
radii r1, . . . , rn on R, such that every point x ∈ R is covered by at least one disk. Because
we are only given radii and not center points, in a slight abuse of notation, we identify the
disks with their radii and use ri to refer to both the disk and the radius.

For any set D of disks, the total disk area is A(D) := π
∑
r∈D r

2. The weight of a disk of
radius r is r2, and W (D) := A(D)

π is the total weight of D. For any rectangle R, the critical
covering area A∗(R) of R is the minimum value for which any set D of disks with total area
at least A(D) ≥ A∗(R) can cover R. The critical covering weight of R is W ∗(R) := A∗(R)

π .
For λ ≥ 1, we define A∗(λ) := A∗(R) and W ∗(λ) := W ∗(R) for a λ× 1 rectangle R.
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For a placement P of the disks in D fully covering some area A, the covering coefficient
of P is the ratio W (D)

A . For λ ≥ 1, the amount E∗(λ) := W∗(λ)
λ of total disk weight per

unit of rectangle area that is necessary for guaranteeing a possible covering is the (critical)
covering coefficient of λ. Analogously, d∗(λ) := A∗(λ)

λ is the (critical) covering density of λ.
For proving our result, we use Greedy Splitting for partitioning a collection of disks

into two parts whose weight differs by at most the weight of the smallest disk in the heavier
part: After sorting the disks by decreasing radius, we start with two empty lists and continue
to place the next disk in the list with smaller total weight.

3 High-Level Description

Now we present and describe our main result: a theorem that characterizes the worst case
for covering rectangles with disks. This theorem gives a closed-form solution for the critical
covering area A∗(λ) for any λ ≥ 1; in other words, for any given rectangle R, we determine
the total disk area that is (1) sometimes necessary and (2) always sufficient to cover R.

I Theorem 1. Let λ ≥ 1 and let R be a rectangle of dimensions λ× 1. Let

λ2 =

√√
7

2 −
1
4 ≈ 1.035797 . . . , and A∗(λ) =

3π
(
λ2

16 + 5
32 + 9

256λ2

)
, if λ < λ2,

π λ
2+2
4 , otherwise.

(1) For any a < A∗(λ), there is a set D− of disks with A(D−) = a that cannot cover R.
(2) Let D = {r1, . . . , rn} ⊂ R, r1 ≥ r2 ≥ . . . ≥ rn > 0 be any collection of disks identified by

their radii. If A(D) ≥ A∗(λ), then D can cover R.
The critical covering area does not depend linearly on the area λ of the rectangle; it also
depends on the rectangle’s skew. Fig. 2 shows a plot of the dependency of the covering
density d(λ) on λ. In the following, to simplify notation, we factor out π if possible; instead
of working with the areas A(D) or A∗(λ) of the disks, we use their weight, i.e., their area
divided by π. Similarly, we work with the covering coefficient E∗(λ) instead of the density
d∗(λ); a lower covering coefficient corresponds to a more efficient covering.

As shown in Fig. 2, the critical covering coefficient E∗(λ) is monotonically decreasing
from λ = 1 to

√
2 and monotonically increasing for λ >

√
2. For a square, E∗(1) = 195

256 ;
the point λ > 1 for which the covering coefficient becomes as bad as for the square is
λ := 195+

√
5257

128 ≈ 2.08988 . . .; for all λ ≤ λ, the covering coefficient is at most 195
256 .

3.1 Proof Components
The proof of Theorem 1 uses a number of components. First is a lemma that describes the
worst-case configurations and shows tightness, i.e., claim (1), of Theorem 1 for all λ.

I Lemma 2. Let λ ≥ 1 and let R be a rectangle of dimensions λ×1. (1) Two disks of weight
r2
1 = λ2+1

4 and r2
2 = 1

4 suffice to cover R. (2) For any ε > 0, two disks of weight r2
1 − ε and

r2
2 do not suffice to cover R. (3) Three identical disks of weight r2 = λ2

16 + 5
32 + 9

256λ2 suffice
to cover a rectangle R of dimensions λ× 1. (4) For λ ≤ λ2 and any ε > 0, three identical
disks of weight r2

− := r2 − ε do not suffice to cover R.

For large λ, the critical covering coefficient E∗(λ) of Theorem 1 becomes worse, as large
disks cannot be used to cover the rectangle efficiently. If the weight of each disk is bounded
by some σ ≥ r2

1, we provide the following lemma achieving a better covering coefficient E(σ)
with E∗(λ) ≤ E(σ) ≤ E∗(λ). This coefficient is independent of the skew of R.

SoCG 2020
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Theorem 1
n disks n disks

Lemma 4

Strategies
from Sec. 4.1

Lemma 3
n disks

n disks

< n disks

Strategies
from Sec. 4.2

Theorem 1
Lemma 3
Lemma 4

Strategies
from Sec. 4.1

Strategies
from Sec. 4.2

Figure 4 The inductive structure of the proof; the blue parts are computer-aided.

I Lemma 3. Let σ̂ := 195
√

5257
16384 ≈ 0.8629. Let σ ≥ σ̂ and E(σ) := 1

2

√√
σ2 + 1 + 1. Let

λ ≥ 1 and D = {r1, . . . , rn} be any collection of disks with σ ≥ r2
1 ≥ . . . ≥ r2

n and
W (D) =

n∑
i=1

r2
i ≥ E(σ)λ. Then D can cover a rectangle R of dimensions λ× 1.

Note that E(σ̂) = 195
256 , i.e. the best covering coefficient established by Lemma 3, coinciding

with the critical covering coefficient of the square established by Theorem 1. Thus, we can
cover any rectangle with covering coefficient 195

256 if the largest disk satisfies r2
1 ≤ σ̂.

The final component is the following Lemma 4, which also gives a better covering coefficient
if the size of the largest disk is bounded. The bound required for Lemma 4 is smaller than
for Lemma 3; in return, the covering coefficient that Lemma 4 yields is better. Note that the
result of Lemma 4 is not tight.

I Lemma 4. Let λ ≥ 1 and let R be a rectangle of dimensions λ× 1. Let D = {r1, . . . , rn},
0.375 ≥ r1 ≥ . . . ≥ rn > 0 be a collection of disks. If W (D) ≥ 0.61λ, or equivalently
A(D) ≥ 0.61πλ ≈ 1.9164λ, then D suffices to cover R.

3.2 Proof Overview
The proofs of Theorem 1 and Lemmas 3 and 4 work by induction on the number of disks.
For proving Lemma 3 for n disks, we use Theorem 1 for n disks. For proving Theorem 1
for n disks, we use Lemma 4 for n disks; Lemma 3 is only used for fewer than n disks; see
Fig. 4. For proving Lemma 4 for n disks, we only use Theorem 1 and Lemma 3 for fewer
than n disks. Therefore, there are no cyclic dependencies in our argument; however, we have
to perform the induction for Theorem 1 and Lemmas 3 and 4 simultaneously.

Routines. The proofs of Theorem 1 and Lemma 4 are constructive; they are based on an
efficient recursive algorithm that uses a set of simple routines. We go through the list of
routines in some fixed order. For each routine, we check a sufficient criterion for the routine
to work. We call these criteria success criteria. They only depend on the total available
weight and a constant number of largest disks. If we cannot guarantee that a routine works
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by its success criterion, we simply disregard the routine; this means that our algorithm does
not have to backtrack. We prove that, regardless of the distribution of the disks’ weight, at
least one success criterion is met, implying that we can always apply at least one routine.
The number of routines and thus success criteria is large; this is where the need for automatic
assistance comes from.

Recursion. Typical routines are recursive; they consist of splitting the collection of disks
into smaller parts, splitting the rectangle accordingly, and recursing, or recursing after fixing
the position of a constant number of large disks.

In the entire remaining proof, the criterion we use to guarantee that recursion works is as
follows. Given a collection D′ ( D and a rectangular region R′ ( R, we check whether the
preconditions of Theorem 1 or Lemma 3 or 4 are met after appropriately scaling and rotating
R′ and the disks. Note that, due to the scaling, the radius bounds of Lemmas 3 and 4
depend on the length of the shorter side of R′. In some cases where we apply recursion, we
have more weight than necessary to satisfy the weight requirement for recursion according to
Lemma 3 or 4, but these lemmas cannot be applied due to the radius bound. In that case,
we also check whether we can apply Lemma 3 or 4 after increasing the length of the shorter
side of R′ as far as the disk weight allows. This excludes the case that we cannot recurse on
R′ due to the radius bound, but there is some R′′ ⊃ R′ on which we could recurse.

3.3 Interval Arithmetic
We use interval arithmetic to prove that there always is a successful routine. In interval
arithmetic, operations like addition, multiplication or taking a square root are performed on
intervals [a, b] ⊂ R instead of numbers. Arithmetic operations on intervals are derived from
their real counterparts as follows. The result of an operation ◦ in interval arithmetic is

[a1, b1] ◦ [a2, b2] :=
[

min
x1∈[a1,b1],x2∈[a2,b2]

x1 ◦ x2, max
x1∈[a1,b1],x2∈[a2,b2]

x1 ◦ x2

]
.

Thus, the result of an operation is the smallest interval that contains all possible results of
x ◦ y for x ∈ [a1, b1], y ∈ [a2, b2]. Unary operations are defined analogously. For square roots,
division or other operations that are not defined on all of R, a result is undefined iff the
input interval(s) contain values for which the real counterpart of the operation is undefined.

Truth values. In interval arithmetic, inequalities such as [a1, b1] ≤ [a2, b2] can have three
possible truth values. An inequality can be definitely true; this means that the inequality
holds for any value of x ∈ [a1, b1], y ∈ [a2, b2]. In the example [a1, b1] ≤ [a2, b2], this is the
case if b1 ≤ a2. An inequality can be indeterminate; this means that there are some values
x, x′ ∈ [a1, b1], y, y′ ∈ [a2, b2] such that the inequality holds for x, y and does not hold for
x′, y′. In the example [a1, b1] ≤ [a2, b2], this is the case if a1 ≤ b2 and b1 > a2. Otherwise,
an inequality is definitely false. An inequality that is either definitely true or indeterminate
is called possibly true; an inequality that is either indeterminate or definitely false is called
possibly false. These truth values can also be interpreted as intervals [0, 0], [0, 1], [1, 1].

Using interval arithmetic. We apply interval arithmetic in our proof as follows. Recall
that for each routine, we have a success criterion. These criteria only consider λ ≥ 1 and
the largest k ∈ O(1) disks r1 ≥ · · · ≥ rk as well as the remaining weight Rk+1 :=

∑n
i=k+1 r

2
i ,

which can be computed from λ and r1, . . . , rk, assuming w.l.o.g. that the total disk weight
W (D) is exactly W ∗(λ).

SoCG 2020
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If we can manually perform induction base and induction step of our result for all λ ≥ λ̂
for some finite value λ̂, we can also provide an upper bound r̂1 for r1 such that all cases that
remain to be considered (in our induction base and induction step) correspond to a point in
the (k + 1)-dimensional space Ψ given by

λ ∈ [1, λ̂], r1 ∈ [0, r̂1], r2 ∈ [0, r1], . . . , rk ∈ [0, rk−1],
k∑
i=1

r2
i ≤W ∗(λ).

This is due to the fact that there is nothing to prove if r1 can cover R on its own; r1 can have
no more than the total disk weight W (D) and rk ≤ · · · ≤ r2 ≤ r1. Furthermore, observe that
the induction base is just a special case with ri = ri+1 = · · · = 0 for some 1 < i ≤ k.

This allows subdividing (a superset of) Ψ into a large finite number of hypercuboids by
splitting the range of each of the variables λ, r1, . . . , rk into a number of smaller intervals.
For each hypercuboid, we then use interval arithmetic to verify that there is a routine whose
success criterion is met. If we find such a routine, we have eliminated all points in that
hypercuboid from further consideration. Hypercuboids for which this does not succeed
are called critical and must be resolved manually; note that, in particular, hypercuboids
containing (tight) worst-case configurations cannot be handled by interval arithmetic. The
restriction to critical hypercuboids makes the overall analysis feasible, while a manual analysis
of the entire space is impractical due to the large number of routines and variables.

Implementation. We implemented the subdivision outlined above and all success criteria
of our routines using interval arithmetic1. Because most of our success criteria use the
squared radii r2

i instead of the radii ri, we use λ and r2
i instead of ri as variables. Moreover,

for efficiency reasons, instead of the simple grid-like subdivision outlined above, we use a
search-tree-like subdivision strategy where we begin by subdividing the range of λ, continue
by subdividing r2

1, followed by r2
2, and so on. Whenever a success criterion only needs the

first i < k disks, we can check this criterion farther up in the tree, thus potentially avoiding
visits to large parts of the search tree; see Fig. 5 for a sketch of this procedure. Even with this
pruning in place, the number of hypercuboids that we have to consider is still very large; this
is a result of the fact that, depending on the claim at stake, we have 5 or even 8 dimensions.
Therefore, we implemented the checks for our success criteria on a CUDA-capable GPU to
perform them in a massively parallel fashion.

Moreover, to provide a finer subdivision where necessary, we run our search in several gen-
erations (our proof uses 11 generations). Each generation yields a set of critical hypercuboids
that could not be handled automatically. After each generation, for each subinterval of λ, we
collect all critical hypercuboids and merge those for which the r2

1-subintervals are overlapping
by taking the smallest hypercuboid containing all points in the merged hypercuboids. This
procedure typically yields only 1-3 hypercuboids per subinterval of λ. The next generation is
run on each of these, starting with the bounds given by these hypercuboids.

Numerical issues. When performing computations on a computer with limited-precision
floating-point numbers instead of real numbers, there can be rounding errors, underflow errors
and overflow errors. Our implementation of interval arithmetic performs all operations using
appropriate rounding modes; this technique is also used by the implementation of interval

1 The source code of the implementation is available online:
https://github.com/phillip-keldenich/circlecover .

https://github.com/phillip-keldenich/circlecover
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· · ·

· · ·
· · ·
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[1, 1.005] [1.005, 1.01] · · · [2.495, 2.5]· · ·

[0, 0.005] [0.005, 0.01]
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Apply Lemma 4!

r21 is small
Apply Lemma 4!

· · · · · ·

[0.61, 0.615]

r1 can cover R

r22 ∈

r23 ∈

r24 ∈

· · · · · ·

[0, 0.00025]

[1.2, 1.205]

r22 is small
Use GreedySplitting
and recurse to cover rest

· · ·

[0.24975, 0.25] · · ·
· · ·

[0.253, 0.25325]

r1, r2 can cover R

[0, 0.00025]

[0, 0.00025]

Critical!

· · ·
· · ·

· · ·
· · ·

· · · · · ·

· · ·
· · ·

we may only have r1, r2

Figure 5 Sketch of our interval arithmetic-based search procedure. The red edges denote a path
leading to a critical cuboid containing a tight two-disk worst-case configuration. Green text indicates
that the children of the corresponding node do not have to be considered.

arithmetic in the well-known Computational Geometry Algorithms Library (CGAL) [12].
This means that any operation ◦ on two intervals A,B yields an interval I ⊇ A ◦B to ensure
that the result of any operation contains all values that are possible outcomes of x ◦ y for
x, y ∈ A,B. This guarantees soundness of our results in the presence of numerical errors.

4 Proof Structure

In this section, we give an overview of the structure of the proofs of Theorem 1 and
Lemmas 2, 3 and 4. For the proof of Lemma 2, we refer to the full version [18] of our paper.
Lemma 3 is proven in Section 4.3 using a simple recursive algorithm; basically, we show that
we can always split the disks using Greedy Splitting, split the rectangle accordingly, and
recurse using Theorem 1. The proofs of Theorem 1 and Lemma 4 involve a larger number of
routines and make use of an automatic prover based on interval arithmetic as described in
Section 3.3.
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4.1 Proof Structure for Lemma 4
Proving Lemma 4 means proving that, for any skew λ, any collection D of disks of radius
r1 ≤ 0.375 and with total weight W (D) = Eλ suffices to cover R, where E = 0.61 is the
covering coefficient guaranteed by Lemma 4. We first reduce the number of cases that we
have to consider in our induction base and induction step to a finite number. As described
in Section 3.3, this requires handling the case of arbitrarily large skew λ. Finding a bound
λ̂ and reducing Lemma 4 for λ ≥ λ̂ to the case of λ < λ̂ yields bounds for λ and r1, . . . , rk
that allow a reduction to finitely many cases using interval arithmetic.

I Lemma 5. Let λ̂ = 2.5. Given disks D according to the preconditions of Lemma 4 and
λ ≥ λ̂, we can cover R using a simple recursive routine.

Proof. The routine works as follows. We build a list of disks D1 by adding disks in decreasing
order of radius until W (D1) ≥ E. Due to the radius bound, this procedure always stops
before all disks are used, i.e., D1 ( D. Let D2 := D \D2 be the remaining disks. We then
place a vertical rectangular strip R1 of height 1 and width βR1 := W (D1)

E ≥ 1 at the left side
of R. By induction, we can recurse on R1 using Lemma 4 and the disks from D1, because
both side lengths are at least 1 and the efficiency we require is exactly E. Note that, due
to adapting the width βR1 according to the actual weight W (D1), we actually achieve an
efficiency of E; in other words, there is no waste of disk weight. This means that we also
require an efficiency of exactly E on the remaining rectangle R2 := R \ R1. Therefore,
provided that the largest disk in D2 satisfies the size bound of Lemma 4, we can inductively
apply Lemma 4 to R2 and D2 and are done. This can be guaranteed by proving that the
shorter side of R2 is at least 1 as well. We have W (D1) ≤ E+ r2

1 ≤ E+ 0.3752 which implies
βR1 ≤ 1 + 0.3752

E < 1.5; therefore, λ ≥ 2.5 ensures that the width of R2 is at least 1. J

As outlined in Section 3.3, the remainder of the proof of Lemma 4 is based on a list of
simple covering routines and their success criteria. We prove that there always is a working
routine in that list using an automatic prover based on interval arithmetic, as described
in Section 3.3. This automatic prover considers the 8-dimensional space spanned by the
variables λ and r2

1, . . . , r
2
7 and subdivides it into a total of more than 246 hypercuboids in

order to prove that there always is a working routine, i.e., no critical hypercuboids remain to
be analyzed manually; this only works because the result of Lemma 4 is not tight.

In the following, we give a brief description of the routines that we use. Due to space
constraints, for a detailed description of the routines, we refer to the full version of our
paper [18].

Recursive splitting. Routines (S-I.1) and (S-I.2) work by splittingD into two parts, splitting
R accordingly, and recursing on the two sub-rectangles. This split is either performed as
balanced as possible using Greedy Splitting, or in an unbalanced manner; in the latter
case, we choose an unbalanced split to accommodate large disks that violate the radius bound
of Lemma 4 w.r.t. a rectangle of half the width of R.

Building a strip. Routine (S-II.1) works by either covering the left or the bottom side of
a rectangular strip R; see Fig. 6. This strip uses a subset of the largest six disks and tries
several configurations for placing the disks. The remaining area is covered by recursion.

Wall building. Routines (S-III.1) and (S-IV.1) are based on the idea of covering a rectangular
strip of fixed length ` and variable width b with covering coefficient exactly E. We call
this wall building. To achieve this covering coefficient, we stack disks of similar size on top
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S S S

r1

r2

r3

r4

r5

r1

r2

r4r3

r1

r2

r3 r4

r5 r6

S

r1 r4

r2 r3

r5r6R \ S

(a) (b) (c) (d)

Figure 6 Some placements considered by Routine S-II.1 to build a vertical strip; horizontal strips
are analogous. (a) Simply stacking a subset T of the six largest disks on top of each other. (b)
Stacking r1, r2 on top of each other, and placing r3, r4 horizontally next to each other on top. (c)
Same as (b), but with an additional row built from r5, r6. (d) Building two rows at the top and the
bottom consisting of r1, r4 and r2, r3, and covering the remaining region by r5, r6. The points on
the boundary defining the position of r5 and r6 are marked by squares. Note that r5 and r6 are not
big enough to cover the entire rectangular area between the top and the bottom row.

of (or horizontally next to) each other; each disk placed in this way covers a rectangle of
variable height, but width b. We provide sufficient conditions for this procedure to result in
a successful covering of a strip of length `. Routine (S-III.1) uses this idea to build a column
of stacked disks at the left side of R; see Fig. 7. Routine (S-IV.1) uses this idea by placing
r1 in the bottom-left corner of R and filling the area above r1 with horizontal rows of disks;
see Fig. 8. Intuitively speaking, these routines are necessary to handle cases in which there
are large disks that interfere with recursion, but small disks, for which we do not know the
weight distribution, significantly contribute to the total weight.

Using the two largest disks. Routine (S-V.1) places the two largest disks in diagonally
opposite corners, each disk covering its inscribed square; see Fig. 9. The remaining area is
subdivided into three rectangular regions; we cover these regions recursively, considering
several ways to split the remaining disks.

Using the three largest disks. Routines (S-VI.1) and (S-VI.2) consider two different place-
ments of the largest three disks as shown in Fig. 10.

Using the four largest disks. Routines (S-VII.1)–(S-VII.3) consider different placements
of the four largest disks and recursion to cover R; see Fig. 11.

Using the five largest disks. Routines (S-VIII.1) and (S-VIII.2) consider different place-
ments of the five largest disks and recursion to cover R; see Fig. 12.

Using the six largest disks. Routines (S-IX.1)–(S-IX.3) consider different placements of
the six largest disks and recursion to cover R; see Fig. 13.

Using the seven largest disks. Routines (S-X.1)–(S-X.8) consider different placements of
the seven largest disks, together with recursion, to cover R; see Figs. 14, 15 and 16.
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`

`√
1+
√

1− 1
4E2

q1

q2

q3

q4

q5

q6

q2

q1

q3

q4

q5

q6

√
2q1

(b)(a)

`

`√
1+
√

1− 1
4E2

√
2q1

b

Figure 7 The wall-building procedure. (a) Using an initial guess of b =
√

2q1 as width, where q1

is the largest disk that we use, we stack disks until they exceed a certain fraction of the length `. (b)
We decrease b until the disks exactly cover a strip of length `.

r1√
2r

1

A

B

··
·
··
·

r2 r3

r6

Figure 8 Routine S-IV.1 places r1 in the bottom-left corner and tries to cover A using either
recursion or wall building. In the latter case, whenever the disk radius drops too much while building
a row of length ` =

√
2r1, we move the disks constituting this incomplete row to B (red). Otherwise,

a complete row is built (green) and we continue with the next row. This process stops once the
entire area A is covered, including some potential overhead (shaded green region). We compensate
for the overhead by the area gained by placing r1 covering a square. In case r2 does not fit into B
recursively, we try placing r2, r3 (or r2, r3, r4) at the bottom of B (dotted outline).
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r1

r2A

B

C√
2r1

√
2r2

Cr3

r5 r6

C ′

r4

Figure 9 The routine S-V.1 places r1 and r2 in diagonally opposite corners, each covering a
square. We cover three remaining rectangular areas A,B, C using the remaining disks (left). Regions
A,B and C are covered by recursion; we also consider using disks r3, . . . , r6 to reduce C to C′ (light
gray) before recursing.

r2

r1
r3

r2

r1

(a) (b)

A

B

A

r3

r4

r5

r6

Figure 10 Two routines based on using the three largest disks. We use r1 and r2 to cover a
vertical strip of height 1 and maximal width. (a) In Routine S-VI.1, we place r3 to the right of
r1, covering its inscribed square at the lower left corner of the remaining rectangle; the remaining
region can be subdivided into two rectangles A,B in two ways (dashed and dotted line). (b) In
Routine S-VI.2, we cover a horizontal strip of the remaining rectangle using r3; we either recurse on
the remaining rectangle directly or place some of the disks r4, r5, r6 to cut off pieces of the longer
side of the remaining rectangle (dashed outlines).
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A B

r1
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r3 r4
√
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r 1
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A
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(a) (b)
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r5

(c)

r1

r2 r3

r4
r5

r6

A

(d)

r1

r2

r3 r4

A

Figure 11 Covering routines that mainly rely on the four largest disks to cover R. (a) In
Routine S-VII.1, we place r1 in the bottom-left corner, covering its inscribed square; use r2, r3 and
r4 to cover as much of the vertical strip remaining to the left of r1, and recurse on A and B. (b) In
Routine S-VII.2, in the first case, we cover a rectangular strip using r1, . . . , r4. Either use recursion
immediately on the remainder A, or recurse after placing r5 and possibly r6 covering a rectangle
at the bottom of A. (c) In Routine S-VII.2, in the second case, we cover a rectangular strip using
r1, . . . , r4 and place r5 at the bottom of the remainder as in (b); however, we change the placement
of r6 to cover the remaining part of the right side of R. The points that determine the position of
r6 are marked by black squares in the figure. We use recursion to cover the bounding box A of the
area that remains uncovered. (d) In Routine S-VII.3, we cover an L-shaped region of R using the
four largest disks, and recurse on the remaining region A.

r1 r2 r5

r3

r4 A

r1 r2

r5 r4

r3

AA

r1 r2 r3

r4

r5

(a) (b) (c)

Figure 12 Routines for covering R using the five largest disks and recursion. According to
Routine S-VIII.1, in (a) and (b), we first cover a horizontal strip of maximum height using three disks
(r1, r2, r3 or r1, r2, r5) and then cover a vertical strip using the other two disks. (c) Routine S-VIII.2
places the five largest disks such that everything but a small region A is covered. The points that
define the placement of r4 and r5 in are marked by boxes; those that define the placement of r3 are
marked ×. All three routines use recursion to cover A.
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(a) (b)

r1

r2

r4

r5

r6

r3

(c)

A

Figure 13 (a) Routine S-IX.1 covers R using the six largest disks. (b) In Routine S-IX.2, we
also use recursion on the remaining disks to cover an additional rectangular region A. (c) In
Routine S-IX.3, we cover two vertical strips using r1, r2 and r4, r5, r6, using r3 and recursion to
cover the remaining strip.

r1r4

r2r3

r5 r6
A A

A

(a) (b) (c)

r7 r7 r7

Figure 14 Routine S-X.1 considers the following three configurations to cover a strip of maximal
width w. (a) Using any partition of r1, . . . , r6 into three groups of two disks, each covering a strip of
height 1 and maximal width, (b) using any partition of r1, . . . , r6 into two groups of three disks,
each covering a strip of height 1 and maximal width, or (c) using the disks r1, r4 and r2, r3 to cover
strips of width w and maximal height and covering the uncovered pockets using r5 and r6.

r6

A

B r7

r1

r2 r3

r4
r5

r6

r5

Figure 15 Routine S-X.2 covers as much width as possible using disks r1, . . . , r4, using r5, r6 and
r7 on the remaining strip.
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Figure 16 Routines S-X.3–S-X.8 using disks r1, . . . , r7 and recursion to cover R.
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4.2 Proof Structure for Theorem 1
Tightness of the result claimed by Theorem 1 is proved by Lemma 2. Therefore, proving
Theorem 1 means proving that, for any skew λ, any collection of disks D with A(D) = A∗(λ)
suffices to cover R. As in the proof of Lemma 4, we begin by reducing the number of cases we
have to consider to a finite number. Again, we begin by proving our result for all rectangles
with sufficiently large skew.

I Lemma 6. Let λ ≥ λ and let D be a collection of disks with W (D) = W ∗(λ). We can
cover R using the disks from D.

Due to space restrictions, for the full proof we refer to the full version [18] of our paper.
The proof is manual and uses the two simple routines Split Cover (W-I.1) and Large
Disk (W-I.2); see Fig. 17. Intuitively speaking, if r1 is small, we split D using Greedy
Splitting, split R accordingly, and recurse on the two resulting regions. On the other hand,
if r1 is big, we cover the left side of R using r1 and recurse on the remaining region.

The remainder of the proof of Theorem 1 is again based on a list of simple covering
routines, which our algorithm tries to apply until it finds a working routine. We prove that
there always is a working routine in the list using an automatic prover based on interval
arithmetic as described in Section 3.3. After automatic analysis, several critical cases remain.
We complete our proof by manually analyzing these critical cases. In the following, we give a
brief description of the routines we use. Due to space constraints, for details, we refer to the
full version of our paper [18].

Small disks. Because the covering coefficient guaranteed by Lemma 4 is always better than
E∗(λ), Routine (W-II.1) attempts to apply Lemma 4 directly; this works if the largest disk
is not too big.

Using the largest disk. Routines (W-III.1)–(W-III.3) try several placements for the largest
disk r1; see Fig. 18.

Using the two largest disks. Routines (W-IV.1) and (W-IV.2) try several placements for
the largest two disks r1, r2; see Fig. 19.

Using the three largest disks. Routines (W-V.1)–(W-V.5) consider several placements for
the largest three disks; see Figs. 20, 21, 22, and 23.

Using the four largest disks. Routines (W-VI.1)–(W-VI.3) consider several placements for
the largest four disks; see Fig. 24.

R1 R2

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

r1

︷ ︸︸ ︷

R \ S1
S1

(a) (b)

ω1(maximal)

ω1(minimal) ≥ 1
λ x

Figure 17 (a) The routine Split Cover (W-I.1) applies Greedy Splitting to the input disks,
splits R into R1,R2 according to the split and recurses. The resulting split must not be too
unbalanced for this routine to succeed. (b) The routine Large Disk (W-I.2) places r1 covering a
rectangle S1 at the right border of R and recurses on the remaining rectangle.
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Figure 18 (a) In Routine W-III.1, we place r1 covering a strip at the left side of R and try to
recurse on A. If that does not work, we also try to place r2, r3 and potentially r4 covering horizontal
strips at the bottom of the remaining rectangle before we try recursing. (b) In Routine W-III.2, we
place r1 covering its inscribed square at the bottom-left corner of R, covering the two remaining
regions A,B recursively. (c) In Routine W-III.3, we place r1 covering a strip at the left side of R; if
placed like this, r1 intersects the right border of R, only leaving two small uncovered pockets.

r1

r2

A Ar1 r2

r1

r2
A

B

(a) (b) (c)

Figure 19 (a) and (b) depict Routine W-IV.1. The two largest disks are used to cover as
wide a strip as possible at the left side of R; the remaining disks are used for recursion on A.
(c) Routine W-IV.2 places r1 covering its inscribed square and covers the remaining part of R’s left
boundary using r2. Two regions A and B remain. The shaded area can be added to either A or B;
we try both options.

r1 r2 r3
A

Figure 20 Routine W-V.1 places the three largest disks next to each other, each covering a
vertical strip of height 1. If this does not cover the entire rectangle, we recurse on the bounding box
A of the remaining area.
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Figure 21 (a) Routine W-V.2 builds a strip of maximum possible width by placing r1 at the
bottom and r2 besides r3 on top. (b) Routine W-V.3 builds a vertical strip of maximum possible
width by placing r2, r3 on top of each other, and covers the remaining part of the lower boundary
using r1.
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Figure 22 Routine W-V.4 covers the rectangle using the third-largest disk to cover a square at
the bottom-left corner. The remaining rectangle that we recurse on is drawn with dashed outline.
Left: Placing the largest disk to the right of the third-largest disk and the second-largest disk on
top of the third-largest disk. Right: Placing the largest disk on top of the third-largest disk and
the second-largest disk to the right of the third-largest disk.
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Figure 23 Left: Routine W-V.5 covers the rectangle using the largest disk to cover a strip of
width S1, using the second- and third-largest disks to cover the remaining corners. The bounding
box of the uncovered pocket between the largest and third-largest disk is drawn with dashed outline.
Right: The worst-case example for a square, consisting of three equal disks with radius

√
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16 . The
covering of Routine W-V.5 converges to this covering for disks converging to this worst-case example.
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Figure 24 (a) Routine W-VI.1 covers R using only the four largest disks. The dashed outline
depicts the rectangle that r3 has to be able to cover. (b) Routine W-VI.2 covers a strip of
maximum possible width using two groups of two disks and recurses on the remaining rectangle A.
(c) Routine W-VI.3 covers R by placing the two largest disks besides each other, filling the gaps
between the disks using r3, r4. If this does not cover R, we either recurse on the remaining strip A
or on the bounding box of two pockets B1,B2 if r2 intersects R’s right border.
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4.3 Proof of Lemma 3
In this section, we give a proof of Lemma 3.

I Lemma 3. Let σ̂ := 195
√

5257
16384 ≈ 0.8629. Let σ ≥ σ̂ and E(σ) := 1

2

√√
σ2 + 1 + 1. Let

λ ≥ 1 and D = {r1, . . . , rn} be any collection of disks with σ ≥ r2
1 ≥ . . . ≥ r2

n and
W (D) =

n∑
i=1

r2
i ≥ E(σ)λ. Then D can cover a rectangle R of dimensions λ× 1.

Proof. In the following, let E := E(σ); we assume w.l.o.g. that W (D) = Eλ. First, we
observe that σ ≥ σ̂ implies E ≥ 195

256 = E∗(λ̄). Because E∗(λ) for λ ≥ λ̄ is continuous and
strictly monotonically increasing, there is a unique Λ(E) ≥ λ̄ such that E∗(Λ(E)) = E,
given by Λ(E) := 2E +

√
4E2 − 2. Similarly, we observe that σ(E) = E ·

(
Λ(E)− 2

Λ(E)

)
is

the inverse function of E(σ). If λ ≤ Λ(E), we have E ≥ E∗(λ) and the result immediately
follows from Theorem 1.

Otherwise, we apply Greedy Splitting to D. This yields a partition into two groups
D1, D2; w.l.o.g., let D1 be the heavier one. We split R into two rectangles R1,R2 such that
W (D1)
W (D2) = |R1|

|R2| by dividing the longer side (w.l.o.g., the width) of R in that ratio. After the
split, we have E = W (D)

|R| = W (D1)
|R1| = W (D2)

|R2| and |R2| = W (D2)
E .

If the resulting width of any Ri is greater than Λ(E), we use Di to inductively apply
Lemma 3 to it. Otherwise, we apply Theorem 1; in order to do so, we must show that the
skew of the narrower rectangle R2 is at most Λ(E), which means proving that its width is at
least 1

Λ(E) . Because of W (D1)−W (D2) ≤ r2
1 ≤ σ, we have W (D2) ≥ W (D)−σ

2 = Eλ−σ(E)
2 .

This implies that the area, and thus the width, of R2 is W (D2)
E ≥ Λ(E)−σ(E)/E

2 = 1
Λ(E) . J

5 Conclusion

We have given a tight characterization of the critical covering density for arbitrary rectangles.
This gives rise to numerous followup questions and extensions.

As discussed (and shown in Fig. 3), the worst-case values correspond to instances with
only 2 or 3 relatively large disks; if we have an upper bound R on the size of the largest
disk, this gives rise to the critical covering area A∗R(λ) for λ × 1-rectangles. Both from a
theoretical and a practical point of view, getting some tight bounds on A∗R(λ) would be
interesting and useful. Our results of Lemma 3 and Lemma 4 indicate possible progress in
that direction; just like for unit disks, tighter results will require considerably more effort.

Establishing the critical covering density for disks and triangles is also open. We are
optimistic that an approach similar to the one of this paper can be used for a solution.

Finally, computing optimal coverings by disks appears to be quite difficult. However,
while deciding whether a given collection of disks can be packed into a unit square is known
to be NP-hard [15], the complexity of deciding whether a given set of disks can be used to
cover a unit square is still open. Ironically, it is the higher practical difficulty of covering by
disks that makes it challenging to apply a similar idea in a straightforward manner.
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