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Abstract

An open problem of Manuel Abellanas asks whether every set of disjoint closed
unit disks in the plane can be connected by a conveyor belt, which means a tight
simple closed curve that touches the boundary of each disk, possibly multiple times.
We prove three main results:

1. For unit disks whose centers are both x-monotone and y-monotone, or whose
centers have x-coordinates that differ by at least two units, a conveyor belt
always exists and can be found efficiently.

2. It is NP-complete to determine whether disks of arbitrary radii have a conveyor
belt, and it remains NP-complete when we constrain the belt to touch disks
exactly once.

3. Any disjoint set of n disks of arbitrary radii can be augmented by O(n) “guide”
disks so that the augmented system has a conveyor belt touching each disk
exactly once, answering a conjecture of Demaine, Demaine, and Palop.

Mathematics Subject Classifications: 52C26

1 Introduction

In 2001 (later published in [1, 2]), Manuel Abellanas posed the problem of characterizing
when a finite collection of closed disks in the plane can be spanned by a conveyor belt, and,
in particular asked if every collection of disjoint unit disks admits a spanning conveyor
belt. A conveyor belt for such a collection of disks is a continuously differentiable simple
closed curve that touches the boundary of each disk at least once, is disjoint from the
disk interiors, and consists of arcs of the disks and bitangents between them. We may
imagine such a curve as made out of an elastic band wrapped tightly around the disks.
Consequently, all the disks and the conveyor belt with them can turn without slipping.
Two disks have the same orientation if they turn in the same direction when the conveyor
belt is pulled, or equivalently if they are both on the same side of the belt. See Figure 1.

We review some of the history of Abellanas’ question. Tejel and Garćıa found an
example of disks with different radii that have no conveyor belt [9]. Abellanas then
refined his conjecture as follows.

Problem 1 (Abellanas). Does every finite set of disjoint closed unit disks in the plane
have a conveyor belt?

O’Rourke [14] independently considered a relaxation of the problem by allowing the
curve to cross itself, with prescribed disk orientations and arbitrary radii. For his variant
of the problem, not every system of disjoint unit disks has a conveyor belt, but for a belt
of this type to exist it is sufficient for a certain hull-visibility graph of the disks to be
connected or for the disks to remain disjoint when expanded by a sufficiently large factor.
Demaine, Demaine, and Palop [8, 9] designed puzzle fonts, specified by a system of disks
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Figure 1: A conveyor belt on 24 nonoverlapping unit disks. The colors and markings of
the disks indicate their orientations.

per character, with a unique conveyor belt in the shape of that character. If the conveyor
belt is not shown, decoding the font becomes a puzzle for the viewer.

In this paper, we prove several related results on conveyor belts:

1. For unit disks whose sorted orders by x- and by y-coordinates of their centers are
the same (i.e., xy-monotone), there always exists a conveyor belt (Theorem 5), and
a solution belt can be constructed in linear time after sorting (Theorem 6). The
same method also applies to unit disks whose x-coordinates differ by two or more
units and, more generally, to monotonically separated configurations (Theorem 3).

2. Strengthening the known result that not every system of disks with arbitrary radii
has a conveyor belt [9], we show that the decision problem is NP-complete for disks
with arbitrary radii (Theorem 11).

3. A variation of the conveyor belt problem in which we constrain the belt to touch
each disk exactly once (and disks may still have arbitrary radii) is also NP-complete
(Theorem 8).

4. Both versions can be made to have a conveyor belt solution by adding O(n) “small
guide disks”, answering a conjecture of Demaine, Demaine, and Palop [9] (Theo-
rem 12). Conversely, Ω(n) guide disks are sometimes necessary (Theorem 14).

2 Preliminaries

Between any two disks D1 and D2, there are four bitangent line segments, as depicted in
Figure 2. In the case when the two disks D1 and D2 have centers (x1, y1) and (x2, y2) with
x1 < x2, define the lower bitangent to be the bitangent which stays entirely below the
line through the centers of D1 and D2. The upper bitangent is defined similarly. Define
the inner bitangents as the two bitangents that cross the line between the centers of D1

and D2.
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Figure 2: The four possible bitangents between two disks.

A conveyor belt for a collection of disks can be specified as follows. Between any
two disks, the belt may travel along one of four bitangent line segments. The two disks
have the same orientation if the bitangent does not pass through the line connecting their
centers and they have different orientations otherwise. We call a bitangent unblocked if it
does not intersect any disk, except at its endpoints. A conveyor belt can be completely
specified by the cyclic order in which it visits each disk, together with the subset of disks
lying inside the conveyor belt.

As a warm-up, the following family of disk configurations have an easy-to-construct
conveyor belt. In this case, the disks in fact have a conveyor belt that touches each of
them exactly once, along an arc of nonzero length.

Example 2. If the disks are in “general position” in the sense that no line intersects
three disks, then there is always a conveyor belt for the collection. To construct a belt,
let P be any simple polygon with the disk centers as vertices; one often refers to such a
P as a (simple) polygonalization of the center points. Such a polygon P must exist; a
traveling salesman tour of the center points is one such (simple) polygonalization. Another
approach is to choose one of the vertices of the convex hull of the circle centers and connect
the remaining circle centers into a path in radial sorted order around the chosen vertex.
Either cyclic order of the vertices of P determines the order the belt touches the disks. To
determine the orientations of the vertices, travel along P cyclically and declare all disks
where we turn left to be of one orientation and all disks where we turn right to be of the
other orientation.

3 Monotonically Separated Unit Disk Configurations

We begin by fixing some notation and vocabulary. Suppose we have a sequence of n disks
with centers (xi, yi) for 1 6 i 6 n. By rotating and relabeling the disks if necessary, we
can assume without loss of generality that x1 < x2 < · · · < xn, so the disks are sorted by
their x-coordinates.

Definition 3. We say that a sequence of disks is monotonically separated if x1 < x2 <
· · · < xn and for every i < j < k, the kth disk is disjoint from the convex hull of the ith
and jth disks, and the ith disk is disjoint from the convex hull of the jth and kth disks.

Lemma 4. Given a sequence of n unit disks with x1 < · · · < xn, the disks are monotoni-
cally separated in either of the following two cases:
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disk j disk j
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disk khull of disks i and j

hull of disks i and j

Figure 3: Diagrams of monotonically separated sequences. For unit disks with indices
i < j < k and with centers that are x- and y-monotone (left) or whose x-coordinates
differ by at least two units (right), the convex hull of disks i and j is confined to a disjoint
region from disk k.

1. (xy-monotone) y1 < · · · < yn, so the centers are both x-monotone and y-monotone;
or

2. (x-separated) for all 1 6 i < n, we have xi+1 − xi > 2.

Proof. In the case where the x-coordinates differ by at least two units, the vertical line
x = xj + 1 separates the convex hull of disks i and j from disk k. See Figure 3. The other
cases are similar.

We now come to one of our main results.

Theorem 5. Every monotonically separated sequence of unit disks has a conveyor belt.

Since the proof is lengthy, we briefly summarize the argument first. We start the con-
struction with the convex hull of the disks, but since that may not touch disks on its
interior, we use only the“upper half” of the convex hull as a segment of the final conveyor
belt. We must then carefully thread the “lower half” of the belt through the disks to
ensure each is touched without allowing the belt to intersect itself. We do so using certain
“winding” and “unwinding” processes which allow us to iteratively extend partial lower
belts indefinitely. The final belt is the concatenation of the upper and lower halves, which
may well touch an individual disk multiple times, though it will have no self-intersections
or self-overlaps.

Proof. Consider the upper convex hull of the disks, which is the part of the boundary of
the convex hull passing clockwise from the leftmost point of the leftmost disk L to the
rightmost point of the rightmost disk R, not including these endpoints. Let U1, U2, . . .
be the disks that contact the upper convex hull in between L and R, referred to as the
upper hull disks and listed with increasing x-coordinate. Let D0 = L,D1, D2, . . . , Dk = R
be the disks that are not in the subsequence of upper hull disks, listed with increasing
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x-coordinate. We assume k > 3 since otherwise the boundary of the convex hull of the
disks is a conveyor belt. We give an algorithm to find a conveyor belt which first traverses
the convex hull above the upper hull disks and then weaves its way through the lower hull
disks.

We begin by describing a key subroutine and some of its properties. We will shortly
use this subroutine to iteratively construct a conveyor belt on the given disks. Given two
consecutive disks Di and Di+1, the “winding process” constructs two partial conveyor
belts from Di to Di+1 as follows. First, place a ray along the lower bitangent between
Di and Di+1 with the ray’s vertex on Di and pointing the ray initially towards Di+1.
We report the partial conveyor belt from Di through the vertex of the ray to the point
of tangency on Di+1 as the “lower” of the two partial conveyor belts between Di and
Di+1. Second, starting with the ray along the “lower” bitangent between Di and Di+1,
continuously rotate the ray counterclockwise so that it stays tangent to Di at its vertex.
As we rotate, we may shift the vertex of the ray to disks other than Di according to the
following possible events considered in order.

1. The rotating ray may align with a tangent to Di+1 for the first time. For example,
this happens initially in the winding process when a lower tangent is found, but in
the unwinding process below it will occur later and could be an inner tangent or an
upper tangent between two disks that are not in the upper hull. In this case, we
report the partial conveyor belt from Di through the vertex of the ray to this point
of tangency as the “lower” of the two partial conveyor belts between Di and Di+1.
Continue rotating the ray in the same direction keeping the vertex on Di.

2. The rotating ray may align with a tangent to some upper hull disk U that lies
between Di and Di+1 in the x-sorted order of disks. If there is more than one
such U , choose the one with the smallest x-coordinate. In this case, add to the
current partial conveyor belt the bitangent along the ray between the disk the ray
is currently rotating around and U . Shift the vertex of the rotating ray to U and
continue rotating the vertex of the ray counterclockwise around U and inscribing
an arc along the boundary of U .

3. The rotating ray may align with a tangent to Di+1 for the second time. In this case,
report a partial conveyor belt from Di to Di+1 as before, this time calling it the
“upper” partial conveyor belt. Stop the winding process.

See Figure 4 for the first partial conveyor belt, and see Figure 5 for an “animation” of the
winding process.

We claim the winding process has the following properties.

(a) Both partial conveyor belts lie entirely within the convex hull of Di and Di+1.

(b) Both belts are disjoint from the upper convex hull, even though some upper hull disks
may be touched by either belt.
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Di

Di+1

U

Figure 4: The first partial conveyor belt between Di and Di+1 produced by the winding
process, where U is a disk on the upper hull.

Di

Di+1

U

Di

Di+1

U

Di

Di+1

U

Di

Di+1

U

Di

Di+1

U

Figure 5: An “animation” of the second part of the winding process, which produces a
second partial conveyor belt in the convex hull of Di and Di+1.

(c) Both belts are valid partial conveyor belts touching Di and Di+1 in the sense that they
consist of arcs of disks and bitangents between them whose union is a continuously
differentiable curve without self-intersection that is disjoint from all disk interiors.

Property (a) is easy to see, and (b) follows from (a). For (c), every property is clear
except possibly that the partial belts may not be disjoint from all disk interiors. The ray
initially points along the “lower” bitangent between Di and Di+1, which cannot intersect
the interior of an upper hull disk by definition of the upper hull so it is reported as part of
the lower belt. As the winding process continues, the upper belt remains disjoint from all
upper hull disk interiors with center x-coordinate between Di and Di+1 by construction.
The remaining disks Dj are disjoint from the convex hull of Di and Di+1 since the disks
are monotonically separated by hypothesis, so both belts are disjoint from these remaining
disks by (a), so property (c) holds.

The “unwinding process” is a slight variation on the winding process. Initially, the ray
is placed exactly as before along the lower bitangent from Di to Di+1 except its direction
is reversed, with the vertex still at Di. The vertex rotates counterclockwise, continuing
exactly as before. The belts created by the unwinding process also satisfy (a)-(c) above
by virtually the same reasoning. See Figure 6 for an example of the unwinding process,
which produces two partial conveyor belts.

Now consider any triple of disks Di−1, Di, Di+1. Suppose for simplicity that the centers
of Di−1, Di, Di+1 are not collinear. The boundary of the convex hull of Di−1 and Di

intersects the boundary of Di in a closed semicircle, and the boundary of the convex
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U
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Di+1
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U

Di

Di+1

U

Di

Di+1

U

First

Second

Di

Di+1

U

Figure 6: An “animation” of the unwinding process, which produces two partial conveyor
belts between Di and Di+1.

hull of Di and Di+1 intersects the boundary of Di in another closed semicircle. Let α
denote the intersection of these two semicircles. Then α is a closed arc on the boundary
of Di. We may now paste together two of the four partial belts from Di−1 to Di, an arc
containing α, and two of the four partial belts from Di to Di+1 as in Figure 7, resulting
in four partial belts from Di−1 to Di+1. Since the disks are monotonically separated, one
may check that property (a) ensures each resulting partial belt from Di−1 to Di+1 has no
self-intersections and continues to satisfy (b) and (c).

Di− 1

Di

Di+1

α

Di− 1

Di

Di+1

Di+2

Figure 7: The first picture shows the four partial conveyor belts between three adjacent
lower disks. The red arc labeled α is required to be part of the final belt. The second
picture shows the next iteration of the algorithm after extending the four possible belts
to include Di+2. Again the red part of the belt is required in any further growth of the
belt, and the blue forks indicate the four optional extensions.

The full algorithm proceeds as follows. Begin with four partial conveyor belts between
two adjacent lower disks. Iteratively extend these belts as above to produce four partial
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conveyor belts between ever larger sets of adjacent lower disks satisfying (b) and (c). For
example, see Figure 7. Ultimately, this will create four partial conveyor belts from L to
R. Of these four, choose the one whose tangents are on the lower sides of L and R. Now
glue that partial conveyor belt to the upper hull by way of arcs along L and R to create
a valid conveyor belt touching each disk at least once.

L = D0

D1

U1

D2

U2

D3

D4 = R

L = D0

D1

U1

D2

U2

D3

D4 = R

L = D0

D1

U1

D2

U2

D3

D4 = R

L = D0

D1

U1

D2

U2

D3

D4 = R

Figure 8: A sequence of x- and y-monotone unit disks and several stages of our algorithm.
The blue segments indicate the four possible extensions at each stage

Figure 8 depicts several steps in the algorithm, where the resulting conveyor belt is
in red, and the blue segments indicate the possible extensions. Figure 9 shows another
example of the final belt constructed in the algorithm where the disks are monotonically
separated but not x- and y-monotone.

Theorem 6. The conveyor belt constructed by the algorithm in the proof of Theorem 5
can be constructed in linear time from an input that lists the coordinates of the disk centers
in the order of their monotonically separated sequence.
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Figure 9: Larger example of the conveyor belt produced by the proof of Theorem 5.

Proof. The upper convex hull can be constructed from this sorted order by a standard
Graham scan algorithm, in Andrew’s variation using the left-to-right sorted order rather
than radial order [3]. In this algorithm, we use a stack data structure to store the sequence
of disks in the upper hull of ever-longer prefixes of the input. To extend the prefix, we
check if the next disk in the sequence together with the top two disks on the stack form
an upper hull that is unchanged if the middle of these three disks is omitted. While this
is true we pop the stack, effectively removing the middle disk from consideration. After
no more such pops can be performed, we push the new disk onto the stack. At the end of
this process, the disks that remain on the stack form the upper hull. Each disk is pushed
and popped at most once, so the total time for this part of the algorithm is linear.

To simulate the continuous ray-rotation process by which we generated the partial
conveyor belts through the remaining disks, we replace it by a discrete process consisting
only of the events at which the continuous process undergoes a discrete change, when the
rotating ray reaches a tangency with Di+1 or with one of the disks Uj. There may be
many disks Uj between Di and Di+1; however, by convexity of the sequence of disks Uj,
only two of these disks can cause tangency events: the one that is closest in the sequence
to Di, and the one that is closest in the sequence to Di+1. Therefore, constructing the
sequence of discrete events entails only comparing O(1) possible tangencies at each step
to determine which of them happens first, and can be performed in constant time per
step. Each disk is visited at most once during this process, so the total time for this part
of the algorithm is again linear.

A finite sequence of distinct numbers is called bitonic if it has a unique local maximum
and a unique local minimum when viewed as a cyclic sequence. Equivalently, it is unimodal
up to a cyclic rotation. Since our method constructs conveyor belts from left-to-right, the
result is bitonic with respect to the sequence of x-coordinates of disk centers. When a set
of disks has a bitonic conveyor belt, it is possible to find such a belt in polynomial time by a
straightforward adaptation of the well-known dynamic programming algorithm for bitonic
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B1

B2
B3

B4

Figure 10: Left: A sequence of x- and y-monotone disks with no bitonic conveyor belt.
All bitangents between disks B3 and B4 either pass through B1 or B2, so 3 must be a
local but not global maximum in the sequence of indices of any conveyor belt. Right:
A sequence of unit disks with no bitonic conveyor belt. The three orange disks have
no unblocked bitangents, and must be separated from each other by at least three local
minima or maxima.

traveling salesperson tours [7]. However, for disks with x- and y-monotone centers but
arbitrary radii, it is not always possible to find conveyor belts that are bitonic. Figure 10
(left) provides a counterexample. For unit disks that are not monotonically separated, it
is also not generally possible to have a tour that is bitonic. In Figure 10 (right) there are
three disks that are consecutive in the sorted order by x-coordinates, but that have no
unblocked bitangent between any two of them. All three disks must be separated from
each other in the cyclic sequence of contacts with the conveyor belt, and between any two
of them there must be a local minimum or local maximum of the x-coordinates.

4 One-Touch, Arbitrary Radii, and NP-Completeness

Having solved a particular instance of the conveyor belt problem with unit disks and non-
self-intersecting belts, we turn to more general considerations. In this section we focus
on the following one-touch conveyor belt problem. We are given as input a collection of
disjoint disks in the plane specified by integer center coordinates and arbitrary radii. The
goal is to determine whether there exists a conveyor belt that contacts each disk exactly
once.

Our proof that this problem is NP-complete will serve as a warm up for the proof
that the decision problem for conveyor belts that are not restricted to one touch is also
NP-complete. Our argument involves the Koebe–Andreev–Thurston circle packing theo-
rem [15] and the notion of maximal planar graphs, so we briefly review these concepts.

Theorem 7 (Koebe–Andreev–Thurston circle packing theorem). For every planar graph
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G there exists a system of interior-disjoint disks in the plane, corresponding one-to-one
with the vertices of G, such that two vertices are adjacent in G if and only if the corre-
sponding two disks are tangent.

The centers and radii of these disks are algebraic numbers, but they can be of arbi-
trarily large degree, so it may not be straightforward to represent them exactly as objects
in a symbolic algebra system [5]. Nevertheless, there exist algorithms that can compute
their coordinates numerically, to arbitrary precision, in time polynomial in the number of
vertices of G and in the number of bits of precision desired [6, 13].

A maximal planar graph is a graph embedded in the plane so that all of its faces
are triangles, including the unbounded outer face. For maximal planar graphs, the cor-
responding circle packing is unique up to Möbius transformations of the plane, which
preserve circles and their tangencies. In this case, the circle packing can be chosen such
that the three vertices of the outer face of the graph are three mutually tangent unit disks,
with the rest of the disks all fitting into the triangular region bounded by these three unit
disks. For this packing, the disks cannot vary more than exponentially in size: according
to the ring lemma for circle packings, there exists a constant ε > 0 (not depending on
the graph) such that, for any disk D of radius r that touches at most d other disks, the
other disks all have radius at least εdr [15].

Theorem 8. The one-touch conveyor belt problem is NP-complete.

Proof. We follow the standard outline for a proof that a problem X is NP-complete, by
a polynomial-time reduction from a known NP-complete problem Y . To do so X and Y
must both be decision problems (problems with a yes or no answer). We must show that
X is in NP, and that there exists a polynomial time algorithm for translating all inputs
of Y into inputs of X that preserves the answer of each translated input.

To show that the one-touch conveyor belt problem is in NP, we describe a nondeter-
ministic polynomial-time algorithm for it: an algorithm that guesses a solution that can
be described in a polynomial number of bits, verifies in deterministic polynomial time
that the solution is valid, and if so answers yes. It must be the case that every solvable
instance has a solution that causes this algorithm to answer yes, and that no non-solvable
instance has such a solution. In our case, the solutions can specify the cyclic order of
contacts along the belts and the orientations of each disk, information that can be spec-
ified in only O(n log n) bits for n disks, a polynomial number. If there are n disks, since
the belt is one-touch, the resulting belt will have 2n arcs or bitangent segments. The
verification algorithm must then test that only consecutive arcs or bitangents intersect,
and then only in a single point with compatible directions. It is straightforward to see
that these verifications may be performed with O(n2) tests, so the verification algorithm
takes polynomial time, as required.

To prove NP-hardness, we reduce from a known NP-complete problem, determining
the existence of a Hamiltonian cycle in a maximal planar graph. This problem was proven
NP-complete by Wigderson in 1982 [16]. It is straightforward to modify Wigderson’s
construction to ensure that the maximal planar graphs that it produces always have an
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Figure 11: A one-touch conveyor belt for a system of disks constructed by slightly shrink-
ing a circle packing for the graph of the edges and vertices of an octahedron. The belt
touches the disks in the order given by a Hamiltonian cycle on the octahedron, and crosses
between disks using only inner tangents. Circular arcs on the belt are shown in blue, and
bitangents are shown in red.

even number of vertices; see Theorem 9. This will be useful shortly when we construct a
sign-alternating cyclic path, which necessarily must have an even number of vertices.

The reduction begins by representing a given maximal planar graph as a system of
touching disks using the circle packing theorem. The only unblocked bitangent segments
in the circle packing are outer tangents for the three outermost disks. Shrinking each disk
by a factor of 1 − δ for δ sufficiently small will create additional unblocked bitangents
only between adjacent disks, see Figure 11. When finding the largest possible δ for a
given triple of disks, we will perform a constant number of polynomial operations and
root extractions using the disk radii, so δ is at least a polynomial in the smallest possible
ratio εn between tangent disks.

The numerical precision needed to represent the disk centers and their radii accurately
enough to perform this shrinkage, and to avoid creating additional bitangencies through
numerical inaccuracies, is therefore also at most exponential in the number of disks.
Numbers with this level of precision may be represented using a linear number of bits,
allowing an approximate numerical representation of the circle packing and its shrunken
system of disjoint disks to be constructed numerically in polynomial time. By scaling
this numerical representation appropriately, we can cause all the disk centers and radii to

the electronic journal of combinatorics 27(4) (2020), #P4.25 13



become integers, as needed for an input to the one-touch conveyor belt problem.
It remains to verify that this transformation from graphs to systems of disks preserves

the yes-or-no answers to every input. That is, we must show that a given maximal
planar graph G with an even number of vertices has a Hamiltonian cycle if and only if
the resulting system of disks has a one-touch conveyor belt. We begin by arguing that,
when a one-touch conveyor belt exists, a Hamiltonian cycle also exists. Thus, suppose
that we have a one-touch conveyor belt B. Since every face of G is a triangle, the only
unobstructed bitangents that exist for the disks of the construction are between shrunken
disks that, before shrinking, were tangent. Therefore, B can only use these segments to
move from one disk to another, and each two consecutive disks along B must be adjacent
in G. Thus, the cyclic ordering of disks in B corresponds to a cyclic ordering of vertices
in G such that each two consecutive vertices in the ordering are adjacent; that is, to a
Hamiltonian cycle.

Conversely, suppose we have a Hamiltonian cycle C in G; we must show that there
exists a one-touch conveyor belt in the corresponding system of shrunken disks. To do so,
we use the cyclic ordering of vertices in C as the cyclic order of disks in a belt B, and we
assign the disks signs that alternate between positive and negative in this cyclic order.
This assignment is well-defined since the number of vertices in G is assumed to be even.
It corresponds to a curve composed of circular arcs and inner bitangents of pairs of circles
that, before shrinking, were tangent. The shrinking process that we perform causes all
such inner bitangents to be unobstructed, and disjoint from all the other inner bitangents
of other formerly-tangent pairs, so no two such segments can cross, nor can a bitangent
segment cross any circular arc. Therefore, the resulting curve is a simple closed curve,
composed of arcs and bitangents, with one arc per disk, so it is a one-touch conveyor belt
as required.

Figure 11 depicts this construction for the maximal planar graph given by the vertices
and edges of a regular octahedron. The one-touch belt shown in the figure connects the
six disks shown in the order corresponding to a Hamiltonian cycle through the six vertices
of the octahedron.

Remark 9. We now sketch how to modify Wigderson’s construction [16] to produce graphs
with evenly many vertices. We use the notation of [16]. From Wigderson’s graph K, one
may create a graph K ′ by adding an extra vertex at the midpoint of the edge of K
that starts at the central vertex and travels northwest, followed by triangulating the two
resulting rectangles by adding two extra edges emanating from the new vertex. In forming
Wigderson’s graph M , use one copy of K and one copy of K ′. The resulting variant of
Wigderson’s graph N will have 58 instead of 55 vertices, so the graphs G′ will have a
multiple of 58 vertices, an even number.

Remark 10. Whether counting the number of solutions is #P-complete remains open. The
NP-completeness reduction above is close to parsimonious, but it counts cycles through
edges of the outer triangle differently than cycles that do not use those edges. More
precisely, one may check that the number of conveyor belts corresponding to a given
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Figure 12: The four possible patterns for a conveyor belt to enter and exit a triangle of a
circle packing with a fourth smaller circle inside it: Two double-ply crossings to adjacent
triangles (top left), one double-ply crossing (bottom left), a double-ply and two single-ply
crossings (top right), or two single-ply crossings (bottom right). The single-ply crossings
can be tangent to either of the two circles between which they pass. It is not possible for
part of the belt to enter on a double-ply crossing and exit on a single-ply crossing, or vice
versa.

Hamiltonian cycle is 1 if the cycle involves 0 or 1 edges of the outer triangle, and 2 if the
cycle involves 2 edges of the outer triangle.

5 Multi-Touch, Arbitrary Radii, and NP-Completeness

Theorem 11. It is NP-complete to determine whether a given system of disks has a
conveyor belt, even allowing the belt to touch a single disk multiple times along disjoint
arcs.

Proof. As in the one-touch case, we reduce from the Hamiltonian circuit problem, but in
a different class of graphs, the cubic 3-connected planar graphs. These graphs are the
dual graphs of the maximal planar graphs used for the one-touch problem. Again, testing
Hamiltonicity of these graphs is known to be NP-complete [11]; indeed, Wigderson’s
reduction in [16] is to this older result.

Our reduction is similar to the one-touch reduction. Let G be a cubic 3-connected
planar graph with n > 3 vertices. Let G′ be the maximal planar graph dual to G.
Represent G′ by a circle packing, and then slightly shrink the disks. This time, we modify
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Figure 13: Adding three small disks to the outer triangle of a circle packing restricts a
conveyor belt to enter and exit the interior of the packing as shown, up to rotation and
reflection.

the construction by adding another small disk at the radical center of each triple of disks
that represent an interior triangle of G′ (Figure 12), and by adding three more disks
tangent to pairs of the outer three disks, small enough that they lie within the convex
hull of the outer three disks (Figure 13). The intent of these changes is to force the
conveyor belt to visit every face of G′ and thereby represent a Hamiltonian cycle for the
originally given cubic graph G, whose vertices correspond to these faces. Since G has
n > 3 vertices, there is at least one interior triple of disks.

For each pair of disks that were initially tangent, a conveyor belt may pass between
them at most twice. Call such a crossing single-ply if the conveyor belt passes between
those disks once and double-ply if the conveyor belt passes between those disks twice. All
of the ways that a belt can enter and exit one of the inner triangles of the circle packing
are depicted in Figure 12. By inspecting each case, we find that a belt enters through
a single-ply crossing if and only if it exits through a single-ply crossing. It follows that
any segment of the conveyor belt passing through the interior of the outer triangle of the
circle packing must consist entirely of single-ply or entirely of double-ply crossings.

The disks added for the outside triangle can only be touched by a conveyor belt as
shown in Figure 13. We consider each depicted case in turn.

• In Figure 13 (left), the conveyor belt enters and exits the interior of the disk construc-
tion via two single-ply connections in regions which correspond to two neighboring
triangles of the outer triangular face of G′. Consequently, if a one-touch conveyor
belt exists for the disk construction, it must be single-ply everywhere in the interior
as shown in the unique single-ply connection pattern from Figure 12 (lower right).
Furthermore, the conveyor belt must enter and exit each region corresponding with
a triangle in G′ exactly once, so it must correspond to a Hamiltonian circuit of G.
Conversely, it is not hard to see that every Hamiltonian circuit of G can be trans-
formed to a conveyor belt on the constructed disk configuration. Therefore, the disk
configuration derived from G has a conveyor belt if and only if G has a Hamiltonian
circuit.

• In Figure 13 (middle), the conveyor belt enters and exits the interior of the con-
structed disk configuration via three double-ply connections. The interior connec-
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tions must then all be double-ply as well, as depicted in Figure 12 (upper left) and
(lower left). Furthermore, we can observe from the pictures that both strands enter
together from one gap between disks and exit together from another gap between
disks. In this sense, double-ply segments form paths. Starting at one of the double-
ply connections entering the interior from the outside triangle, the belt must form a
path through a sequence of regions corresponding with triangles in G′. If the path
ended at Figure 12 (lower left), there would be a disconnected segment of the belt,
so it must end at another connection to the outside triangle. However, the third
connection to the outside triangle would then be disconnected from the other two.
So, there are no belts of this form.

• In Figure 13 (right), the conveyor belt makes two single-ply connections and one
double-ply connection to the interior of the construction. The double-ply connection
must pass through the interior to the single-ply connections in order for the belt to
be connected, though as noted above the interior connections are all single-ply or
all double-ply, so this is not possible and there are again no belts of this form.

Thus, the only possible conveyor belts are ones that makes single-ply connections only,
each of which correspond to a Hamiltonian cycle.

6 Guide Disks

In this section, we explore the question of how many additional disks must be added in
order to guarantee that any disk configuration has a conveyor belt. We show that a linear
number of additional disks suffice.

Our construction uses the power diagram for a set of disks in the plane [4]. We briefly
recall the definitions here. The power distance from a point p to a disk D with center
c and radius r is |p − c|2 − r2. The power distance is negative if and only if p is inside
D, and otherwise it is the length of a tangent line from D to p. Associated to D is a
convex polygon comprised of all points in the plane whose power distance to any disk in
the configuration is minimized by its power distance to D. The power diagram is the set
of these polygons. Since the disks in our configurations are disjoint, D is contained in the
interior of its polygon. Geometrically, the power diagram forms a subdivision of the plane
into polygons, one per disk, with each disk interior to its polygon. It has O(n) vertices
and edges [4, Lemma 1] and can be constructed in time O(n log n) [4, §5.1].

Theorem 12. Any system of n disks can be augmented by O(n) additional disks so that
the resulting augmented system of disks has a (one-touch) conveyor belt.

Proof. First construct the power diagram of the disks. The dual graph of the power
diagram is the graph whose vertices are polygons in the power diagram, where vertices
are connected if their polygons share an edge. Pick a spanning tree of this dual graph.

Imagine traveling around the “outside” of the spanning tree. This tour corresponds
with a cyclic sequence S of vertices and edges of the dual graph. Each vertex in S can be
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identified with a disk in the collection as constructed from the dual of the power diagram,
so we will assume the vertices of S are labeled by the corresponding disks. Conversely,
each disk in the collection is represented by some vertex in S since it travels around a
spanning tree of the dual of the power diagram. Since the number of edges of the power
diagram is linear in n, the length of S as a sequence is linear in n.

By the definition of the power diagram and dual graph, every pair of consecutive disks
C and D in S correspond to adjacent convex polygons in the corresponding subdivision
of the plane into polygons. Therefore, there exists at least one point y on their common
boundary. If the polygons share an edge, let y be the midpoint of the edge between the
polygons of C and D in the power diagram. If the edge is infinite, we may take y to be
any point on the interior of the edge. Let x and z be points on the line segments from the
centers of C and D to y just outside of C and D, respectively. Such points exists since
the disks are nonoverlapping. We may represent the edge between C and D in the tree
geometrically by a polyline consisting of the two line segments xy and yz.

The polylines representing distinct edges in the tree do not cross since the convex
polygons in the power diagram form a subdivision of the plane. Taken together, they
geometrically represent the spanning tree of the dual graph. By adding small guide disks
near each triple x, y, and z as needed, we may form a conveyor belt that represents
traveling around the “outside” of the spanning tree. Since the length of S is linear in n,
O(n) guide disks are needed.

In the one-touch model, we may perform a similar construction, but when it would
use more than one arc of an input disk we may instead route the belt near the edges of
the corresponding power diagram polygon for all but one of these arcs. This will require
at most a constant number of disks per edge in the power diagram, so there are again
O(n) guide disks in total.

Lemma 13. There exists a configuration C of disks with the property that, whenever C
appears as part of a larger configuration C ′, with all disks of C ′ \ C disjoint from the
convex hull of C, every conveyor belt for C ′ must include at least one guide disk interior
to the convex hull of C.

Proof. Let G be a cubic 3-connected planar graph in which the longest path has fewer
than |V (G)|/3 vertices; the existence of G follows from known results on the shortness
exponent of cubic 3-connected planar graphs [12]. As in the proof of Theorem 11, represent
the dual graph of G by a circle packing (choosing arbitrarily which triple of circles to
make exterior), place another smaller tangent circle within each triangle of circles of the
packing, and then shrink all of the circles by a small amount to allow a conveyor belt to
pass between them without making any additional bitangents available to the belt. Let
C be the resulting system of circles.

Then, as in the proof of Theorem 11, any conveyor belt must enter C via at most three
single-ply or double-ply crossings between the three pairs of outer circles of C. If there
were no guide disks within the convex hull of C, the same analysis in Theorem 11 would
show that such a belt would necessarily correspond to at most three paths through G that
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Figure 14: A system of n disks requiring Ω(n) guide disks for a one-touch conveyor belt

either enter C through one of these crossings and exit through another, or enter C through
a double-ply crossing and stop somewhere within C. However, because all paths are short,
it is not possible for three or fewer paths to touch all vertices of G; correspondingly, a
conveyor belt without a guide disk within C cannot touch all of the smaller circles within
each triangle of circles of C. Therefore, at least one guide disk within the convex hull of
C is needed.

Theorem 14. In order for one-touch or multi-touch conveyor belts to include n given
disks, Ω(n) guide disks are sometimes necessary.

Proof. For the one-touch case, place n−1 small disks at the vertices of a regular polygon,
and a large disk at the center of the polygon, in such a way that no two small disks can
see each other (Figure 14). Then, in the cyclic sequence of disks given by any one-touch
conveyor belt, each of the small disks must be separated from each other by a contact
with some other disk, but only one of those contacts can be the large disk. Therefore,
there must be at least n− 2 other guide disks to provide these contacts.

For the multi-touch case, we form a configuration of bn/|C|c copies of the configuration
C described in Theorem 13, with disjoint convex hulls. Each copy of C requires a guide
disk interior to its convex hull, so all the copies together require at least bn/|C|c guide
disks.

7 Future Work

We conclude with a few questions for further exploration:
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1. Can one identify a larger class of unit disks, larger than monotonically separated,
which has a conveyor belt? Could one use O’Rouke’s hull visibility graph to identify
such a beltable collection of unit disks?

2. How many guide disks are necessary to ensure that any traveling salesman tour on
the centers of n disks can be a subsequence of a conveyor belt?

3. Is the problem of finding the number of conveyor belts for a given disk configuration
#P-complete?

4. Given n points in the plane, is finding the number of polygons with vertices at the
n points also #P-complete? See [10] for related results and further questions on
hardness of counting problem in discrete geometry.
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