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Abstract
In the classic, NP-hard circle packing problem, one asks whether a given set of circles
can be packed into a given container. In this paper, we present new sufficient conditions
for packing circles into square and triangular containers, using only the sum of the
circles’ areas: for square containers, it is possible to pack any set of circles with a com-
bined area of up to≈ 53.90% of the square’s area. And when the container is a right or
obtuse triangle, any set of circles whose combined area does not exceed the triangle’s
incircle can be packed. These area conditions are tight: for any larger areas, there
are sets of circles which cannot be packed. Similar results have long been known for
squares, but to the best of our knowledge,wegive thefirst results of this type for circular
objects.Our proofs are constructive:we describe a versatile, divide-and-conquer-based
algorithm for packing circles into various container shapes with optimal worst-case
density, which employs an elegant, recursive subdivision scheme. We call this algo-
rithm Split Packing. It can be used as a constant-factor approximation algorithm when
looking for the smallest container in which a given set of circles can be packed, due to
its polynomial runtime. A visualization can be found at https://morr.cc/split-packing/.
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1 Introduction

Given a set of circles, can you decide whether it is possible to pack these circles
into a given container without overlapping one another or the container’s boundary?
(Fig. 1).

This naturally occurring circle packing problem has numerous applications in engi-
neering, science, operational research and everyday life. Examples include packaging
cylinders [2,7], bundling tubes or cables [18,20], the cutting industry [19], the layout
of control panels [2], the design of digital modulation schemes [16], or radio tower
placement [19]. Further applications stem from chemistry [21], foresting [19], and
origami design [10].

Despite their simple formulation, packing problems are quite difficult. In particular,
deciding whether a given set of circles fits into a square container was shown to be
NP-hard by Demaine et al. in 2010 [3], using a reduction from 3-Partition. Their
proof constructs a set of circles which first forces some symmetrical free “pockets” in
the resulting circle packing. The set’s remaining circles can then be packed into these
pockets if and only if the related 3-Partition instance has a solution. This means
that there is (probably) no deterministic polynomial-time algorithm that can decide
whether a given set of circles can be packed into a given container. Additionally,
due to the irrational coordinates which arise when packing circular objects, it is also
surprisingly hard to solve circle packing problems in practice. Even when the input
consists of equally-sized circles, exact boundaries for the smallest square container
are currently only known for up to 30 circles, and for 36 circles, see [12]. For right
isosceles triangular containers, optimal results have been published for up to 7 equal
circles, see [22].

The related problem of packing square objects has also been studied for a long time.
The decision problem whether it is possible to pack a given set of squares into the
unit square was shown to be strongly NP-complete by Leung et al. [11], also using a
reduction from3-Partition. Already in 1967,Moon andMoser [14] found a sufficient
condition. They proved that it is possible to pack a set of squares into the unit square
in a shelf-like manner if their combined area, the sum of all squares’ areas, does not
exceed 1/2, see Fig. 2.

At the same time, 1/2 is the largest upper area bound one can hope for, because
two squares larger than the quarter-squares depicted in Fig. 3 cannot be packed. We

?

Fig. 1 Can these circles be packed into the square?
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Fig. 2 Example packing
produced by Moon and Moser’s
shelf-packing

Fig. 3 Worst-case instance for
packing squares into a square

Fig. 4 Worst case for packing
circles into a square

Fig. 5 Example packing
produced by Split Packing

call the ratio between the largest combined object area that can always be packed and
the area of the container the problem’s critical density, or worst-case density.

The equivalent problem for packing circles has remained open. When Demaine
et al. [3] posed the question in 2010, they suggested that the critical density may be
determined by the two-circle instance shown in Fig. 4. Again, it is easy to argue that

123



Discrete & Computational Geometry (2019) 61:562–594 565

Fig. 6 Suspected worst-case
instance for packing circles into
a non-acute triangle

Fig. 7 Example packing
produced by Split Packing

if these two circles were only a little larger, we could no longer pack them into the
unit square without overlap. This means that their combined area constitutes an upper
bound on the area that can always be packed. In this paper, we show that indeed each
set of circles of this total area can indeed be packed, but this requires a fundamentally
different approach than Moon and Moser’s orthogonal shelf-packing, see Fig. 5.

We also study the problem of packing circles into non-acute triangular containers.
It is obvious that circles larger than a triangle’s incircle cannot be packed (compare
Fig. 6), but is it also possible to pack all sets of circles of up to that combined area?
We answer this question in the affirmative and introduce a weighted modification of
the Split Packing algorithm, allowing us to pack circles into asymmetric non-acute
triangles with critical density. See Fig. 7 for an example packing.

Many authors have considered heuristics for circle packing problems, see [8,19] for
overviews of numerous heuristics and optimizationmethods. The best known solutions
for packing equal circles into squares, triangles and other shapes are continuously
published on Specht’s website http://packomania.com [17].

On the other hand, the literature on exact approximation algorithms which actu-
ally give performance guarantees is small. Miyazawa et al. [13] devised asymptotic
polynomial-time approximation schemes for packing circles into the smallest num-
ber of unit square bins. More recently, Hokama et al. [9] developed a bounded-space
competitive algorithm for the online version of that problem. As a byproduct of the
tight worst-case bound, Split Packing yields an approximation algorithm for packing
into single square and triangular containers.

1.1 Results

We prove that the critical density for packing circles into a square is

φs = π

3 + 2
√
2

≈ 53.90%. (1)
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Fig. 8 Split Packing recursively subdivides the container into subcontainers (light gray), before packing
the circles into them (dark gray)

Any set of circles with a combined area of up to that percentage of the square’s area
can be packed, and for any higher percentage, there are sets that cannot be packed.

We also show that, for any right or obtuse triangle, any set of circleswith a combined
area of up to the triangle’s incircle can be packed into that triangle. At the same time,
for any larger area, there are sets that cannot be packed, making the ratio between the
incircle’s and the triangle’s area the packing problem’s critical density. For a right
isosceles triangle, this density is again approximately 53.90%. In the general case, the
critical density for packing circles in a non-acute triangle with side lengths x , y, and
z is

φt = π

√
(x + y − z)(z + x − y)(y + z − x)

(x + y + z)3
. (2)

Our proofs are constructive: We describe a divide-and-conquer approach which
repeatedly splits the set of circles in halves, and then packs these recursively, which is
whywe call this algorithm Split Packing. In Fig. 8,we demonstrate how the subdivision
process looks like for an example set.

Split Packing can also be used as a constant-factor approximation algorithm for the
smallest-area container of a given shape in which a given set of circles can be packed.
For example, the ratio between the areas of the approximated and the optimal square

is at most the reciprocal of the critical density, 3+2
√
2

π
≈ 1.8552.

While we focus on the problem of packing circles into square and triangular con-
tainers in this paper, we see more opportunities to generalize this approach in several
directions, to allow other object and container shapes.We discuss some of these exten-
sions in the conclusion.
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Fig. 9 Splitting circles in half is easy

1.2 Key Ideas

When we tried to prove that indeed all sets of circles with a combined area of up to the
set shown in Fig. 4 could be packed, many strategies proved unsuccessful. But when
we restricted the input set to only allow circles with areas equal to a negative power
of two of the maximally packable area, we were surprised to find that these sets were
easy to pack!

Call the maximally packable area a. A single circle of area a can be packed, see
the upper left of Fig. 9. When splitting this circle into two equally-sized circles, and
also cutting the square into halves along the circles’ tangent, both circles now are
incircles of isosceles right triangles. We can repeat this process of cutting one of the
triangles into two smaller ones with half the area, and again the resulting circles are
the triangles’ incircles. This allows us to recurse, and to repeat the splitting as often
as necessary, until we arrive at the desired set of circles. This divide-and-conquer
approach to recursively split the set of input circles into subsets is the first key idea of
the Split Packing algorithm.

For general sets of circles, we could want to split a circle not exactly in half, but
make one of the circles larger than the other one. In this case, we need to shift the
cut to the side, like in the lower right of Fig. 9. For the small triangle, we can start
another recursion, but it is unclear why we can continue with the recursion for the
quadrilateral. Its shape resembles our triangles, but the lower corner is “cut off”.
We need an argument why these “degenerate triangles” do not break our packing
strategy.
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This is where the second key idea of the Split Packing algorithm comes into play.
When performing the top-level split, we could already decide which circles of the
input set should go on which side of the cut-line. With the power-of-two sets, it did
not matter at all how we split the circle set in half, as we could always split it into
equally-sized halves. But for general sets of circles, we need to proceedmore carefully.
We perform the splitting of the set of circles into subgroups using an algorithm which
resembles greedy scheduling. This makes sure the resulting subgroups are close to
equal in terms of their combined area. If the groups’ areas deviate from the targeted
1:1 ratio, we can gain information about the minimum circle size in the larger group,
allowing us to round off the subcontainer triangles.

Later in this paper, we also introduce a weighted generalization of the Split Packing
approach: When packing into asymmetric triangles, we do not want the resulting
groups to have equal area, as it is not possible to cut the container into two subtriangles
of equal size. Instead, we target a different area ratio, defined by the incircles of the
two triangles created by cutting the container orthogonally its the base through its tip,
see Fig. 19. We call this desired area ratio the split key.

The rest of the paper provides details for this process.

2 Greedy Splitting

The following definition makes it easier to refer to the properties of sets of circles.

Definition 2.1 A set of circles is a multiset of positive real numbers, which define the
circles’ areas. For any set of circlesC , sum(C) is the combined area of the set’s circles
and min(C) is the area of the smallest circle contained in the set.

To differentiate between sets of circles and their elements, we will use upper case
letters to denote sets of circles (C , C1, C2, …), while lower case letters will refer to
their elements (a, b, c); when appropriate, we will also use these letters to refer to the
respective areas.

The method which we use to split the sets of circles in half, Split (Algorithm 1),
resembles a greedy scheduling algorithm, which is why we call it greedy splitting.
The circles are assumed to be sorted by size in descending order. The algorithm first
creates two empty “buckets”, and in each step adds the largest remaining circle of the
input set to the more empty bucket.

If the resulting groups’ areas deviate from the targeted 1:1 ratio, we gain additional
information about the larger group: All its circles are at least as large as the group’s
area difference.

Lemma 2.2 For any C1 and C2 produced by Split(C),

min(C2) ≥ sum(C2) − sum(C1). (3)

Proof Assume for contradiction the last element inserted into C2 (let us call it c) was
smaller than sum(C2) − sum(C1). This means that

123



Discrete & Computational Geometry (2019) 61:562–594 569

sum(C2) − c > sum(C2) − (sum(C2) − sum(C1))

= sum(C1),

meaning that at the moment before c was inserted, sum(C2) would already have been
larger than sum(C1). This is a contradiction, as the greedy algorithm would have put c
into the more empty group C1 in this case. So c must be at least sum(C2) − sum(C1).
Additionally, because the elements were inserted by descending size, all elements in
C2 must be at least as large as c. ��

Algorithm 1 Split(C)

Input: A set of circles C , sorted by size in descending order
Output: Sets of circles C1 and C2
C1 ← ∅
C2 ← ∅
for all c ∈ C do

if sum(C1) ≤ sum(C2) then
C1 ← C1 ∪ {c}

else
C2 ← C2 ∪ {c}

end if
end for
if sum(C1) > sum(C2) then

Swap C1 and C2
end if

3 Split Packing

In this section, we describe Split Packing as a rather general approach, before applying
it to our concrete packing problem in the following sections. This gives rise to the
central Split Packing theorem.

To simplify talking about shapes which can pack certain classes of sets of circles,
we introduce the following notions.

Definition 3.1 C is the set of all sets of circles. C(a) is the set of exactly those sets of
circles C with sum(C) ≤ a. Finally, C(a, b) consists of exactly those sets of circles
C ∈ C(a) with min(C) ≥ b.

Let us give an example for the previous definition, as it is crucial for the rest of this
paper. For any set of circles C contained in C(1, 1

8 ), the combined area of C’s circles
is at most 1, and at the same time, each of C’s circles has an area of at least 1

8 .

Definition 3.2 For any C ⊆ C, a C-shape is a shape in which each C ∈ C can be
packed.

For example, if a shape is a C(a)-shape, this means that it can pack all sets of
circles with a combined area of a. And a C(a, b)-shape can pack all sets of circles
with a combined area of a, whose circles each have an area of at least b. With these
preparations, we can now state our central theorem.
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Theorem 3.3 (Split Packing) A shape s is a C(a, b)-shape if for all 0 ≤ a1 ≤ a2 with
a1+a2 ≤ a, one can find aC(a1, b)-shape and aC(a2,max{a2−a1, b})-shape which
can be packed into s.

Proof Consider an arbitraryC ∈ C(a, b). We use Split(C) to produce two subsetsC1
and C2. As min(C) ≥ b, all circles in the subsets will also have at least an area of b.
Additionally, we know from Lemma 2.2, that min(C2) ≥ sum(C2)− sum(C1). So we
can pack C1 into the C(a1, b)-shape and C2 into the C(a2,max{a2 − a1, b})-shape,
and finally pack the two shapes into s. ��

Written as an algorithm, Split Packing looks as follows:

Algorithm 2 Splitpack(s,C)

Input: A C(a, b)-shape s and a set of circles C ∈ C(a, b), sorted by size in descending order
Output: A packing of C into s

(C1,C2) ← Split(C)  See Algorithm 1
Determine a C(a1, b)-shape s1
Splitpack(s1,C1)
Determine a C(a2,max{a2 − a1, b})-shape s2
Splitpack(s2,C2)
Pack s1, s2, and their contents into s

This is a very general description of the Split Packing approach. To apply it to
concrete packing problems, one needs to show that all steps of the algorithm are
always possible.

Note that the Split Packing algorithm can easily be extended to allow splitting into
more than two subgroups. For simplicity, we only describe the case of two subgroups
here, as this suffices for the shapes we discuss in this paper.

3.1 Analysis

There are two perspectives on the implications of the Split Packing theorem. Firstly,
it gives a sufficient condition for the decision problem if a given set of circles can be
packed into a given container: If the circles have a combined area of at most a, then
the set can be packed.

Secondly, Split Packing can also be used as an approximation algorithm. Suppose
we are given a set of circles of combined area a for which we want to find the smallest
container of a certain shape (for example, triangular or square) in which the set can be
packed. We can then use Split Packing as an approximation algorithm, based on the
critical density d for the container. We can then be sure that this container has at most
1
d times the area of the optimal container.

We first show that Split Packing has polynomial runtime, and then argue about the
approximation factor.

Lemma 3.4 Split Packing requires O(n) basic geometric constructions and O(n2)
numerical operations.
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Proof Each subcontainer in the recursion tree either has two children (if more than
one circle needs to be packed inside, in which case a Split is performed), or one (in
this case, the child is a single circle and the recursion ends). Without the circles, the
recursion tree is a full binary tree with n leaf nodes, meaning that it has exactly n − 1
interior nodes. The root node is the container of the packing problem, which does not
need to be packed. In total, we need to pack 2n − 2 subcontainers, in addition to the
n circles of the input set, leading to O(n) geometric constructions.

In addition, to build the recursion tree, we need at most a quadratic number of
numeric operations: before Splitpack is first invoked, the set of circles has to be
sorted by size in descending order, this can be done in O(n log n) time. Additionally,
each run of the Split subroutine then takes linear time in the size of its input. If Split
would partition its input into two subsets with a similar number of elements in each
case, this would also lead to a runtime of O(n log n). But in the worst case, each run
only splits off one element, so that the total time needed for all Split operations is

tSplit = n + (n − 1) + (n − 2) + · · · + 1 ∈ O(n2). ��

Theorem 3.5 Split Packing, when used to pack circles into aC(a, b)-shape of area A,
is an approximation algorithm with an approximation factor of A

a , compared to the
container of minimum area.

Proof We know from the previous lemma that Split Packing has polynomial runtime.
As for the approximation factor, we can be sure that the area of the optimal container
OPT needs to be at least a, as we need to be able to fit the circles inside without
overlap. At the same time, the area of the approximated container ALG is exactly A,
which means that

ALG

OPT
≤ A

a
. ��

4 Packing into Right Hats

After this general description of Split Packing, we now apply it to concrete containers.
We start with an observation.

If all circles which we want to pack have a certain minimum size, sharp corners of
the container cannot be utilized anyway. This observation motivates a family of shapes
which resemble rounded triangles. We call these shapes hats.

Definition 4.1 For each 0 ≤ b ≤ a, a right (a, b)-hat is an isosceles right triangle
with an incircle of area a, whose three corners are rounded to the radius of a circle of
area b, see Fig. 10.

We show that all sets of circles with a combined area of up to a with a minimum
circle size of b can be packed into a right (a, b)-hat. For the following proofs, we need
to know a hat’s dimensions in detail. We construct these measures using Fig. 11. Note
that the enclosing triangle has a height of r+r

√
2 and a diagonal size of (r+r

√
2)

√
2.

Also, note that the horizontal and diagonal distance from the triangle’s left and right
corners to the circles with radius s is s

√
2.

123



572 Discrete & Computational Geometry (2019) 61:562–594

Fig. 10 A right (a, b)-hat
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Fig. 11 Constructing the dimensions of a right (a, b)-hat

Lemma 4.2 Let r be the radius of a circle of area a, and s be the radius of a circle of
area b. A right (a, b)-hat has

– non-rounded height h(a) = r + r
√
2 =

√
a

π

(
1 + √

2
)
,

– width w(a, b) = 2
(
r + r

√
2
) − 2s

√
2

=
√

a

π

(
2 + 2

√
2
) −

√
b

π
2

√
2,

– diagonal d(a, b) = (
r + r

√
2
)√

2 − s
√
2

=
√

a

π

(
2 + √

2
) −

√
b

π

√
2.
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0.5a0.5a 0.55a0.45a

0.6a
0.4a

0.7a
0.3a

0.9a

0.1a

1a

Fig. 12 Hat-in-hat packings for different ratios of a1 (incircle of left hat) and a2 (incircle of right hat). The
hats do not overlap horizontally if the sum of their corner-diagonals never gets larger than the container
hat’s width

We define two additional measures for the case when one of the bottom corners is not
rounded:

– corner-width w′(a, b) = w(a, b) + s
√
2 =

√
a

π

(
2 + 2

√
2
) −

√
b

π

√
2,

– corner-diagonal d ′(a) = d(a, 0) =
√

a

π

(
2 + √

2
)
.

Lemma 4.3 For each 0 ≤ a1 ≤ a2, a right (a1, 0)-hat and a right (a2, a2 − a1)-hat
can be packed into a right (a1 + a2, 0)-hat.

Proof Place the hats’ tips at the bottom of the container hat and shift them to the
left/right until their sides meet the sides of the container. Figure 12 illustrates how
these packings look for different ratios of a1 and a2. This way of placing the two hats
results in a valid packing if (1) the hats do not overlap each other and (2) the hats fit
into the container hat individually. We will prove these two properties separately.

(1) The hats do not overlap if the sum of their corner-diagonals is less than or equal
to the width of the (a1 + a2, 0)-hat. This can be verified to be true, as follows:
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d ′(a1) + d ′(a2) =
√
a1
π

(
2 + √

2
) +

√
a2
π

(
2 + √

2
)

= 2 + √
2√

π

(√
a1 + √

a2
)

≤ 2 + √
2√

π

(√
2a1 + 2a2

)

=
√
a1 + a2

π

(
2 + 2

√
2
) = w(a1 + a2, 0).

(2) The hats fit into the container hat individually if their corner-width never gets
larger than the container hat’s diagonal. For the (a1, 0)-hat, this is easy to show,
as follows, using the fact that w′(a, 0) is a strictly increasing function on a:

w′(a1, 0) ≤ w′
(
a1 + a2

2
, 0

)
=

√
a1 + a2
2π

(
2 + 2

√
2
)

=
√
a1 + a2

π

(
2 + √

2
) = d(a1 + a2, 0).

For the (a2, a2 − a1)-hat, we need to show that the following inequality holds:

w′(a2, a2 − a1) ≤ d(a1 + a2, 0).

Let a = a1 + a2. It then suffices to show that for all 0 ≤ a1 ≤ a/2,

w′(a − a1, a − 2a1)

=
√
a − a1

π

(
2 + 2

√
2
) −

√
a − 2a1

π

√
2

≤
√

a

π

(
2 + 2

√
2
) = d(a, 0).

The left expression has its only extremum at a1 = 1
4 (3 − √

2)a ≈ 0.3964a. This
point turns out to be a global minimum. As we can check the inequality to be true
for a1 = 0 and a1 = a/2, it always holds between those two values. ��

The next lemma extends this observation to rounded container hats.

Lemma 4.4 For each 0 ≤ a1 ≤ a2, a right (a1, b)-hat and a right (a2,max{a2 −
a1, b})-hat can be packed into a right (a1 + a2, b)-hat.

Proof Lemma 4.3 tells us that Lemma 4.4 is true for b = 0. Now the container’s
corners can be rounded to the radius of a circle of area b, and we need to show that the
two hats from the previous construction still fit inside. But all of the two hat’s corners
are also rounded to (at least) the same radius, so they will never overlap the container,
see Fig. 13. ��

With these preparations, we can finally apply Split Packing to right hats.
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0.7a
0.3a

0.7a
0.3a

Fig. 13 Rounding all hats’ corners by the same radius does not affect the packing

Theorem 4.5 Given a right (a, b)-hat, all sets of circles with a combined area of at
most a and a minimum circle size of at least b can be packed into that hat.

Proof We prove by induction that we can pack each C ∈ C(a, b) into the hat. If C
only consists of a single circle, it can be packed into the hat, as it is at most as big as
the hat’s incircle.

Now assume that for any 0 ≤ b ≤ a, any right (a, b)-hat could pack all sets of
circles into C(a, b) with at most n circles. Consider a set of circles C ∈ C(a, b)
containing n + 1 circles.

Split will partition C into two subsets C1 ∈ C(a1, b) and C2 ∈ C(a2,max{(b2 −
b1, b}). As Split can never return an empty set (except for |C | = 1, a case which we
handled above), each subset will contain at most n circles. We know from Lemma 4.4
that we can find two hats with matching parameters which fit into the container hat.
By assumption, these hats can now pack all sets from C(a1, b) and C(a2,max{(b2 −
b1, b}), respectively, which means that they can especially also pack C1 and C2. If we
then pack the two hats into the container, we have constructed a packing of C into the
container hat. By induction, we can pack each C ∈ C(a, b) into the (a, b)-hat. ��

5 Packing into Squares

With these preparations, we turn to square containers. Having established right (a, b)-
hats as C(a, b)-shapes, to argue about the packing properties of squares is going to be
relatively straightforward. We first argue about the worst-case instance for squares.

To simplify talking about a square’sworst-case instance, we introduce the following
notion in analogy to the incircle:

Definition 5.1 Ashape’s twincircles are the largest two equal circles that can be packed
into the shape.

Lemma 5.2 Two touching equal circles, packed into opposing corners of a square, are
the square’s twincircles, meaning that there are no two larger equal circles which can
be packed.

Proof Let r be the radius of these circles. When eroding the square by r , the result is
a square with a diagonal of 2r . When eroding by a larger radius r + ε, the diagonal
will be smaller than 2r . But the centers of the two circles need to be placed at least
2r + 2ε away from each other, and additionally need a distance of at least r + ε from
the square’s boundary. Both constraints cannot be satisfied at the same time. ��
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Fig. 14 Constructing the
twincircles’ radius r

r

r

r

r

r√
2

Lemma 5.3 The twincircles of a square with area a have a combined area of

atc = π

3 + 2
√
2
a ≈ 0.5390a. (4)

Proof We can construct the twincircles’ radius r as seen in Fig. 14:

2r + 2
r√
2

= √
a ⇐⇒ r =

√
a

2 + √
2
.

So the combined area of the twincircles is

atc = 2πr2 = 2π
a

4 + 4
√
2 + 2

= π

3 + 2
√
2
a. ��

We now proceed in analogy to Lemma 4.3:

Lemma 5.4 For each 0 ≤ a1 ≤ a2, a right (a1, 0)-hat and a right (a2, a2 − a1)-hat
can be packed into a square with a twincircle area of a1 + a2.

Proof Place the hats’ tips in two opposing corners of the square, like in Fig. 15. Again,
this placement constitutes a valid packing because (1) the hats never overlap and (2)
the hats fit into the square individually. We can prove both properties in a similar
fashion as in Lemma 4.3:

(1) The hats do not overlap if their combined height never exceeds the square’s diag-

onal,
√
2+2√
π

√
a1 + a2, which is the case:

h(a1) + h(a2) =
√
a1
π

(
1 + √

2
) +

√
a2
π

(
1 + √

2
)

= 1 + √
2√

π

(√
a1 + √

a2
)

123



Discrete & Computational Geometry (2019) 61:562–594 577

0.5

0.5

0.52

0.48

0.55

0.45

0.6

0.4

0.7

0.3

0.8

0.2

0.9

0.1

1.0

Fig. 15 Hat-in-square packings for different ratios of a1 and a2

≤ 1 + √
2√

π

(√
2a1 + 2a2

)

=
√
2 + 2√

π

√
a1 + a2.

(2) Again, let a = a1 + a2. The hats fit into the square individually if their diagonal

never gets larger than the square’s edge length 1+√
2√

π

√
a. For the smaller hat, this

is easy to show

d(a1, 0) ≤ d

(
a1 + a2

2
, 0

)
=

√
(a1 + a2)/2

π

(
2 + √

2
)

= 1 + √
2√

π

√
a.

For the larger hat, we need to show that the following inequality holds:

d(a2, a2 − a1) ≤ 1 + √
2√

π

√
a.

As a2 is smaller than a − a1, it suffices to show that for all 0 ≤ a1 ≤ a/2,

d(a − a1, a − 2a1)

=
√
a − a1

π

(
2 + √

2
) −

√
a − 2a1

π

√
2

≤ 1 + √
2√

π

√
a.
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The left expression has its only extremum at a1 = 1
14 (9 − 4

√
2)a ≈ 0.2388a.

This point turns out to be a global minimum. As we can check the inequality to
be true for a1 = 0 and a1 = a/2, it always holds between those two values. ��

We are now ready to prove our main result:

Theorem 5.5 Given a square with a twincircle area of a, all sets of circles with a
combined area of up to a can be packed into the square, and this area bound is tight.
See Fig. 16 for some example packings. Expressed algebraically, the critical density
is

φs = π

3 + 2
√
2

≈ 0.5390. (5)

Proof By Lemma 5.4 and the Split Packing theorem (Theorem 3.3), the square is a
C(a)-shape.

On the other hand, as shown in Lemma 5.2, two equal circles with a combined area
of more than a cannot be packed. We know from Lemma 5.3 that the ratio between
the twincircles’ area and the square’s area is π

3+2
√
2
. ��

6 Weighted Greedy Splitting

The second main result of this paper is an algorithm to pack into not necessarily
symmetric, non-acute triangles with critical density. For this, it is necessary to split
the sets of circles recursively into two groups of unequal target area. In the next
sections, we introduce a weighted variant of the Split Packing algorithm.

Fig. 16 Example packings of various sets of circles in a square produced by Split Packing
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Algorithm 3 behaves like Algorithm 1, except that it splits the sets of circles into
two groups according to the split key F , which determines the targeted ratio of the
resulting groups’ combined areas.

If we wanted to split C into equally sized halves, we could choose the tuple (1, 1).
The tuple ( 12 ,

1
2 )would give the same result. For asymmetric containers, we may want

to target a different ratio. For example, if we wanted to make one group three times
as large as the other, we could use the tuple (1, 3).

In the simplest case, the split key will actually describe the desired areas of the two
groups, andWeightedSplit puts the next circle into the group which has the smaller
“relative filling level”.

Algorithm 3WeightedSplit(C, F)

Input: A set of circles C , sorted by size in descending order, and a split key
F = ( f1, f2) with fi > 0

Output: Sets of circles C1,C2
C1 ← ∅
C2 ← ∅
for all c ∈ C do

j = arg mini
sum(Ci )

fi
 Find the index of the more empty bucket.

C j ← C j ∪ {c}
end for

If the resulting groups’ area ratio deviates from the area ratio targeted by the split
key, we gain additional information about the “relatively larger” group: The more this
group exceeds its targeted ratio, the larger the minimum size of its elements, allowing
a “more rounded” subcontainer in the packing. See Fig. 20 for an illustration.

Lemma 6.1 For any C1 and C2 produced by WeightedSplit(C, ( f1, f2)):

min(Ci ) ≥ sum(Ci ) − fi
sum(C j )

f j
. (6)

Proof If sum(Ci )
fi

<
sum(C j )

f j
, then the lemma says that min(Ci ) is larger than a

negative number, which is certainly true.

Otherwise, set r := sum(C j )

f j
. This value describes the smaller “relative filling level”

by the time the algorithm ends. Now assume for contradictionCi contained an element
smaller than sum(Ci ) − fi r . As the elements were inserted by descending size, all
elements which were put into Ci after that element would have to be at least as small.
So the final element put into Ci (let us call it c) would be smaller than sum(Ci )− fi r ,
as well.

But this means that

sum(Ci ) − c

fi
>

sum(Ci ) − (sum(Ci ) − fi r)

fi
= r ,

meaning that at the moment before cwas inserted, the relative filling level ofCi would
already have been larger than r . Recall that r is the smallest filling level of any group
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Fig. 17 The two shapes’ parameters are (a, b, F)-conjugated, which is why they always can be packed.
The numbers represent a1 and a2, and in this case are the areas of the shapes’ incircles

by the time the algorithm ends, meaning that at the time when c is inserted,Ci ’s filling
level is already larger than the filling level of the other group. This is a contradiction,
as the greedy algorithm would choose to put c not into Ci , but into the other group
with the smaller filling level in this case. ��

We now define a term that encapsulates all properties of the sets of circles output
byWeightedSplit. These properties depend on the used split key F , and also on the
combined area a and the minimum circle size b of the set of circles, which is why the
term has three parameters.

Definition 6.2 For any 0 ≤ b ≤ a and any split key F = ( f1, f2), we say that the
tuples (a1, b1), (a2, b2) are (a, b, F)-conjugated if

– a1 + a2 = a,
– bi ≥ b, and
– bi ≥ ai − fi

a j
f j
.

Two sets of circles C1 and C2 are (a, b, F)-conjugated if there are any (a, b, F)-
conjugated tuples (a1, b1) and (a2, b2) so that C1 ∈ C(a1, b1) and C2 ∈ C(a2, b2).

We can now associate this property withWeightedSplit in the following theorem.

Theorem 6.3 For any C ∈ C(a, b) and any split key F = ( f1, f2),
WeightedSplit(C, F) always produces two (a, b, F)-conjugated subsets.

Proof It follows directly from the algorithm that the combined areas of the subsets
add up to a. As the minimum size of all circles in C is b, this must also be true
for the subsets, so min(Ci ) ≥ b. The other minimum-size property follows from
Lemma 6.1. ��

As described, one way to think about conjugatedness is that it gives guarantees for
the minimum sizes of the “larger” produced subset. To provide an intuition of how
the conjugatedness property is used in the later sections, we show several examples
of shapes with (a, b, F)-conjugated parameters in Fig. 17: a1 and a2 represent the
area which can be packed into the respective shape, while b1 and b2 represent their
“rounding” . The shapes can always be packed because if one shape gets larger, it is
rounded so much that it still fits inside the container.
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7 Weighted Split Packing

We now state a weighted version of the Split Packing theorem, before we apply it to
triangular containers in the next section: If it is possible to find two subcontainers that
fit in a given shape, and that can pack all possible subsets produced byWeightedSplit
for a fixed split key F , it is possible to pack the original class of sets of circles into
that shape.

Theorem 7.1 (Weighted Split Packing) A shape s is a C(a, b)-shape if there is a split
key F, so that for all (a, b, F)-conjugated tuples (a1, b1) and (a2, b2) one can find a
C(a1, b1)-shape and a C(a2, b2)-shape which can be packed into s.

Proof Consider an arbitrary C ∈ C(a, b). We use WeightedSplit(C, F) to produce
two subsets C1 and C2. We know from Theorem 6.3 that those subsets will always
be (a, b, F)-conjugated. So if we can indeed find two shapes which can pack these
subsets, and if we can pack these two shapes into s, then we also can pack the original
set of circles C into s.

Note that in the special case that C consists of a single circle, Weighted-
Split(C, F) will yield two sets of circles C1 = {C} and C2 = ∅. For this case,
Theorem 6.3 guarantees a minimum size of a for the first group, and the associated
C(a1, b1)-shape is just an a-circle. This means that we can simply place the input
circle in the container, and stop the recursion at this point. ��

Written as an algorithm, Weighted Split Packing looks like this:

Algorithm 4 WeightedSplitpack(s,C)

Input: A C(a, b)-shape s and a set of circles C ∈ C(a, b), sorted by size in descending order
Output: A packing of C into s
Determine split key F for shape s
(C1,C2) ← WeightedSplit(C, F)  See Algorithm 3.
for all i ∈ {1, 2} do

ai ← sum(Ci )

bi ← minimum guarantee for Ci  See Lemma 6.1.
Determine a C(ai , bi )-shape si
Splitpack(si ,Ci )

end for
Pack s1, s2, and their contents into s

The analysis of theWeighted Split Packing approach follows exactly the same lines
as in the unweighted version, see Sect. 3.1.

Theorem 7.2 Weighted Split Packing requiresO(n) basic geometric constructions and
O(n2) numerical operations.

Theorem 7.3 Weighted Split Packing, when used to pack circles into a C(a, b)-shape
of area A, is an approximation algorithmwith an approximation factor of A

a , compared
to the container of minimum area.
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Fig. 18 An (a, b)-hat

f 2
f 1

Fig. 19 A hat’s associated split key equals ( f1, f2)

8 Packing into Hats

As a preparation for the results about asymmetric triangles, we re-introduce (general)
hats.

Definition 8.1 For each 0 ≤ b ≤ a, an (a, b)-hat is a non-acute triangle with an
incircle of area a, whose corners are rounded to the radius of a b-circle, see Fig. 18.
Call the two smaller angles of the original triangle left-angle and right-angle. If we
say right hat, the hat is based on a right triangle.

We now proceed to show that all sets of circles with a combined area of up to a
with a minimum circle size of b can be packed into an (a, b)-hat.

First, it is important to choose the correct split key when packing into asymmetric
hats. We aim for a group ratio that leads to a cut through the hat’s tip if it is reached
exactly.

Definition 8.2 To get a hat’s associated split key, split the underlying triangle orthog-
onally to its base through its tip, and inscribe two circles in the two sides, see Fig. 19.
The areas of these circles are the two components of the hat’s split key.

Lemma 8.3 Consider an (a, 0)-hat with the associated split key F = ( f1, f2), and
call its left- and right-angles α and β. For all (a, 0, F)-conjugated tuples (a1, b1) and
(a2, b2), the following two shapes can be packed into the hat.

– a right (a1, b1)-hat with a right-angle of α and
– a right (a2, b2)-hat with a left-angle of β.
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Fig. 20 Hat-in-hat packings for different ratios of a1 and a2

The proof of this theorem is rather technical. See Fig. 20 for an intuition of what
the resulting hats look like. Note that, as the hats’ incircles are getting larger than the
targeted area ratio, their corners become more rounded so that they do not overlap the
container’s boundary.

As a preparation for the proof, we establish the following lemma.

Lemma 8.4 Place two circles of combined area a in two corners of a triangle, like in
Fig. 21. Let w be the length of the connecting side of the triangle. Now define p1 and
p2 to be the “projection factors”, so that, when projecting circle ai down onto the
connecting side, the distance between the triangle’s corner and the far point of the
projection is

√
ai pi . The two projections do not intersect if

w ≥
√
a(p21 + p22). (7)

Proof Let w′(a1) = √
a1 p1 +√

a − a1 p2 be the combined width of both projections.

This function has its global maximum at a1 = p21
p1+p2

a, and the maximum value is√
a(p21 + p22). If w is at least as large as this value, the two projections do never

intersect. ��
We can now proceed to prove Lemma 8.3.
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Fig. 21 The circles’ projections do not overlap if w ≥
√
a
(
p21 + p22

)

Proof Place the hats’ tips at the bottom of the container hat, rotate their α- and β-
angles toward the container’s matching angles and push them as far to the left/right as
possible. Figure 20 illustrates how these packings look like for different values of a1
and a2.

This way of placing the two hats results in a valid packing if (1) the hats do not
overlap each other and (2) the hats fit into the hat individually. We are going to prove
these two properties separately.

We first want to show that the hats do not overlap each other. If the hats’ projections
onto the container’s base do not overlap, we found a separating axis and can be sure
that the hats do not overlap, as well. Furthermore, because the hats’ incircles touch the
rightmost part of the left hat’s boundary and the leftmost part of the right hat’s boundary,
it suffices to show that the projections of the hats’ incircles onto the container’s base
do not overlap.

We want to use Lemma 8.4 for this proof, so we need to make a statement about
the projection factors p1 and p2 in Fig. 22: If the top angle is a right angle, we
can see that

√
a p1 = x and

√
a p2 = y. So by the Pythagorean theorem, w2 =

(
√
a p1)2 + (

√
a p2)2. If the top angle is more obtuse, but the incircle’s center stays

at the same x-coordinate (like the dotted variant in Fig. 22), both
√
a p1 and

√
a p2

only get smaller, so for each hat, w2 ≥ (
√
a p1)2 + (

√
a p2)2, which is equivalent to

w ≥
√
a
(
p21 + p22

)
. By Lemma 8.4, this means that the projections of the circles do

not overlap, which in turn means that the two hats do not overlap.
The second property we need to show is that the hats fit into the container individ-

ually. Unfortunately, this part of the proof is going to be long and technical.
If a hat’s incircle is not larger than the incircle of the container hat’s side, it clearly

fits into the container because it is a subset of that side (like all the non-rounded hats
in Fig. 20). So let us assume ai > fi .

In this proof, we are going to use two different length-area ratios, which are illus-
trated in Fig. 23. The first one is d, which describes the ratio between the length of the
triangle’s right leg and the square root of the area of its right incircle fi . Note that for
all triangles similar to the right part of the container triangle, this ratio between the
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Fig. 22 w ≥
√
a
(
p21 + p22

)
holds for each non-acute triangle

a
x y

√
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√
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w

o
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e √
o =

d √
f
i

Fig. 23 The ratios d and e are constant for all similar triangles

length of this edge and the square root of the incircle’s area is a constant. The second
ratio, e, is the ratio between the length of the same right leg and the square root of
the incircle-area of the whole container triangle. Again, it is a constant for triangles
similar to the given container triangle. Note that, in preparation for a generalization
later in this section, we denote the triangle’s incircle by o. From Fig. 23 we can now
observe that e

√
o = d

√
fi , which is equivalent to e = d

√
fi/o.

Moving forward, in Fig. 24, we display the situation when packing a hat into
(without loss of generality) the right leg of the container. fi is the relevant factor from
the split key, ai is the hat’s incircle and bi represents the hat’s rounding.

The hat is placed in such a way that it will never overlap the bottom or the right
leg of the containing triangle, so it is sufficient to show that it does not overlap the
left leg. We can tell from Fig. 24 that this does not happen if the length of the right
side of the triangle the hat is based on (d

√
ai ), minus the length of the right side

of the (bi , 0)-triangle similar to the containers right side (d
√
bi ), plus the length

of the right side of the (bi , 0)-triangle similar to the container (e
√
bi ) is at most

the length of the container’s right leg (d
√

fi ). So the following condition has to
hold:

d
√
ai − d

√
bi + e

√
bi ≤ d

√
fi .
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Fig. 24 Various measurements when packing a rounded hat

As previously observed, e = d
√

fi/o:

d
√
ai − d

√
bi + d

√
fi/o

√
bi ≤ d

√
fi .

In our case, the incircle of the triangle has exactly the maximal area which we want
to pack, so o = a. But even if o ≥ a, the inequality is true if

d
√
ai − d

√
bi + d

√
fi/a

√
bi ≤ d

√
fi .

We can also divide by d and factor out
√
bi to get the following:

√
ai − (

1 − √
fi/a

)√
bi ≤ √

fi . (8)

Let j be the index of the other hat to be packed. We know (from the conjugatedness)
that the sum of both hats’ incircles does not exceed the total area a, so ai + a j ≤ a.
Also, fi + f j ≥ a, as demonstrated in Fig. 25: In right triangles, f1 + f2 is exactly
a, because as its two halves are similar to the large triangle, the two halves’ areas add
up to the container triangle’s area, and the ratio between the areas of a triangle and its
incircle are constant. When making the upper angle more obtuse, but letting f1 and
f2 stay the same, the incircle only shrinks (like the dotted variant in Fig. 25).
Putting it together, by Theorem 6.3, our hat is rounded by

bi ≥ ai − fi
a j

f j
≥ ai − fi

a − ai
a − fi

= ai (a − fi ) − fi (a − ai )

a − fi
= a

ai − fi
a − fi

.

Inserting this into (8) yields

√
ai − (

1 − √
fi/a

)√
a
ai − fi
a − fi

≤ √
fi .
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Fig. 25 In non-acute triangles, f1 + f2 ≥ a

Bringing the subtrahend to the right and squaring both sides (both are positive) yields

ai ≤ fi + 2
√

fi
(
1 − √

fi/a
)√

a
ai − fi
a − fi

+ (
1 − √

fi/a
)2
a
ai − fi
a − fi

.

Subtracting fi and dividing by
√
ai − fi results in

√
ai − fi ≤ 2

√
fi
(
1 − √

fi/a
)√

a√
a − fi

+ (
1 − √

fi/a
)2
a

√
ai − fi
a − fi

.

After rearranging, we get

√
ai − fi

(a − fi ) − (
1 − √

fi/a
)2
a

a − fi
≤ 2

√
fi
(
1 − √

fi/a
)√

a√
a − fi

,

which simplifies to

√
ai − fi

2
√

fi a − 2 fi
a − fi

≤ 2
√

fi a − 2 fi√
a − fi

.

Multiplying with
√
a − fi yields

√
ai − fi

2
√

fi a − 2 fi√
a − fi

≤ 2
√

fi a − 2 fi√
a − fi

√
a − fi .

Finally, divide by the fraction to get

√
ai − fi ≤ √

a − fi ⇐⇒ ai − fi ≤ a − fi ⇐⇒ ai ≤ a.

From the conjugatedness we know that ai is less than or equal to a, so (8) is true and
the hat always fits into the container. This completes the proof of Lemma 8.3. ��

In the previous lemma, the container is always an (a, 0)-hat, which is essentially a
non-rounded triangle with an incircle of a. The next lemma extends this idea to hats
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Fig. 26 Rounding all hats’ corners by the same radius does not affect the packing

which are actually rounded. It is identical to Lemma 8.3, except that the rounding of
the container hat is no longer 0, but b.

Lemma 8.5 Consider an (a, b)-hat with the associated split key F = ( f1, f2), and
call its left- and right-angles α and β. For all (a, b, F)-conjugated tuples (a1, b1) and
(a2, b2) with a1 + a2 ≤ a, the following two shapes can be packed into the hat.

– a right (a1, b1)-hat with a right-angle of α and
– a right (a2, b2)-hat with a left-angle of β.

Proof Lemma 8.3 tells us that Lemma 8.5 is true for b = 0. Now the container’s
corners can be rounded to the radius of a b-circle, and we need to show that the two
hats from the previous construction still fit inside. But all of the two hat’s corners are
also rounded to (at least) the same radius (see Theorem 6.3), so they will never overlap
the container, see Fig. 26. ��

With these preparations, we can apply Split Packing to (general) hats.

Theorem 8.6 Given an (a, b)-hat, all sets of circles with a combined area of at most
a and a minimum circle size of at least b can be packed into that hat.

Proof We prove by induction that we can pack each C ∈ C(a, b) into the hat.
If C only consists of a single circle, it can be packed into the hat, as it is at most as

big as the hat’s incircle.
Now assume that for any 0 ≤ b ≤ a, any (a, b)-hat could pack all sets of circles

into C(a, b) with at most n circles. Consider a set of circles C ∈ C(a, b) containing
n + 1 circles. Definition 8.2 tells us how to compute the split key F . Then we know
from Theorem 6.3 that Split will partition C into two subsets C1 ∈ C(a1, b1) and
C2 ∈ C(a2, b2), whose parameters are (a, b, F)-conjugated.AsSplit can never return
an empty set (except for |C | = 1, a case which we handled above), each subset will
contain at most n circles. We know from Lemma 8.5 that, for all pairs of (a, b, F)-
conjugated tuples, we can find two hats with matching parameters which fit into the
container hat. By assumption, these hats can now pack all sets from C(a1, b1) and
C(a2, b2), respectively, which means that they can especially also pack C1 and C2. If
we then pack the two hats into the container, we have constructed a packing of C into
the container hat.

By induction, we can pack each C ∈ C(a, b) into the (a, b)-hat. ��
Finally, we can state this paper’s second central result.
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Fig. 27 Example packings of various sets of circles into a right triangle produced by Split Packing

Theorem 8.7 Given a non-acute triangle with an incircle of area a, all sets of circles
with a combined area of up to a can be packed into the triangle, and this bound is
tight. See Fig. 27 for some example packings. Expressed algebraically, for a triangle
with side lengths x, y, and z, the critical density is

φt = π

√
(x + y − z)(z + x − y)(y + z − x)

(x + y + z)3
. (9)

Proof The triangle is an (a, 0)-hat, which by Theorem 8.6 is a C(a)-shape.
On the other hand, a single circle of area a + ε cannot be packed, as the incircle is

by definition the largest circle which fits into the triangle.
As for the algebraic formulation of the critical density, the area of the triangle can

be calculated using Heron’s formula:

�(x, y, z) := √
s(s − x)(s − y)(s − z) with s = x + y + z

2
.

It is also known that the radius of the incircle of this triangle is

R(x, y, z) := �(x, y, z)

s
with s = x + y + z

2
,
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Fig. 28 For acute triangles, the
two hats may overlap

0.6a
0.4a

so the incircle has an area of

I (x, y, z) = πR(x, y, z)2 = π
(x + y − z)(z + x − y)(y + z − x)

4(x + y + z)
.

Finally, the ratio between the areas of the circle and the triangle can be calculated to
be

I (x, y, z)

�(x, y, z)
= π

√
(x + y − z)(z + x − y)(y + z − x)

(x + y + z)3
,

For a right isosceles triangle, this density is approximately 53.90%. ��

9 The Problemwith Acute Triangles

A class of triangles for which we have not succeeded in proving the critical density
are acute triangles. The problem is that the condition for Lemma 8.4 is not met, which
means that the two hats may overlap (Fig. 28).

The following term is useful for discussing worst cases:

Definition 9.1 Ashape’s twincircles are the largest two equal circles that can be packed
into the shape.

We work under the following assumption:

Conjecture 9.2 A set of circles can be packed into a triangle if the circles’ combined
area does not exceed the triangles incircle or twincircle, whichever is smaller.

If this conjecture is true, surely there are strategies which can pack into acute
triangles with critical density. For example, we attempted to split the set of circles into
four subsets using a slightly modified Split algorithm, and then to pack those four
hats into the container, like in Fig. 29. Again, this is motivated by the observation that,
when splitting each circle top-down into four equal circles, this strategy always works
because the triangle is recursively divided into four similar triangles.

Unfortunately, this strategy fails for some instances, as depicted in Fig. 30. For this
instance, the largest group, consisting of a single circle, cannot be packed if any of
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Fig. 29 Packing four hats into an
acute triangle

Fig. 30 This strategy does not work for a container with a right-angle of π
10 , incircle 1 and the set of circles{0.55, 0.15, 0.15, 0.15}

the smaller groups is packed into the top or the left corner, because the remaining free
space is not wide enough for the circle. Other strategies or a case distinction would
need to be considered.

10 Conclusion

In this paper, we presented a constructive proof of the critical densities when packing
circles into squares, as well as right or obtuse triangles, using a weighted Split Packing
technique. We see more opportunities to apply this approach in the context of other
packing and covering problems.

It is possible to use Split Packing to pack into other container types. At this point,
we can establish the critical densities for packing circles into equilateral triangles and
rectangles exceeding a certain aspect ratio. One could also consider the problem of
packing into circles, ovals, regular polygons, or generalized quadrilaterals. For some
of these container types, even the worst-case instance does not seem obvious. For
circular and “almost square” rectangular containers, we assume the worst cases would
again be their twincircles, see Fig. 31, but it is unclear how to deal with the resulting
shapes when cutting along the circles’ tangent: Compared to triangular and square
containers, these shapes cannot be split into self-similar pieces. It is also possible that
the depicted instances are not the actual worst cases.

Also, the problem of finding the critical density for packing into acute triangles
is still open. See Sect. 9 for a discussion on why the Split Packing approach does
not directly work for acute ones. A strategy for packing acute triangles with critical
density, combined with the results of this thesis, would give an elegant, general result
for all triangles.
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Fig. 31 Assumed worst-case instances for a circle and a near-square rectangle

Fig. 32 A folding of the tree on the left can be realized by a crease pattern based on the circle/river packing
on the right

Split Packing can also be extended to pack objects other than circles. We can estab-
lish the critical densities for packing octagons into squares, and think we can describe
the maximum shape which can be packed into squares using Split Packing. Objects
like ovals, rectangles, or even more general convex objects could be considered. For
thesemodified problems, again, it does not seem obviouswhat theworst-case packings
would look like.

Another natural extension is the online version of the problem. The current best
algorithm that packs squares into a square in an online fashion by Brubach [1], based
on thework by Fekete andHoffmann [4,5], gives a density guarantee of 2

5 . It is possible
to directly use this algorithm to pack circles into a square in an online situation with a
density of π

10 ≈ 0.3142. It would be particularly interesting to see whether some form
of online Split Packing would give better results.

Our original motivation stemmed from origami design. When only packing cir-
cles, the resulting origami structures resemble arbitrary stars. When one wants to
design general tree-shaped structures, it is necessary to introduce separating pathways
between the circles, a technique called circle/river packing, pioneered by Lang [10]. A
packing scheme like Split Packing seems promising because it often introduces gaps
inbetween two subgroups anyway. At this point, we can establish a constant-factor
approximation for perfectly symmetric binary trees (see Fig. 32), but we do not know
how to approximate the paper size needed for crease patterns of general trees.

It seems like a natural extension to apply Split Packing to three-dimensional packing
problems. For example, one could try to pack spheres into a cube using a Split Packing
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Fig. 33 Left: Assumed worst case for packing spheres into a cube. Right: Two quarter-spheres do not fit in
a half

Fig. 34 An isosceles right triangle can always be covered by two circles with a combined area of its excircle

approach. Unfortunately, this does not directly seem to work out: Assuming the worst
case are two equally sized spheres packed into opposite corners of the cube, one
would like to be able to cut the cube along the spheres’ tangential plane. This results
in two shapes as depicted on the right in Fig. 33, but it is not possible to fit two quarter-
spheres into each of these polyhedra. Still, any extensions regarding three-dimensional
problems would be notable.

Instead of packing circles into containers, one could ask a question which is in some
sense the opposite problem: What is the smallest area so that we can always cover
the container with circles of that combined area? For example, if we want to cover
an isosceles right triangle, and restrict ourselves to at most two circles in our input
set, the area of a circle whose diameter equals the triangle’s hypotenuse is sufficient,
see Fig. 34. To generalize this method, it would now be sufficient to show that all
sets of circles with a combined area equal to the area of the left circle can cover the
quadrilateral on the left, but it does not seem trivial to find an argument for that.
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