
Practical Methods for
Computing Large Covering Tours and Cycle Covers with Turn Cost

Sándor P. Fekete∗ Dominik Krupke∗

Abstract
We study the problem of computing provably optimal and
near-optimal solutions for the NP-hard problem of finding
covering tours and cycle covers with turn cost, which
are of practical importance for a variety of applications,
such as pest control and precision farming. Previous
work has largely focused on theoretical aspects, such as
complexity and approximation. We develop a number of
algorithm engineering techniques and refinements to make
such theoretical insights practically useful, resulting in a
comprehensive study for solving a wide spectrum of large
instances. We compute provably optimal solutions for
instances with more than 1000 pixels, from the largest
previous solved instance size of 76 (de Assis and de Souza
2011). Making use of additional algorithm engineering
techniques for handling very large instances, we also compute
near-optimal solutions for instances with up to 300 000 pixels,
for which we give solutions that are typically within a few
percent of our computed lower bounds. We also provide
an experimental comparison of a practically refined version
of our new theoretical approach with the approximation
technique of Arkin et al. that dates back to 2001; we show
that our new LP/IP-based approximation method closes 70%
of the remaining optimality gap to the lower bound.

1 Introduction

The Traveling Salesman Problem (TSP) is one of the
classic tasks of combinatorial optimization. Easy to
describe but NP-hard to solve, it has given rise to a
large body of research focusing on theoretical aspects
such as complexity and approximation. On the practical
side, the TSP has also stimulated significant work in
algorithm engineering. Ever since Dantzig, Fulkerson
and Johnson [14] in 1954 presented the provably optimal
solution of a 49-city instance based on an (integer) linear-
programming (IP/LP) approach, IP/LP methods have
been used on a wide spectrum of other optimization
problems. With a variety of additional techniques, the
frontiers of TSP instance sizes for which provably optimal
solutions can be computed have been pushed all the way
to 85,900 cities; see [8] for a comprehensive overview.

Research on TSP has also served as the blueprint
for a wide range of other real-world problems, many of
them motivated by generalizations or modifications, such
as lawn mowing and milling, where visiting a discrete
set of points is replaced by covering a geometric region

∗Department of Computer Science, TU Braunschweig, 38106
Braunschweig, Germany, {s.fekete,d.krupke}@tu-bs.de

with a tool or sensor. Other variants arise from modified
objective functions or additional constraints, such as the
total turn of a tour instead of its length.

Figure 1: Satellite image of a real-world instance arising
from mechanized agriculture. Notice the tracks resulting
from the use of large-scale agricultural machinery, and
the uneven crop yield, motivating subset and penalty
versions of the problem. (Image: Google, GeoBasis-
DE/BKG c©2009)

In this paper we present a number of algo-
rithm engineering techniques for computing covering
tours and cycle covers with turn cost, which are of
practical significance in areas such as pest control
and precision farming. (See our related video [12]
https://www.youtube.com/watch?v=SFyOMDgdNao for
an animated illustration in the context of fighting
mosquitoes.) This includes variants such as the sub-
set and the penalty versions of the problem, in which
the objective is to cover appropriate subsets of the given
region. True to the spirit of algorithm engineering, the
work presented in this paper refines and extends our
previous theoretical work [18] that discusses complexity
and approximation.

1.1 Related Work The problem of minimizing the
necessary distance for covering a given region by a
moving tool is known as the Lawnmower Problem; if

186
Copyright © 2019

Copyright for this paper is retained by authors



Figure 2: (Left) A drone equipped with an electrical grid for killing mosquitoes. (Middle) Physical aspects
of the flying drone. (Right) Making turns is expensive. See our related video at https://www.youtube.com/

watch?v=SFyOMDgdNao for details, and [12] for an accompanying abstract.

the tool is required to stay within the region, we are
dealing with the Milling Problem. See Arkin et al. [11] for
a theoretical study, providing approximation algorithms
for both variants. They give a 2.5-approximation for
minimum length milling in orthogonal (not necessarily
integral) polygons with a unit square cutter. For simple
orthogonal polygons, an 11/5-approximation is given
and, in case we can reduce the problem to finding a
covering tour in a grid graph, a 6/5-approximation
algorithm is given (which improves a previous result
of Ntafos [29] of a 4/3-approximation algorithm). For
the mowing variant, a 3 + ε-approximation is provided
that internally uses a PTAS for the Euclidean TSP.

For covering a discrete set of points in the R2 plane
for which only the turning angles are measured, the prob-
lem is called the Angular Metric TSP. For this problem,
the cost function changes from a relatively straightfor-
ward sum of edge weights to more involved combinations
of edges at the vertices, making approximation more
challenging. Aggarwal et al. [4] provide an O(log n) ap-
proximation algorithm for cycle covers and tours that
works even for distance costs and higher dimensions.
Fekete and Woeginger [19] consider the problem of con-
necting a point set with a tour for which the angles be-
tween the two successive edges are constrained. Finding
a curvature-constrained shortest path with obstacles has
been shown to be NP-hard by Lazard et al. [26]. Without
obstacles, the problem is known as the Dubins path [17]
that can be computed efficiently. For different types of
obstacles, Boissonnat and Lazard [13], Agarwal et al. [2]
and Agarwal and Wang [3] provide polynomial-time al-
gorithms or 1 + ε approximation algorithms, respectively.
Takei et al. [32] consider the solution of the problem from
a practical perspective. The Dubins Traveling Salesman
Problem is considered by Le Ny et al.[30]

For covering a geometric region in the presence of

turn cost, Arkin et al. [9, 10] provide a first approxima-
tion algorithm for tours and cycle covers in grid graphs
with turn cost and show hardness of the tour variant.
Most closely related to this submission is our recent
theoretical work [18] that provides important theoretical
progress, resolving Problem 53 in The Open Problems
Project [16] by proving that finding a cycle cover of min-
imum turn cost is NP-hard, even in the restricted case
of grid graphs. As a consequence, we showed that all
relevant problem variants are NP-hard. We also proved
that finding a subset cycle cover of minimum turn cost is
NP-hard, even in the restricted case of thin grid graphs,
in which no induced 2 × 2 subgraph exists. This dif-
fers from the case of full coverage in thin grid graphs,
which is known to be polynomially solvable [10]. We also
provided a general IP/LP-based technique for obtaining
constant-factor approximations for all problem variants;
some details are described in Section 3. This approach
includes the first approximation algorithms for subset
cycle covers and tours, as well as for penalty cycle covers
and tours; these are also valid for travel costs that are
linear combinations of turn and distance costs.

Algorithm engineering for covering tours and cycle
covers with turn cost has been more limited. Maurer [27]
proves that cycle partition with turn cost in grid graphs
can be solved in polynomial time. He also performed
integer programming experiments on cycle cover and
cycle partition. De Assis and de Souza [15] considered
integer programming for tours but were only able to solve
small instances with up to 76 vertices. We considered
their test instances for verification but they showed no
challenge for further evaluation.

The generalization of the Angular Metric TSP
to generic graphs is called the Quadratic Traveling
Salesman Problem where the cost of an edge can depend
on the preceding edge. The solvable instances even for

187
Copyright © 2019

Copyright for this paper is retained by authors

https://www.youtube.com/watch?v=SFyOMDgdNao
https://www.youtube.com/watch?v=SFyOMDgdNao


the geometric angular metric variant are usually very
small (below 100 points), see e.g., [24], [31], [6].

Covering a polygonal area by a tour is an important
practical problem and hence a considerable amount of
work can be found. An extensive survey on mostly
heuristic techniques for robots is given by Galceran and
Carreras [21]. Two common techniques are putting a
grid on the area as we do, see, e.g., Zelinsky et al. [34] or
Gabriely and Rimon [20], or partitioning the polygon into
simple geometric areas (e.g. trapezoidal map) and use
simple patterns to cover these areas, see e.g., Huang [23].

Optimizing cutter paths is considered by Yao et
al. [33] who also mention the increase of costs due
to turns. Planning tractor tours for crop harvesting
operations including turn penalties is analyzed by Ali
et al. [7]. Ahmadzadeh et al. [5] and Agarwal et al. [1]
look at covering tours of UAVs for area observation with
restrictions on the turn radii.

1.2 Our Contribution In this paper we bridge the
gap between theory and practice of finding covering tours
and cycle covers with turn cost, and show how to apply
algorithm engineering techniques in combination with
refined modeling in order to greatly extend the size of
instances for which provably optimal and near-optimal
solutions can be computed.

We provide the following main results.

• We describe an efficient implementation of an
approximation technique for full/subset/penalty
coverage with cycle covers or tours.

• We provide a refined integer programming formula-
tion that can solve instances with over 1000 pixels
using a modern integer programming solver, greatly
extending the magnitude of solvable instances from
the previously published size of 76.

• We present a comprehensive computational study
of instances with up to 300 000 pixels, for which
we give solutions that are typically within a few
percent of the computed lower bounds.

• We also provide a practical comparison of our
approximation algorithm with the approximation
technique of Arkin et al. that dates back to 2001;
we show that our new LP/IP-based approximation
method closes 70% of the remaining optimality gap
to the lower bound for a wide range of benchmark
instances.

2 Preliminaries

Given a grid graph G = (P,E), where P are unit-
sized squares on the integral grid, also called pixels,

p0

p1
2 cycles
30 transitions and 10 turns
Penalty for p0 and p1

Figure 3: Example of a penalty cycle cover whose cost
is a linear combination of the number of transitions and
90◦ turns and the penalties for not covering p1 and p2.

and two pixel are joined by an edge e ∈ E iff they
are adjacent. In addition, we may be given a subset
S ⊆ P of pixels or a penalty function ρ : P → Q+

0 . We
consider tours and cycle covers in grid graphs with three
variations: Full coverage, where every pixel has to be
covered, subset coverage, where at least a specific subset
S has to be covered, and penalty coverage, where every
uncovered pixel p ∈ P involves a penalty ρ(p). The
objective function is an arbitrary but fixed non-negative
linear combination of the number of pixel transitions and
turns. For the penalty variant, the objective function
also contains the sum of penalties for uncovered pixel.
The number of turns is measured in 90◦ turns, which
we also call simple turns. The cost of a u-turn (a turn
of 180◦) corresponds to two simple turns. A cycle is a
closed sequence of at least two adjacent pixels. A pixel
is covered by a cycle if it is in its pixel sequence. A
cycle cover is a set of cycles that together cover all pixels,
while a tour is a cycle cover that consists of a single
cycle. See Fig. 3 for an example.

3 Efficient Implementation of an Approxima-
tion Algorithm

In [18] we describe an approximation technique
that yields constant-factor approximations for
full/subset/penalty cycle covers and tours in grid graphs
(and even more generic geometric instances). The
purpose of that proof was to establish a constant factor
for the worst-case performance, not practical efficiency.
As a consequence, the theoretical algorithm would
struggle (especially regarding memory consumption)
with instances larger than 10 000 pixels, even when
exploiting duality properties to reduce the size of the
auxiliary problems. In this section we give a number
of additional algorithm engineering techniques to turn
this worst-case performance into a significantly more
efficient implementation, based on exploiting more
refined properties. The result is an implementation that
is able to solve instances with hundreds of thousands of
pixels. The corresponding experimental evaluation is
given in Sec. 5. For easier description, we initially focus

188
Copyright © 2019

Copyright for this paper is retained by authors



,8d+ 4t

8d+ 4t

16 transitions and 8 turns16 transitions and 8 turns

1d

1d+ 1t

1d+ 1t

1d

1d+ 1t

1d

2d+ 1t

1d+ 1t

3d+ 1t

3d

1d+ 2t

d = transition costs

t = turn costs per 90◦

Figure 4: Finding the cheapest cycle cover and finding
the ASC with the lowest perfect matching are equivalent
problems. If we select the atomic strip that has either
the correct entry or exit orientation, the cost of the
matching edges equals the cost of the cycle. If the
wrong atomic strip is selected, the cost can increase by
two turns. The weight of the matching edges can be
computed efficiently (in our efficient implementation,
this is actually not necessary). Covering a pixel multiple
times is not a problem, because the matching edges can
skip pixels (for recreating the cycle cover, one just has
to keep track of which ones).

on full coverage cycle covers. The necessary adaptations
for the other variants are sketched in the end.

A fundamental part of the approximation technique
are atomic strips, which allow us to push the turn cost
into the edge weights. Similar to vertices in a grid graph,
they encode positions; in addition each atomic strip
also encodes an orientation by having two entries/exits
in opposite directions. Hence, an atomic strip can be
interpreted as a strip or line of zero (or infinitely small)
length. For each pixel, we have a horizontal and a
vertical atomic strip, of which at least one has to be in
the solution to cover the pixel. Thus, an Atomic Strip
Cover (ASC) is a selection of exactly one atomic strip
per pixel. A cycle cover is obtained by computing a
minimum weight perfect matching on the endpoints of
the selected atomic strips. The weight of a matching
edge equals the minimum cost of transiting between the
two endpoints including the turns at the ends. It is
straightforward to prove that the minimal matching over
all possible ASCs corresponds to an optimal solution,
see Fig. 4 and [18] for more theoretical details.

In the original algorithm we use an integer program
(IP) that combines finding this ASC with its correspond-
ing matching. This IP is then solved fractionally; for
each pixel, the strip with the higher fractional value
for an ASC is selected. We were able to show that the
matching of this ASC yields a solution at most 4 times
higher than the optimal solution by using polyhedral
arguments. See Fig. 5 for an illustration.

We first show how to implement the ASC and
matching parts of the approximation algorithm for
(full) cycle cover. Afterwards we sketch how to obtain

algorithms for subset and penalty coverage, as well as
the tour variants. An extension to other grids is also
possible.

3.1 Atomic Strip Covers Formulating the problem
of finding the ASC with the best matching as an integer
program requires O(|P |) Boolean variables for the atomic
strips and O(|P |2) Boolean variables for the matching
edges. In addition, the weight of the matching edges has
to be computed, which can be very time-consuming for
large grid graphs.

There are multiple possibilities for formulating the
cycle cover problem as an integer program. Almost all
of these formulations are potential replacements for the
linear relaxation of the original integer program, because
the solutions can easily be transformed and the proof
in [18] only requires a fractional solution that is a lower
bound on the optimum.

Lemma 3.1. ([18]) A fractional solution for Atomic
Strip Cover and matching (see Fig. 5 left) can be
transformed into an integral solution of at most four
times the objective value.

We extract the Atomic Strip Cover from the frac-
tional solution of the following IP, which we selected
based on prior experiments. We use the non-negative
variables xijk = xkji ∈ N0 for pixel pj ∈ P and adjacent
pixels pi, pk ∈ N(pj) that state how often the transition
pi − pj − pk or pk − pj − pi is used, see Fig. 6. Let
costj(i, k) ∈ Q+

0 map the cost of this transition. We
minimize the overall coverage costs; Eq. (3.2) enforces a
pixel to be covered and Eq. (3.3) enforces the transitions
between two adjacent pixels to match.

min
∑
pj∈P

∑
pi,pk∈N(pj)

costj(i, k) · xijk
(3.1)

s.t.
∑

pi,pk∈N(pj)

xijk ≥ 1 ∀pj ∈ P
(3.2)

2 · xjij +
∑

pk∈N(pi),pk 6=pj

xjik =(3.3)

2 · xiji +
∑

pk∈N(pj),pk 6=pi

xijk ∀{pi, pj} ∈ E

Obtaining a fractional Atomic Strip Cover from the
fractional solution of this IP is done as follows. If a
coverage variable represents a straight transition, add its
value to the equally oriented strip, otherwise distribute
the value equally between both, because both are valid
selections. Our approximation algorithm selects the
dominant strip, i.e., the strip with the highest value in

189
Copyright © 2019

Copyright for this paper is retained by authors



1. Get fractional solution 2. Extract Atomic Strip Cover 3. Match atomic strips

0:5

0:5 1:0

1:0

Figure 5: Example of the approximation algorithm for a simple full cycle cover in a grid graph. First a fractional
solution for the atomic strip cover matching formulation is computed via linear programming. Strips and edges
with value 0 are omitted, while dashed ones have a value of 0.5. Then the dominant (i.e., highest valued) atomic
strips of this solution are selected. The grey atomic strips are ambiguous, i.e., we could have also chosen the other
one. Finally, a minimum weight perfect matching on the ends of the atomic strips is computed. Recall that the
atomic strips do not have any length (but only an orientation) so the curves in the corner are actually simple 90◦

turns.

Figure 6: There are 10 ways of covering a pixel; each
one corresponds to a variable of the IP.

the fractional solution. See Fig. 7 for an illustration.
This Atomic Strip Cover equals the selection of an equal
weighted fractional Atomic Strip Cover and matching as
in the original algorithm in [18] and is hence a feasible
replacement.

Lemma 3.2. A fractional solution of the IP (3.1)-(3.3)
can be converted into a fractional solution (of equal
objective value) of original IP, i.e., a fractional Atomic
Strip Cover with a corresponding fractional matching.

Proof. It is easy to see that for an integral cycle we can
easily extract matching atomic strips and corresponding
connecting edges of equal cost. For transforming a
fractional solution, simply multiply the solution by
some value z such that all cycles become integral. Do
the transformation independently, i.e. do not care for
double coverages, for every integral cycle and afterwards
divide the solution again by z. Remove the superfluous
coverages by connecting matching edges at both ends of
an overused atomic strip directly which does not increase
the cost but decreases the usage of the atomic strip. Note
that the original integer program allowed loop edges in
the fractional solution as they cannot appear in integral
solutions and do not harm the proof.

3.2 Matching We now have an atomic strip cover,
i.e., an atomic strip per pixel, that we now need to
connect to a cycle cover via a matching on the end points.
A näıve matching of the strips results in a quadratic

size matching graph, where each edge represents a
connection that has to be computed and stored. Even
when utilizing the dual of the primal-dual matching
algorithm to exclude edges, the memory and time
consumption showed to be too high for larger instances
(> 10 000 pixels). However, one can use the simple
structure of a grid graph to solve this problem much more
efficiently: The matching in Fig. 4 can also be expressed
as a matching that only uses short edges between two
adjacent pixels if we are allowed to add additional strips,
see Fig. 8. We can add such optional strips by having a
zero-cost edge between its two endpoints, such that it
disappears without cost if it is not needed. Recall that
we match the end points of the atomic strips; thus, using
the zero-cost edge effectively removes the corresponding
atomic strip. Further, we can limit the maximally needed
strips to two horizontal and two vertical strips due to
the following lemma.

Lemma 3.3. (Arkin et al. [10]) If a cycle cover cov-
ers a pixel more than four times or is passed straight
more than two times in the same orientation, the length
of the cycle cover and the coverage of the pixel can be re-
duced by local optimization without increasing the turns.

The strip of the Atomic Strip Cover does not get such a
removal edge, because it has to be used by the proper
cycles, so we are left with 82 edges per two adjacent
pixels and three zero-cost edges per pixel.

3.3 Subset and Penalty Coverage Subset cover-
age can be easily expressed as penalty coverage by mak-
ing the penalty extremely high for mandatory pixel and
zero for optional pixel. So we can limit ourselves to the
penalty coverage variant. The idea for penalty coverage
is to introduce an artificial cycle for each pixel with

190
Copyright © 2019

Copyright for this paper is retained by authors



0:5

0:5

0:5

1. Get fractional solution 2. Extract Atomic Strip Weights 3. Select dominant atomic strips

0:5
0:5

0:5
0:5

0:5
0:5

0:5
0:5

0:5 0:5
1:0 1:0

Figure 7: Obtaining the Atomic Strip Cover from the IP (3.1)-(3.3). Note that the overcoverage of some pixel is
not a problem, because we can reduce it by connecting two matching edges of the endpoints of the atomic strip,
i.e., skip it without increasing the cost.

00

0

Figure 8: If we add optional atomic strips (gray), we only
need matching edges between atomic strips of adjacent
pixel. Optional atomic strips can be created by adding a
zero-cost edge between its endpoints that allow it to be
neutralized if not needed. We need at most three such
optional atomic strips per pixel.

the cost of the penalty that covers exactly this pixel.
For this we can add an edge to each atomic strip that
connects the both endpoints. The weight of such an
edge is the penalty for not covering the corresponding
cycle. When using IP (3.1)-(3.3) we only need to add an
additional Boolean variable for each pixel that expresses
using the corresponding penalty cycle. This variable
needs to be added to the objective function and the
coverage constraint. See [18] for more details on this
idea.

3.4 Tours For full coverage one can always connect
two adjacent cycles with at most two additional turns and
two additional transitions as shown by Arkin et al. [10].
They also showed that if a pixel is covered more than four
times by a tour, we can do a local optimization. Because
every cycle has at least four turns and two transitions
on its own, greedily connecting adjacent cycles provides
us an approximation factor of 6.

For subset coverage we do not necessarily have
adjacent cycles but one can build a graph where
every cycle is a vertex and every edge is the cheapest

Figure 9: Connecting subset cycles (cycles in black,
subset pixel in orange) by a minimum spanning tree (red
edges) on the components/cycles.

connection between these two cycles. In [18] we show
that connecting the cycles to a tour via a minimum
spanning tree in this graph (see Fig. 9) provides us an
approximation factor of 10.

For penalty coverage we also have to consider
that we could decide not to cover pixels instead of
connecting the cycles. In [18] we show that by using a
2-approximation for the Prize-Collecting Steiner Tree
instead of a Minimum Spanning Tree, one can obtain a
12-approximation.

3.5 Other Grids The approximation technique in-
cluding the just presented techniques for runtime im-
provement can also be applied to more generic grid
graphs such as hexagonal or 3-dimensional grids. For
hexagonal or 3-dimensional grids we would need three
atomic strips per vertex. In general one has to make
sure that for every possible coverage possibility of a ver-
tex/pixel either incoming or the outgoing orientation
matches the endpoint of an atomic strip. Of course this
may need more optional atomic strips for the matching
technique. Note that while we are using uniform dis-
tance costs here, the algorithm theoretically allows the
usage of heterogeneous edge lengths. Also the turning
angles would allow some heterogeneity and hence one
could for example also compute solutions for ‘warped’

191
Copyright © 2019

Copyright for this paper is retained by authors



grid graphs. Obtaining ‘well deformed’ grid graphs for
natural instances, e.g. fields for harvesting, instead of
just putting a uniform grid over it is a potential next
step to improve the practicality of this approach.

4 Integer Programming

We provide further details on an integer programming
formulation for solving the full coverage tour problem
to optimality. The IP in Eq. (3.1) to (3.3) described in
Sec. 3.1 already provides a powerful IP formulation for
the cycle cover problem. We experimented with different
formulations; this turned out to be the best for most
cases and variants. It is analogous to the cycle cover
formulation used by Maurer [27]; in order to make it
useful for tours, it only lacks constraints for subtour
elimination. These subtour elimination constraints are
more complicated than for the classic TSP, because
here cycles can intersect without being connected. We
describe two different variants: a simple but insufficient
one analogous to the one for TSP, and a more complex
one that is sufficient.

Note that the more general penalty coverage variant
is described in [28]. The difficulty with penalty tours
is that when enforcing connectivity one has to consider
the possibility of paying the penalty.

4.1 A Necessary Family of Simple Tour Con-
straints Let C be a subtour that is not crossed by
any other cycle. It is easy to see that there has to be
a variable used that allows to leave the set of pixels
P ′ = {pi ∈ C} covered by C.

∑
pj∈P ′,i,k∈N(pj),pi 6∈P ′

xijk ≥ 1 ∀P ′ ( P, P ′ 6= ∅(4.4)

This is valid for any real non-empty subset P ′ ( P
of pixels, independent of any cycle. Therefore, C may
also consist of, e.g., two intersecting cycles, as long as C
does not fully cover all pixel P . This constraint forces
cycles to intersect but the turn costs prevent us from
assuming that this is sufficient for connecting the cycles.
For example the two cycles in Fig. 10 intersect and hence
fulfill above constraint but connecting them would cost
us two extra turns.

4.2 A Sufficient Family of Advanced Tour Con-
straints The following constraint prohibits all subtours
C that have a pixel pf only covered by C and another
pixel pf ′ not covered by C. For cycle covers that do not
already contain a tour, you can argue the existence of
such pixels by using the corner pixels which can only be
covered by one cycle (as they automatically connect all
their cycles). The constraint enforces that either pf is

Figure 10: The blue and the green cycle intersect, so
the first tour constraint is satisfied even though the two
cycles are not connected. We can use the second tour
constraint to force the cycles to connect using the black
dotted pixel as pf . The constraint forces at least one of
the red traversals to be used.

passed differently, or there is a turn in a pixel traversed
without a turn by C, or a currently unused variable is
used in one of the other pixels of C. Let Fs be the set of
pixels different from pf that are traversed without a turn
by C. Other cycles may also pass pixels in Fs, but not
by a simple turn as otherwise they would be connected
with C. Let T (pi) be the simple turn variables for the
pixel pi ∈ P and let x′ denote the value of a variable in
the current solution.

∑
i,j∈N(pf ),x′

ifj=0

xifj +
∑

t∈T (pi),pi∈Fs

t(4.5)

+
∑

pj∈C\(Fs∪{pf}),i6=k∈N(pj),x′
ijk=0

xijk ≥ 1

An example of this constraint can be seen in Fig. 10.
This constraint has to be constructed and added for
every intermediate solution that is not a tour (but only
a cycle cover).

5 Practical Computation

We implemented and tuned our approximation tech-
nique as well as an optimal solver based on integer pro-
gramming for full, subset, and penalty cycle covers and
tours in grid graphs. We used CPLEX 12.7.1.0 and
the Minimum-Weight Perfect Matching implementation
of Kolmogorov [25]. For connecting the penalty cycle
cover to a tour, we used a Prize-Collection Steiner Tree
implementation (proven 2-approximation) of Hedge, In-
dyk, and Schmidt [22]. Furthermore, we implemented
the approximation algorithm of Arkin et al. as a com-
parison. The (C++)-code, test instance examples, and
further material can be found on https://github.com/

d-krupke/turncost.
We used two different generators for creating random

test instances that are motivated by floor plans. The first
one (Type I) uses a random orthogonal polygon with 20
to 200 vertices and selects all points of a grid inside of

192
Copyright © 2019

Copyright for this paper is retained by authors

https://github.com/d-krupke/turncost
https://github.com/d-krupke/turncost


Figure 11: An example instance of Type I with 7684
pixels.

it; see Fig. 11 for an example. The second one (Type II)
takes a union of random rectangles, with the maximum
size of a rectangle bounded by O(

√
N), N being the

desired size. We used two different parameter settings
to obtain instances of different granularity, denoted by
Type IIa and Type IIb; examples are shown in Fig. 12
for Type IIa and Fig. 13 for Type IIb. While the test
instance for Type II have a uniform size distribution,
for Type I there are more smaller than larger instances,
because the amount of pixel is harder to control in the
generation process.

The practical computations were performed on
regular desktop computers equipped with an Intel(R)
Core(TM) i7-6700K CPU @ 4.00 GHz and 64 GB of
RAM. The used CPLEX version was 12.7.1.0 with
the parameters EpInt=0, EpGap=0, EpOpt=1× 10−9,
and EpAGap=0. For integer programming, CPLEX was
supplied with solutions of the approximation algorithm.
In all cases, the objective function models the travel cost
arising from a linear combination of turn and distance
cost, with a range of different coefficients, accounting for
different relative cost of making turns.

In Fig. 15 we see how many instances of Type II
can be solved to optimality within 15 min. One can
see that instances of Type IIa seem to be harder than
instances of Type IIb, which is surprising, because
instances of Type IIb have the more complicated
polygons. Further we evaluated the common and
usually much more efficient way of adding the subtour
elimination constraints directly to every integral solution
in the branch-and-bound process via callbacks versus
only adding these to optimal solutions and restart the
solving process until a connected solution is obtained.
Surprisingly the second variant is able to solve more

Figure 12: An example instance of Type IIa with 10 052
pixels.

Figure 13: An example instance of Type IIb with 10 004
pixels.

193
Copyright © 2019

Copyright for this paper is retained by authors



Figure 14: Difference in runtime for cycle cover and tour
for the same experiments as in Fig. 15. Runtime capped
at 15 min. A positive value means the tour took longer.
Surprisingly there are also some instances where the
cycle cover was significantly harder to solve (the cycle
cover problem is already NP-hard itself). Usually the
runtime is very close.

instances within the time limit even though the first is
usually faster. A possible explanation may be that the
turn cost constraint tends to minimize the number of
cycles and usually only few additional constraints are
needed. The runtime difference for cycle cover and tours
is shown in Fig. 14. It shows that the cycle cover and
the tour problem are often nearly equally hard to solve.

For full cycle covers and tours, Fig. 16 gives a
comparison and ground truth of our approximation
algorithm with the provably optimal objective values for
instance sizes up to about 1000 pixels; it can be seen
that the computed value is mostly within 1-2% of the
optimum. For large instances of Type I and size up to
300 000 pixels, Fig. 18 (left) shows the optimality gap
of the computed solutions with respect to the fractional
lower bound, both for our new approximation method
(FK) and the one by Arkin et al. (ABD+); it can be
seen that overall, FK closes about 70% of the gap left
by ABD+. Analogous results for Type IIa are shown in
Fig. 18 (middle), with easily 75% of the optimality gap of
ABD+ closed by FK. The results for Type IIb (plotted
in Fig. 18 right) show greater variance, but overall a
similar relative performance. A runtime comparison for
our approximation algorithm for cycle cover is given in
Fig. 17. For some instances of Type II (in particular,
for those of Type IIb with the “roughest” boundaries),
the runtime is affected by the effort for solving the
linear program and computing the matching (as shown
in Fig. 17). While a higher turn cost seems to affect the
runtime negatively, this effect is low compared to the

general deviation. Our optimized implementation of our
new approximation method (FK) was frequently faster
than our näıve implementation of the approximation
algorithm by Arkin et al. (ABD+); however, this is an
unfair comparison and an optimized implementation of
the later should be visibly faster such that we only have
an advantage regarding the solution quality.

Finally, results for the penalty variants of optimal
cycle covers and tours for instances of Type IIa up
to 50.000 pixels are shown in Fig. 19. Despite the
more involved objective function and solution space,
the optimality gap compared to a fractional lower bound
is typically about 20% and never more than 50%, even
for the tour version.

6 Conclusion

We have provided significant practical progress on
computing provably optimal and near-optimal solutions
to large and very large instances of tour planning
problems with turn cost, pushing the frontiers of
instances that can be practically handled from the
previous 76 pixels to more than 1000 (for provably
optimal) and even to more than 300,000 (for near-
optimal). As a consequence, practical problems of
precision farming and pest control that were previously
relying on local heuristics without any performance
guarantee can now rely on well-understood algorithmic
techniques with excellent performance guarantees. This
shows the power of algorithm engineering techniques,
demonstrating that new theoretical algorithmic insights
can be turned into important practical breakthroughs.

We see a considerable range of practical future
developments. These include adapting our techniques
to further practical problems, in which covering tours
are one component of integrated optimization problems
involving several types of agricultural robots. In addition,
new progress in precision farming (which aims at making
use of refined data describing intricacies of plant growth
and ground yield) will make it relevant to adjust subset
and penalty tours according to changing situations.
We are optimistic that demonstrating the practical
benefits of algorithm engineering will be helpful for future
interdisciplinary collaboration in the context of digital
agriculture.

Acknowledgements

We thank Aaron T. Becker, An Nguyen, Mary Burbage,
and Shriya Bhatnagar for the mosquito hunting drone,
and Lennart Trösken for helping with the field example.
We also thank the anonymous reviewers for their
constructive feedback.

194
Copyright © 2019

Copyright for this paper is retained by authors



Figure 15: Percentage of instances that could be solved to optimality within a time limit of 15 min. There are
roughly 20 instances of Type II(a and b) per 50 pixel step. The cost function is number of transitions plus 50×
the number of simple turns. Due to the limited size, the turn costs dominate. The right plot shows a solver that
added subtour elimination constraints only to optimal solutions while the left solver used the non-deterministic
mode with callbacks that directly added subtour elimination constraints to every integral solution. Suprisingly
the later can solve fewer instances to optimality but is usually faster if it can. In both cases the instances with
smoother boundary (Type IIa) are harder to solve.

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 100  200  300  400  500  600  700  800  900  1000  1100

o
p

ti
m

a
lit

y
 r

a
ti

o

size in pixel

Cycle Cover

Type IIa
Type IIb

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 100  200  300  400  500  600  700  800  900  1000  1100

o
p

ti
m

a
lit

y
 r

a
ti

o

size in pixel

Tour

Type IIa
Type IIb

Figure 16: Relative performance of the new approximation algorithm compared to the optimal solution, for
instances of Type IIa and Type IIb. For cycle covers (left) it can be seen that the approximation algorithm mostly
produces very small gaps for cycle cover; it often finds the optimum, most of the other times it is within less than
1-2% of the optimum. This indicates that for larger instances, a major part of the remaining gap may be due to
the heuristic lower bound, implying that the quality of the found solution is even better. For tours (right), the
performance is worse, due to heuristic greedy merging of cycles into a tour. The objective function is a linear
combination of 50 times the number of simple turns, plus the number of pixel transitions. Only instances that
could be solved within 15 min to optimality by the integer program are considered.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

ti
m

e
 i
n
 s

e
co

n
d
s

size in pixel

Cycle Cover

Type I(5)
Type I(50)

Type I(500)
Type IIa(5)

Type IIa(50)
Type IIa(500)

Type IIb(5)
Type IIb(50)

Type IIb(500)
 0

 5000

 10000

 15000

 20000

 25000

100k 150k 200k 250k 300k 350k

ti
m

e
 i
n
 s

e
co

n
d
s

size in pixel

Cycle Cover

Type I(5)
Type I(50)

Type I(500)

Figure 17: Runtime of the cycle cover approximation algorithm for Type I, Type IIa, Type IIb and different turn
cost coefficients, indicating the relative cost of a simple turn vs. a pixel transition. (Left) Instances with up to
100 000 pixels for all types. (Right) Very large instances with more than 300 000 pixels for Type I.

195
Copyright © 2019

Copyright for this paper is retained by authors



 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 500 1k 2k 4k 8k 16k 32k 64k 128k 256k

o
b
j/
lb

size in pixel

Cycle Cover for Type I

FK (5)
ABD+ (5)

FK (50)
ABD+ (50)

FK (500)
ABD+ (500)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 500 1k 2k 4k 8k 16k 32k 64k 128k 256k

o
b
j/
lb

size in pixel

Tour for Type I

FK (5)
ABD+ (5)

FK (50)
ABD+ (50)

FK (500)
ABD+ (500)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 25000  50000  75000  100000

o
b
j/
lb

size in pixel

Cycle Cover for Type IIa

FK (5)
ABD+ (5)

FK (50)
ABD+ (50)

FK (500)
ABD+ (500)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 25000  50000  75000  100000

o
b
j/
lb

size in pixel

Tour for Type IIa

FK (5)
ABD+ (5)

FK (50)
ABD+ (50)

FK (500)
ABD+ (500)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 25000  50000  75000  100000

o
b
j/
lb

size in pixel

Cycle Cover for Type IIb

FK (5)
ABD+ (5)

FK (50)
ABD+ (50)

FK (500)
ABD+ (500)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 25000  50000  75000  100000

o
b
j/
lb

size in pixel

Tour for Type IIb

FK (5)
ABD+ (5)

FK (50)
ABD+ (50)

FK (500)
ABD+ (500)

Figure 18: Relative performance of the approximation methods for very large (but simple) instances of Type I
and large (and more complex) instances of Type IIa and Type IIb. For examples of these instances see Fig. 11,
Fig. 12, resp. Fig. 13. The objective function is a linear combination of c times the number of simple turns, plus
the number of pixel transitions, for c = 5, 50, 500. Shown is the ratio between the achieved objective value divided
by the fractional lower bound. The difference between the cycle cover version and the tour version is in most
cases insignificant, because the cycles are usually relatively large, so the cost of connecting the cycles is negligible
compared to the costs of the cycles themselves.

196
Copyright © 2019

Copyright for this paper is retained by authors



 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

o
b

j/
lb

size in pixel

Penalty Cycle Cover

Type IIb(100)
Type IIb(50)
Type IIb(20)

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

o
b

j/
lb

size in pixel

Penalty Tour

Type IIb(100)
Type IIb(50)
Type IIb(20)

Figure 19: Performance of the penalty variant of the
new approximation algorithm on instances of Type IIa.
The cost of a simple turn is 500× that of a pixel
transition, while the penalty for missing a pixel is 100,
50 or 20 times the cost of a pixel transition. The
‘pockets’ at the boundaries make instances of this type
particularly challenging, because paying the penalty
instead of performing expensive detours is a non-trivial
alternative.

References

[1] Amit Agarwal, Meng-Hiot Lim, Meng-Joo Er, and
Chan Yee Chew. Aco for a new TSP in region coverage.
In Proceedings of the 18th IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 1717–1722, 2005.

[2] Pankaj K. Agarwal, Therese C. Biedl, Sylvain Lazard,
Steve Robbins, Subhash Suri, and Sue Whitesides.
Curvature-constrained shortest paths in a convex poly-
gon. SIAM Journal on Computing, 31(6):1814–1851,
2002.

[3] Pankaj K. Agarwal and Hongyan Wang. Approximation
algorithms for curvature-constrained shortest paths.
SIAM Journal on Computing, 30(6):1739–1772, 2000.

[4] Alok Aggarwal, Don Coppersmith, Sanjeev Khanna,
Rajeev Motwani, and Baruch Schieber. The angular-
metric traveling salesman problem. SIAM Journal on
Computing, 29(3):697–711, 1999.

[5] Ali Ahmadzadeh, James Keller, George Pappas, Ali
Jadbabaie, and Vijay Kumar. An optimization-based
approach to time-critical cooperative surveillance and
coverage with uavs. In Experimental Robotics, pages
491–500. Springer, 2008.

[6] Oswin Aichholzer, Anja Fischer, Frank Fischer,
J Fabian Meier, Ulrich Pferschy, Alexander Pilz, and
Rostislav Staněk. Minimization and maximization ver-
sions of the quadratic travelling salesman problem. Op-
timization, 66(4):521–546, 2017.

[7] Osman Ali, Bart Verlinden, and Dirk Van Oudheusden.
Infield logistics planning for crop-harvesting operations.
Engineering Optimization, 41(2):183–197, 2009.

[8] David L. Applegate, Robert E. Bixby, Vašek Chvátal,
and William J. Cook. The Traveling Salesman Problem:
A Computational Study. Princeton University Press,
2007.

[9] Esther M. Arkin, Michael A. Bender, Erik D. Demaine,
Sándor P. Fekete, Joseph S. B. Mitchell, and Saurabh
Sethia. Optimal covering tours with turn costs. In
Proceedings of the 12th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 138–147, 2001.

[10] Esther M. Arkin, Michael A. Bender, Erik D. Demaine,
Sándor P. Fekete, Joseph S. B. Mitchell, and Saurabh
Sethia. Optimal covering tours with turn costs. SIAM
Journal on Computing, 35(3):531–566, 2005.

[11] Esther M. Arkin, Sándor P. Fekete, and Joseph S. B.
Mitchell. Approximation algorithms for lawn mowing
and milling. Computational Geometry: Theory and
Applications, 17(1-2):25–50, 2000.

[12] Aaron T. Becker, Moustafa Debboun, Sándor P. Fekete,
Dominik Krupke, and An Nguyen. Zapping zika with a
mosquito-managing drone: Computing optimal flight
patterns with minimum turn cost. In Proceedings of
the 33rd International Symposium on Computational
Geometry (SoCG), pages 62:1–62:5, 2017. Video at
https://www.youtube.com/watch?v=SFyOMDgdNao.

[13] Jean-Daniel Boissonnat and Sylvain Lazard. A
polynomial-time algorithm for computing a shortest

197
Copyright © 2019

Copyright for this paper is retained by authors

https://www.youtube.com/watch?v=SFyOMDgdNao


path of bounded curvature amidst moderate obstacles.
In Proceedings of the 12th Annual Symposium on Com-
putational Geometry (SoCG), pages 242–251, 1996.

[14] G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson.
Solution of a large-scale traveling-salesman problem.
Operations Research, 2:393––410, 1954.

[15] Igor R. de Assis and Cid C. de Souza. Experimental
evaluation of algorithms for the orthogonal milling
problem with turn costs. In Proceedings of the 10th
International Symposium on Experimental Algorithms
(SEA), pages 304–314, 2011.

[16] Erik D. Demaine, Joseph S. B. Mitchell, and O’Rourke
Joseph. The open problems project. URL: http:

//cs.smith.edu/~orourke/TOPP/.
[17] Lester E Dubins. On curves of minimal length with a

constraint on average curvature, and with prescribed
initial and terminal positions and tangents. American
Journal of Mathematics, 79(3):497–516, 1957.

[18] Sándor P. Fekete and Dominik Krupke. Covering tours
and cycle covers with turn costs: Hardness and approxi-
mation. arXiv, 2018. http://arxiv.org/abs/1808.04417.

[19] Sándor P. Fekete and Gerhard J. Woeginger. Angle-
restricted tours in the plane. Computational Geometry:
Theory and Applications., 8:195–218, 1997.

[20] Yoav Gabriely and Elon Rimon. Spiral-stc: An on-line
coverage algorithm of grid environments by a mobile
robot. In Proceedings of the 19th IEEE Conference
on Robotics and Automation (ICRA), pages 954–960.
IEEE, 2002.

[21] Enric Galceran and Marc Carreras. A survey on
coverage path planning for robotics. Robotics and
Autonomous Systems, 61(12):1258–1276, 2013.

[22] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt.
A nearly-linear time framework for graph-structured
sparsity. In Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence (IJ-
CAI), pages 4165–4169, 2016.

[23] Wesley H. Huang. Optimal line-sweep-based decom-
positions for coverage algorithms. In Proceedings of
the 18th IEEE Conference on Robotics and Automation
(ICRA), pages 27–32. IEEE, 2001.

[24] Gerold Jäger and Paul Molitor. Algorithms and ex-
perimental study for the traveling salesman problem
of second order. In Proceedings of the 2nd Interna-
tional Conference on Combinatorial Optimization and
Applications (COCOA), pages 211–224. 2008.

[25] Vladimir Kolmogorov. Blossom V: A new implemen-

tation of a minimum cost perfect matching algorithm.
Mathematical Programming Computation, 1(1):43–67,
Jul 2009.

[26] Sylvain Lazard, John Reif, and Hongyan Wang.
The complexity of the two dimensional curvature-
constrained shortest-path problem. In Proceedings of
the 3rd International Workshop on the Algorithmic
Foundations of Robotics (WAFR), pages 49–57, 1998.

[27] Olaf Maurer. Winkelminimierung bei Überdeckungs-
problemen in Graphen. Diplomarbeit, Technische
Universität Berlin, 2009.

[28] An Nguyen, Dominik Krupke, Mary Burbage, Shriya
Bhatnagar, Sándor P. Fekete, and Aaron T. Becker.
Using a UAV for destructive surveys of mosquito
population. In Proceedings of the 35th IEEE Conference
on Robotics and Automation (ICRA), pages 7812–7819,
2018.

[29] Simeon C. Ntafos. Watchman routes under limited
visibility. Computational Geometry: Theory and
Applications., 1:149–170, 1991.

[30] Jerome Le Ny, Eric Feron, and Emilio Frazzoli. On the
Dubins traveling salesman problem. IEEE Transactions
on Automation and Control, 57(1):265–270, 2012.

[31] Borzou Rostami, Francesco Malucelli, Pietro Belotti,
and Stefano Gualandi. Quadratic TSP: A lower
bounding procedure and a column generation approach.
In Proceedings of the IEEE Federated Conference on
Computer Science and Information Systems (FedCSIS),
pages 377–384, 2013.

[32] Ryo Takei, Richard Tsai, Haochong Shen, and Yanina
Landa. A practical path-planning algorithm for a simple
car: A Hamilton-Jacobi approach. In Proceedings of
the 29th American Control Conference (ACC), pages
6175–6180, 2010.

[33] Zhiyang Yao, Satyandra K Gupta, and Dana S Nau.
Hybrid cutter path generation for 2.5D milling opera-
tion. In Proceedings of the ASME International Design
Engineering Technical Conferences and Computers and
Information in Engineering Conference (IDETC/CIE),
pages 703–714, 2002.

[34] Alexander Zelinsky, Ray A Jarvis, JC Byrne, and
Shin’ichi Yuta. Planning paths of complete coverage
of an unstructured environment by a mobile robot.
In Proceedings of the 6th International Conference on
Advanced Robotics (ICAR), pages 533–538, 1993.

198
Copyright © 2019

Copyright for this paper is retained by authors

http://cs.smith.edu/~orourke/TOPP/
http://cs.smith.edu/~orourke/TOPP/

	Introduction
	Related Work
	Our Contribution

	Preliminaries
	Efficient Implementation of an Approxima- tion Algorithm
	Atomic Strip Covers
	Matching
	Subset and Penalty Coverage
	Tours
	Other Grids

	Integer Programming
	A Necessary Family of Simple Tour Constraints
	A Sufficient Family of Advanced Tour Constraints

	Practical Computation
	Conclusion


 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move up by 14.40 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20181105132555
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     675
     322
     Fixed
     Up
     14.4000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     13
     12
     13
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 9.00 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     322
     Fixed
     Up
     9.0000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     13
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     13
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     13
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



