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—— Abstract

We provide a tight result for a fundamental problem arising from packing disks into a circular
container: The critical density of packing disks in a disk is 1/2. This implies that any set of (not
necessarily equal) disks of total area § < 1/2 can always be packed into a disk of area 1; on the
other hand, for any £ > 0 there are sets of disks of area 1/2 + € that cannot be packed. The
proof uses a careful manual analysis, complemented by a minor automatic part that is based on
interval arithmetic. Beyond the basic mathematical importance, our result is also useful as a
blackbox lemma for the analysis of recursive packing algorithms.
An longer version will appear in the 35th Symposium on Computational Geometry [3].

1 Introduction

Deciding whether a set of disks can be packed into a given container is a fundamental
geometric optimization problem that has attracted considerable attention; see below for
references. Disk packing also has numerous applications in engineering, science, operational
research and everyday life, e.g., for the design of digital modulation schemes [19], packaging
cylinders [1, 8], bundling tubes or cables [24, 22], the cutting industry [23], or the layout of
control panels [1], or radio tower placement [23]. Further applications stem from chemistry
[25], foresting [23], and origami design [13].

Like many other packing problems, disk packing is typically quite difficult; what is more,
the combinatorial hardness is compounded by the geometric complications of dealing with
irrational coordinates that arise when packing circular objects. This is reflected by the
limitations of provably optimal results for the optimal value for the smallest sufficient disk
container (and hence, the densest such disk packing in a disk container), a problem that was
discussed by Kraviz [12] in 1967: Even when the input consists of just 13 unit disks, the
optimal value for the densest disk-in-disk packing was only established in 2003 [7], while the
optimal value for 14 unit disks is still unproven. The enormous challenges of establishing
densest disk packings are also illustrated by a long-standing open conjecture by Erdés and
Oler from 1961 [18] regarding optimal packings of n unit disks into an equilateral triangle,
which has only been proven up to n = 15. For other examples of mathematical work on
densely packing relatively small numbers of identical disks, see [9, 15, 5, 6], and [20, 14, 10]
for related experimental work. Many authors have considered heuristics for circle packing
problems, see [23, 11] for overviews of numerous heuristics and optimization methods. The
best known solutions for packing equal disks into squares, triangles and other shapes are
continuously published on Specht’s website http://packomania.com [21].

For deciding whether a set of not necessarily equal disks can be packed into a square
container, Demaine, Fekete, and Lang in 2010 [2] gave a proof of NP-hardness by using a
reduction from 3-PARTITION, so we cannot expect that there is a deterministic polynomial-
time algorithm for this problem.

The related problem of packing square objects has also been studied for a long time.
Already in 1967, Moon and Moser [16] proved that it is possible to pack a set of squares
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I Figure 1 (1) An instance of critical density for packing squares into a square. (2) An example
packing produced by Moon and Moser’s shelf-packing. (3) An instance of critical density for packing
disks into a square. (4) An example packing produced by Morr’s Split Packing.

into the unit square in a shelf-like manner if their combined area, the sum of all squares’
areas, does not exceed % At the same time, % is the largest upper area bound one can
hope for, because two squares larger than the quarter-squares shown in Fig. 1 cannot be
packed. We call the ratio between the largest combined object area that can always be
packed and the area of the container the problem’s critical density, or worst-case density.
The equivalent problem of establishing the critical packing density for disks in a square was
posed by Demaine, Fekete, and Lang [2] and resolved by Morr, Fekete and Scheffer [17, 4].
Making use of a recursive procedure for cutting the container into triangular pieces, they
proved that the critical packing density of disks in a square is ﬁﬁ ~ 0.539. It is quite
natural to consider the analogous question of establishing the critical packing density for
disks in a disk. However, the shelf-packing approach of Moon and Moser [16] uses the fact
that rectangular shapes of the packed objects fit well into parallel shelves, which is not the
case for disks; on the other hand, the split packing method of Morr et al. [17, 4] relies on
recursively splitting triangular containers, so it does not work for a circular container that
cannot be partitioned into smaller circular pieces.

1.1 Results

We prove that the critical density for packing disks into a disk is 1/2: Any set of not
necessarily equal disks with a combined area of not more than half the area of a circular
container can be packed; this is best possibly, as for any € > 0 there are instances of total
area 1/2 + ¢ that cannot be packed. See Fig. 2 for the critical configuration.

Our proofs are constructive, so they can also be used as a constant-factor approximation
algorithm for the smallest-area container of a given shape in which a given set of disks can
be packed. Due to the higher geometric difficulty of fitting together circular objects, the
involved methods are considerably more complex than those for square containers. We make
up for this difficulty by developing more intricate recursive arguments, including appropriate
and powerful tools based on interval arithmetic.

'2 A Worst-Case Optimal Algorithm

» Theorem 1. Every set of disks with total area 5 can be packed into the unit disk O with
radius 1. For any € > 0, there is a set of disks with total area 5 + € that cannot be packed
into O. In other words, the worst-case packing density for packing disks into a disk is %

The worst case consists of two disks D1, Dy with radius %, see Fig. 2. Increasing the area
of D; by € yields a set of disks which cannot be packed. The total area of these two disks is
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[T Figure 2 (1) A critical instance that allows a packing density no better than 1. (2) An example
packing produced by our algorithm.

ISE

+1=
In the remainder of Section 2, we give a constructive proof for Theorem 1. Before we
proceed to describe our algorithm in Section 2.4, we give some definitions and describe Disk

Packing and Ring Packing as two subroutines of our algorithm.

(SIE]

2.1 Preliminaries for the Algorithm

We make use of the following definitions, see Fig. 3.

N

¥

I Figure 3 A ring R C O with width w and a disk with its corresponding tangents.

%

For rouy > mn > 0 and a container disk C such that ro < 2ry,, we define a ring
R := R[rout,Tin] of C as the closure of royt \ 7in, see Fig. 3. If ry, > 0, the boundary of R
consists of two connected components. The inner boundary is the component that lies closer
to the center m of C and the outer boundary is the other component. The inner radius and the
outer radius of R are the radius of the inner boundary and the radius of outer boundary. Each
ring considered by our algorithm has one of three states {OPEN, CLOSED, FULL}. Initially,
after its construction by the algorithm, each ring is OPEN.

Let r be a disk inside a container disk C. The two tangents of r are the two rays starting
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in the center of C and touching the boundary of r. We say that a disk lies adjacent to rout
when the disk is touching the boundary of 74, from the inside of 7oyy.-

2.2 Disk Packing: A Subroutine

' Figure 4 Disk Packing places disks in decreasing order of radius into a container C adjacent to
the boundary of C.

Consider a container disk C, a set S of already packed disks that overlap with C, but are
not necessarily contained in it, and another disk r; to be packed; see Fig. 4. We pack r; into
C adjacently to the boundary of C as follows: Let o be the maximal polar angle realized by
the center of any disk from S. We choose the center of r; such that it realizes the smallest
possible polar angle 8 > « such that r; touches the outer boundary of C from the interior of
C without overlapping another disk from S, see Fig. 4. If r; cannot be packed into C, we say
that r; does not fit into R.

Let 0 < T < i, called threshold. Disk Packing considers the disks in decreasing order of
radius and packs each disk r; adjacent to the previous disk r;_; and the boundary of C until
r; does not fit into C or r; < T.

00

¥ Figure 5 Ring Packing packs disks into a ring R[rout, 7in], alternating adjacent to the outer and
to the inner boundary of R.
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2.3 Ring Packing: A Subroutine

Consider a ring R := R[rout,Tin] with inner radius ri, and outer radius rout, a (possibly
empty) set S of already packed disks that overlap with R, and another disk r; to be packed,
see Fig. 5. We pack r; into R adjacent to the outer (inner) boundary of R as follows: Let o
be the maximal polar angle realized by a midpoint of a disk from S. We choose the midpoint
of r; realizing a smallest possible polar angle 8 > « such that r; touches the outer (inner)
boundary of R from the interior of R without overlapping another disk from S. If r; cannot
be packed into R, we say that r; does not fit into R (adjacent to the outer (inner) boundary).

Ring Packing iteratively packs disks into R alternating adjacent to the inner and outer
boundary. If the current disk r; does not fit into R, Ring Packing stops and we declare R to
be FULL. If r;_1 and r; could pass each other in R, i.e., the sum of the diameters of r;_; and
r; are smaller than the width of R, Ring Packing stops and we declare R to be CLOSED.

2.4 Description of the Algorithm

Figure 6 (a): If 1,72 > 0.495C, Disk Packing packs 71,72 into C. We update the current container
disk C as the largest disk that fits into C and recurse on C with rs,...,r,. (b): Determining the
threshold 7 for disks packed by Disk Packing.

Our algorithm creates rings. A ring only exists after it is created. We stop packing at
any point in time when all disks are packed. Furthermore, we store the current threshold 7
for Disk Packing and the smallest inner radius ryi, of a ring created during the entire run of
our algorithm. Initially, we set T < 1,7y < 1. Our algorithm works in five phases:

Phase 1 - Recursion: If r1, 79 > 0.495C, apply Disk Packing to 71,72, update C as the

largest disk that fits into C and 7 as the radius of C, and recurse on C, see Fig. 6(a).

Phase 2 - Disk Packing: Let r be the radius of C. If the midpoint m of C lies inside a

packed disk 7;, let d be the minimal distance of m to the boundary of r;, see Fig. 6(b).

Otherwise, we set d = 0.

We apply Disk Packing to the container disk C with the threshold 7 «+ %d.

Phase 3 - Ring Packing: We apply Ring Packing to the ring R := R[rout, r'in] deter-

mined as follows: Let r; be the largest disk not yet packed. If there is no open ring inside

C, we create a new open ring R[rout, Tin] < R["min, "min — 27:]. Else, let R[rout, Tin] be

the open ring with the largest inner radius r,.

Phase 4 - Managing Rings: Let R[rout, 7in] be the ring filled in Phase 3. We declare

R]rout, rin] to be closed and proceed as follows: Let r; be the largest disk not yet packed.

EuroCG’'19
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If r; and r;41 can pass one another inside R[rout, rin, i-€., if 21 + 27511 < rous — in, We
create two new open rings R[Fout, Tout — 2] and R[rout — 27, Tin]-

Phase 5 - Continue: If there is an open ring, we go to Phase 3. Otherwise, we set C as
the largest disk not covered by created rings, set T as the radius of C, and go to Phase 2.

3 Analysis of the Algorithm

The analysis uses an intricate combination of manual analysis and an automated analysis
based on interval arithmetic. For lack of space, details are omitted. See the appendix for full
details.

4| Hardness

It is straightforward to see that the hardness proof for packing disks into a square can be
adapted to packing disks into a disk, as follows.

» Theorem 2. [t is NP-hard to decide whether a given set of disks fits into a circular
container.

The proof is completely analogous to the one by Demaine, Fekete, and Lang in 2010 [2],
who used a reduction from 3-PARTITION. Their proof constructs a disk instance which
first forces some symmetrical free “pockets” in the resulting disk packing. The instance’s
remaining disks can then be packed into these pockets if and only if the related 3-PARTITION
instance has a solution. Similar to their construction, we construct a symmetric triangular
pocket by using a set of three identical disks of radius 2\/3 that can only be packed into a
unit disk by touching each other. Analogous to [2], this is further subdivided into a sufficiently
large set of identical pockets. The remaining disks encode a 3-PARTITION instance that can
be solved if and only if the disks can be partitioned into triples of disks that fit into these
pockets.

Figure 7 Elements of the hardness proof: (1) A symmetric triangular pocket from [2], allowing
three disks with centers p;,, pi,, Di; to be packed if and only if the sum of the three corresponding
numbers from the 3-PARTITION instance is small enough. (2) Creating a symmetric triangular pocket
in the center by packing three disks of radius % and the adapted argument from [2] for creating
a sufficiently large set of symmetric triangular pockets.
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5

Conclusions

We have established the critical density for packing disks into a disk, based on a number of

advanced techniques that are more involved than the ones used for packing squares into a

square or disks into a square. Numerous questions remain, in particular the critical density

for packing disks of bounded size into a disk or the critical density of packing squares into a

disk. These remain for future work; we are optimistic that some of our techniques will be

useful.
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