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Abstract. We describe a spectrum of challenges and results related to
geometric aspects of robot navigation, advancing from centralized meth-
ods for difficult offline problems (such as the Art Gallery Problem), to
online tasks for many robots (as in online exploration by a swarm of
robots), locally managing the connectivity and shape of a large swarm
(i.e., cohesive control), all the way to controlling massive swarms of par-
ticles by global forces.

1 Introduction

Ever since the first work on autonomous robots, algorithmic aspects of robot
navigation have played an important role, with new theoretical insights making
it possible to expand the practical possibilities, and new real-world challenges
motivate algorithmic innovation. Particularly important roles in these develop-
ments were played by geometry and by the advances of distributed models and
methods. In the following, we provide a number of highlights: The Art Gallery
Problem described in Sect. 2 deals with localizing stationary viewpoints for map-
ping all of a given, known region. Section 3 describes how to explore and triangu-
late an unknown region by a swarm of simple robots with only weak sensor and
navigation capabilities. Section 4 deals with the challenge of cohesive control,
i.e., organizing a swarm of simple agents by local interaction, such that connec-
tivity is maintained, even in the presence of external forces and agent failures.
The final Sect. 5 describes how to control a massive swarm of particles by using
uniform external forces.

2 Art Gallery Problems

2.1 Motivation

Consider a robot platform that can produce high-resolution, virtual environ-
ments, based on a limited number of laser scans. For mapping all of a given
region in the presence of obstacles, we need to compute an optimal set of scan
positions. This is closely related to one of the classic problems of computational
geometry: The Art Gallery Problem (AGP) asks for illuminating or surveying
all of a given polygonal region P from as few positions (“guards”) as possible.
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2.2 Formal Aspects

Consider a given polygonal region P . For any point g ∈ P , the visibility region
V(g) is the set of all positions p ∈ P for which there is a straightline connection
between G and p that lies completely in P . The Art Gallery Problem (AGP)
asks for a minimum cardinality guard set G ⊂ P that sees all of P , i.e., such that⋃

g∈G V(g) = P . An important distinction arises from the possible positions of
guards: a vertex guard must be placed at a vertex of P , while a point guard can
be located anywhere in P .

2.3 Context

As first proven by Chvátal [15] and shown by Fisk [32] in a beautiful and concise
proof, �n

3 � guards are sometimes necessary and always sufficient for guarding a
simple polygon P with n vertices. See O’Rourke [64] for an early overview.

Algorithmically, the AGP is NP-hard, even for a simply connected polygonal
region P [51]. Eidenbenz et al. [20] showed that for a region with holes, finding
an optimal set of vertex guards is at least as hard as the problem Set Cover, so
there is little hope of achieving a better approximation guarantee than Ω(log n).
It seems unlikely that this gets any easier when allowing general point guards,
as there is no known simple characterization of a discrete candidate set of guard
locations. Furthermore, recent work by Abrahamsen et al. [1] proves that the
AGP is complete for the existential theory of the reals, implying that it is unlikely
to even belong to the class NP.

All this shows the difficulty of the AGP, but it does not rule out methods
that combine structural insights with powerful mathematical tools to achieve
provably optimal solutions for instances of interesting size.

Computing optimal solutions for general AGP instances is not only relevant
from a theoretical point of view, but has also gained in practical importance in
the context of modeling, mapping, and surveying complex environments, such
as in the fields of architecture, robotics and medicine.

2.4 Application Scenario

One particular real-world platform giving rise to instances of the Art Gallery
Problem is Irma3D (Intelligent Robot for Mapping Applications in 3D), an
autonomous robot; see Fig. 1. Its main sensor is a Riegl VZ-400 laser scanner. A
typical 3D laser scan needs 3 min, producing up to 20 million highly precise 3D
measurements of the surrounding. A globally consistent scan matching is used
to merge the 3D scans to a single scene [11]. Irma3D is built on a Volksbot RT-3
chassis; it uses the Xsens MTi IMU and odometry to sense its own position.
See Fig. 2 for a real-world image (Top) and the schematic view with an optimal
set of scan points (Bottom). The algorithmic challenge is to plan number and
positioning of these scans.
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Fig. 1. IRMA3D in front of the town hall of Bremen, scanning the city square.

Fig. 2. (Top) part of a real-life AGP instance with 15 holes and 332 vertices: a square in
the city center of Bremen. (Bottom) a corresponding extracted polygonal region, with
an optimal set of scan positions, shown as 15 black dots. The white holes correspond
to obstacles formed by buildings in the square.
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2.5 Algorithmic Insights

Independently, different groups (Braunschweig and Campinas) have combined
methods from integer (IP) and linear programming (LP) with non-discrete geo-
metry in order to obtain optimal solutions; first for the discrete case of vertex
guards [17], but later also for general point guards [46,73].

The algorithm in [73] computes lower and upper bounds for the AGP, based
on computing finite set cover instances with the help of a state-of-the-art IP
solver. To generate a lower bound, a finite set of witness candidates is chosen
and a restricted AGP is solved, in which only the witnesses have to be covered.
For this, it suffices to extract a finite set of potential guard positions from the vis-
ibility arrangement of the witness set to ensure optimality. Similarly, finite sets of
potential witness positions for a given finite guard set can be extracted from the
visibility arrangement of the guards. This allows it to compute upper and lower
bounds for the optimal AGP value by solving discrete set cover instances. The
algorithm in [73] iterates between generating tighter lower and upper bounds by
refining the witness and guard candidate sets along the iterations. It stops when
lower and upper bounds coincide. Although no proof of theoretical convergence
is known (and the work by Abrahamsen et al. [1] strongly suggests that no such
convergence can exist for all classes of instances), in tests, the approach is able to
yield optimal solutions for a large variety of instance classes, even for polygons
with up to a thousand vertices.

An approach presented in [46] considers a similar primal-dual scheme, but
focuses on the linear relaxation of the primal guard cover with guard set G, from
which a small subset has to be selected to cover all points from a witness set
W : For each point w ∈ W , a guard in its visibility region V(w) must be chosen.
Allowing fractional guards corresponds to admitting guard variables 0 ≤ xg ≤ 1
for any guard g ∈ G. This yields the following linear program.

min
∑

g∈G

xg (1)

s. t.
∑

g∈G∩V(w)

xg ≥ 1 ∀w ∈ W (2)

0 ≤ xg ≤ 1 ∀g ∈ G (3)

Its dual is the witness packing problem, in which the objective is to find as
many independent witness positions w ∈ W as possible, such that no two of
them can be seen from the same guard position g ∈ G.

max
∑

w∈W

yw (4)

s. t.
∑

g∈G∩V(w)

yw ≤ 1 ∀g ∈ G (5)

0 ≤ yw ≤ 1 ∀w ∈ W (6)
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Because of strong duality of linear programming, considering these fractional
guard and witness values leads to optimal primal and dual solutions with identi-
cal objective values. To eliminate fractional solutions, we can apply appropriate
cutting planes derived from the set cover polytope, based on specific subsets
J1 ∩ G and J2 ∩ G. ∑

g∈J2∩G

2xg +
∑

g∈J1∩G

xg ≥ 2 (7)

As it turns out [24], only a small subset of these inequalities matter in the
context of AGP instances. Together with a similar primal-dual iteration scheme
such as the one in [73], we can find optimal integral solutions for a large range of
benchmark instances, including the one shown in the scenario above; see Fig. 3
for a pair of primal and dual solutions.

2.6 Extensions

There are various extensions and related questions. In the work described above,
the robot has unlimited viewing distance, only the number of scans is to be
minimized, and the given region is known in advance. We have also studied this
problem for the case of limited viewing distance and an objective function that is
a linear combination of the number of scans and distance traveled by the robot.
See [29] and the cited related work. We have also studied the context of exploring
an unknown region by a robot with discrete vision; see [31].

2.7 Acknowledgments

The content of this section is based on the abstract [10] and paraphrases the
joint work with Dorit Borrmann, Pedro de Rezende, Cid de Souza, Stephan
Friedrichs, Alexander Kröller, Andreas Nüchter and Christiane Schmidt con-
tained in the papers [24,46]. For a visualization, see the video that accompa-
nies [10], to be found at the website http://www.computational-geometry.org/
SoCG-videos/socg13video/#Borrmann-etal.

3 Online Exploration and Triangulation by a Swarm of
Simple Robots

3.1 Motivation

Consider a swarm of inexpensive robots without explicit mapping capabilities in
an unknown area. Each robot has a limited visibility range, but can move around
to get a more complete picture of the environment. Once the region has been
fully covered, the robots can also stay around so that we can get live updates.
How can we organize this exploration and make sure that we can continue to
observe all parts of the environment after they are discovered?

http://www.computational-geometry.org/SoCG-videos/socg13video/#Borrmann-etal
http://www.computational-geometry.org/SoCG-videos/socg13video/#Borrmann-etal
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Fig. 3. A pair of primal and dual solutions to the fractional linear programming
relaxation.
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3.2 Formal Aspects

We are given a polygonal region P , and a point z ∈ P on the boundary of P . In
addition, we are given a supply of robots with limited (circular) communication
range r; for ease of description, we normalize to r = 1. Within this range,
perception of and communication with other robots is possible. In the Minimum
Relay Triangulation Problem (MRTP), the goal is to compute a set R of robot
positions within P (with z ∈ R and V ⊆ R for the vertex set V of P ), such
that there is a (unit) triangulation of P whose vertex set is exactly the set R
and whose edges stay within P and have length at most 1. The objective is to
minimize the number of robots. In the Maximum Area Triangulation Problem
(MATP), the number of available robots is bounded by a number k; the goal is to
determine a set R of at most k robot positions, with a unit triangulation covering
a maximum possible area. For the online versions (OMRTP and OMATP), the
polygon P is unknown. Each robot may move through the area, and has to
decide on a new location for a triangulation vertex, while still being within
reach of the previously placed relays. Once it has stopped, it becomes part of
the static triangulation, allowing other relays to extend the exploration.

3.3 Context

In recent years, the field of robotics has seen two diverging trends. One has been
to achieve progress by increasing the capabilities of individual robots, keeping
the cost of state-of-the-art machines relatively high. An opposite direction has
been to develop simpler and cheaper platforms, at the expense of reducing the
capabilities per robot. The latter raises new challenges for developing new princi-
ples and algorithms, such as coordinating many robots with limited capabilities
into a swarm that can carry out difficult tasks, such as exploration, surveillance,
and guidance.

3.4 Application Scenario

A real-life example of an advanced, low-cost, swarm robot design with limited
sensor capabilities is the r-one [61], shown in Fig. 4. Its estimated unit cost is
about US $250. Measuring only 11 cm in diameter, it has a 32-bit ARM-based
microcontroller, running at 50 MHz with no floating point unit. The local infrared
(IR) communication system is used for inter-robot communication and localiza-
tion. Each robot has eight IR transmitters and eight receivers. The transmitters
broadcast in unison and emit a radially uniform energy pattern. The robot’s
eight IR receivers are radially spaced to produce 16 distinct detection regions
(shown in Fig. 4 (Right)). By monitoring the overlapping regions, the bearing
of neighbors can be estimated to within ≈π/8. Thus, it has limited capabili-
ties for measurement, which is intertwined with local communication. The IR
receivers have a maximum bit rate of 1250 bits per second. Each robot transmits
(Δ + 1) 4-byte messages during each round, one being a system announce mes-
sage, the others containing the bearing measurements to that robot’s neighbors.
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Fig. 4. (Left) the r-one for multi-robot research, designed by the MRSL group at Rice
University. (Right) IR receiver detection regions. Each receiver detects an overlapping
68◦, allowing to determine angles within about 22.5◦.

The system supports a maximum of Δ = 10. For more on experimental work on
coordination and navigation of r-ones, see [61,62].

The algorithmic challenge is to exploit the capabilities of a swarm to over-
come the limitations of the individual robots, and achieve overall behavior with
provable performance guarantees that are rooted in solid algorithmic theory.

3.5 Algorithmic Insights

The problems MRTP and MATP were introduced in [26]; the currently best
results for the online versions OMRTP and OMATP were presented in [25,68].
Both problems share their decision problem, which is known to be NP-hard.
For the OMRTP, there is a lower bound of 6/5 on the competitive factor of any
deterministic strategy, as well as a 3-competitive algorithm for general polygons.
This strategy is shown in Fig. 5: We place robots at unit intervals along the
boundary (green) and fill the interior with a regular triangular grid (blue). The
space between the two is patched together using a third class (red). One can prove
that the size of each of the three classes is bounded by the number of robots in an
optimal solution. For polyominoes, algorithms with better competitive factors
exist [30].

On the other hand, the OMATP does not admit a deterministic strategy
with a constant competitive factor, if the polygon may have small corridors. If
these can be excluded, greedy strategies perform well [30].

These strategies have been used on the real robots described above; see Fig. 6
for a snapshot.

3.6 Extensions

Once a well-formed triangulation (with lower bounds on minimum edge length
and minimum internal angle) is established, it can be employed for a number
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Fig. 5. The 3-competitive strategy for the OMRTP, consisting of three sets of robots:
green robots are placed along the boundary at vertices and at unit distance along
edges; blue robots fill the interior by a grid; red robots complete the triangulation by
connecting boundary interior robots. (Color figure online)

Fig. 6. A swarm of r-ones executing the online algorithm for the OMATP in the real
world.
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of different purposes. In [53], we show how the underlying connectivity graph of
the robots forming the triangulation can be used for maintaining the correspond-
ing dual graph (in which vertices correspond to triangles, and edges represent
triangles sharing a common boundary), and how a minimum hop count in the
unweighted dual graph achieves a constant stretch factor compared to the short-
est geometric distances, i.e., manages to stay within a constant factor of the
shortest achievable distance with global information; see Fig. 7.

Fig. 7. Using a dual path for routing in a triangulated environment: a shortest path
(shown in red) is approximated by a minimum-hop path (shown in yellow), achieving
constant stretch. (Color figure online)

Another application of a triangulation is to use it for surveying the under-
lying region by additional, mobile robots, again based on the dual graph of the
stationary triangulation. In [2,54,57], we discuss various aspects of local policies
for patrolling the vertices of such a graph.

3.7 Acknowledgments

The content of this section is based on the abstract [28] and paraphrases the
joint work with Aaron Becker, Tom Kamphans, Alexander Kröller, Seoung
Kyou Lee, James McLurkin, Joe Mitchell, Christiane Schmidt, described in the
papers [25,52,54]. For a visualization, see the video http://www.computational-
geometry.org/SoCG-videos/socg13video/#Becker-etal that accompanies [28].
See the journal paper [54] for full technical details of the robotics side and its
extensions.

4 Distributed Cohesive Control

4.1 Motivation

Consider a swarm of robots that needs to remain connected. There is no cen-
tral control and no knowledge of the overall environment. This environment is

http://www.computational-geometry.org/SoCG-videos/socg13video/#Becker-etal
http://www.computational-geometry.org/SoCG-videos/socg13video/#Becker-etal
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hostile: The swarm is being pulled apart by external forces, stretching it into
a number of different directions, so it is in danger of breaking up. Individual
robots are weak, with limited sensing, limited communication, and limited con-
nectivity; even worse, each robot’s expected lifetime is limited by random, per-
manent failures, which may destroy connectedness and functioning of the swarm
as a whole. How can we achieve coordinated dynamic swarm behavior without
centralized coordination? How can we employ each robot as much as possible,
without depending on it if it fails? How can we balance overall flexibility and
robustness to deal with the hostile environment?

The challenge is to develop local self-stabilizing mechanisms that allow the
swarm to stay locally well connected (forcing swarm members to stay close to
each other), even when it is being pulled apart by several distant and mobile
sites (forcing swarm members to spread out).

Fig. 8. A robust robot swarm emulating a Steiner tree between five diverging leader
robots.

4.2 Formal Aspects

We consider a finite set of robots R with an externally controlled subset of
leader robots L � R, |L| � |R|. We want the remaining robots R\L to maintain
a dynamic and robust network that keeps the swarm connected, even in the
presence of random robot failures and arbitrary leader movements. Thus, the
overall shape of the swarm should form a “thick” Steiner tree among the leaders
with the robots R \ L evenly distributed along the edges, as shown in Fig. 8.

Robots have the shape of circles; two of them are connected when within
a maximum distance and with an unobstructed line of sight. Robots know the
relative positions and orientations of their neighbors and can communicate asyn-
chronously. Each robot has a unique ID; leader IDs are known by all others.
Robot’s translations and rotations are limited in velocity and acceleration. Com-
munication is possible by broadcasting to immediate neighbors.
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The perception of all robots is local; however, due to the known position
and orientation difference, each robot can transform vectors of its neighbors to
its own coordinate system. We avoid multi-hop transformations to keep errors
small.

4.3 Context

One of the earliest works on flocking is Reynold’s pioneering work [66]. In recent
years, a considerable number of aspects and objectives have extended this per-
spective. We highlight only some of the ensuing papers, showing how they differ
from our perspective.

A basic component of flocking is volumetric control, as it was presented
by Spears [71]: Robots use local potential field controllers (with attractive and
repulsive forces) for constructing a regular lattice with a corresponding base
density [40,63]. This does not necessarily preserve connectivity [3,36,71]. While
the latter can be side-stepped by simply assuming that robots are always con-
nected [70], we aim for connectivity as a requirement, which is vital in a fully
distributed setting in which deterministic recovery from disconnectedness may
be impossible.

Some of the ideas of Olfati-Saber [63] form the basis of our work; however,
in that model, robots do utilize global information, e.g., the position of a guide
robot in a shared coordinate frame [14,49,50,63] or environmental potential [34].
Instead of the potentials, Cortes et al. [16] and Lindhé et al. [56] used Voronoi
tessellation. This is based on a density function, requiring global information for
covering a region. Overall, this differs from our objective of developing methods
that are fully distributed, aiming for collective mechanisms for complex group
behavior that go beyond relatively simple objectives [9], but also for systems
that are robust against partial hardware failures [43].

The final property is cohesiveness of the overall swarm: all robots should
maintain a unified state, such as desired distance or orientation; see [63] for
a formal definition. As described in [60], detecting and maintaining a swarm
boundary is of particular importance for maintaining swarm cohesiveness and
connectedness. This is based on and related to work in the field of wireless sensor
networks (WSNs), which has considered many geometric settings in which a
large swarm of stationary nodes is faced with the task of achieving a large-scale
overall goal, while the individual components can only operate locally, based on
limited individual capabilities and information; refer to Fekete et al. [27,47] for a
detailed description. In addition to the work on swarm robotics described above,
there is a large body of theoretical work on geometric swarm behavior; here we
only mention Chazelle [13] for flocking behavior, and Fekete et al. [27,47] for
geometric algorithms for static sensor networks, including distributed boundary
detection.

Beyond the involved properties and paradigm, the overall goal for the swarm
can also be described as a distributed optimization problem: Maintain a gen-
eralized Steiner tree with limited edge lengths that connects a moving set of
terminals. To the best of our knowledge, only Hamann and Wörn [35] have
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explicitly considered the construction of Steiner trees by a robot swarm. For
static terminals, they start with an exploratory network; as soon as all terminals
are connected, only best paths are kept and locally optimized.

Even in a centralized and static setting with full information, we must deal
with a generalization of the well-known NP-hard problem of finding a good
Steiner tree [33]; see the books by Hwang et al. [41] and Prömel and Steger [65]
for further introduction. More specifically, we are faced with the relay placement
problem: The input is a set of sensors and a number r ≥ 1, the communication
range of a relay. The objective is to place a minimum number of relays so that
between every pair of sensors is connected by a path through sensors and/or
relays. The best known theoretical performance bound for this NP-hard problem
was given by Efrat et al. [19], who presented a 3.11-approximation algorithm;
they also showed a worst-case lower bound of 3 for a large class of approximation
algorithms. For a fixed number of available relays, this turns into our problem of
maximizing the achievable networks size, with matching approximation factor.

4.4 Algorithmic Insights

A key insight is that achieving complex overall behavior can be based not only
on local interaction that resembled physical forces, but also on principles of dis-
tributed algorithms that build more complex structures. To this end, we have
developed a number of powerful local mechanisms for maintaining a dynamic
swarm of robots with limited capabilities and information, in the presence of
external forces and permanent node failures. These mechanisms consist of a set
of local, self-stabilizing, continuous algorithms that together produce a gener-
alization of a Euclidean Steiner tree, maintain a dynamic and robust network
between leader robots. At any stage, the resulting overall shape achieves a good
compromise between local thickness, global connectivity, and flexibility to fur-
ther continuous motion of the terminals, adopting the directions of multiple
leaders, while preserving a uniform thickness along the edges of the Steiner tree.
The resulting swarm behavior scales well, is robust against node failures, and
performs close to the best known approximation bound for a corresponding cen-
tralized static optimization problem.

We first sketch the base behavior of the robots, inducing an almost con-
vex swarm shape. This is subsequently improved by leader forces, and stability
improvement and thickness contraction.

4.4.1 Base Behavior
Our base behavior consists of three components that result in a swarm shape of
a droplet. (i) The flocking algorithm of Olfati-Saber [63] considers regular dis-
tribution and movement consensus. The algorithm is a stateless equation based
on potential fields and is proven to converge. It uses three rules: Attraction to
neighbors, repulsion from too close neighbors, and adaption to the velocity of
neighbors. We slightly modified the algorithm for better response to additional
forces. (ii) An extended version of the boundary detection algorithm of McLurkin
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and Demaine [60], which determines if a robot lies on the boundary and also
identifies small holes by using the average angle. (iii) The boundary tension of
Lee and McLurkin [55], which straightens and minimizes the boundary of the
swarm. This is done by simply pushing boundary robots to the middle of its two
boundary neighbors.

Fig. 9. A swarm configuration in which a purely physics-based mechanism lead to
disconnection.

The base behavior without any other forces results in at most convex shapes
before losing connectivity. Figure 9 shows a situation in which the swarm is about
to lose connectivity. For stronger control and more variable shapes, leader forces
are introduced.

4.4.2 Leader Forces
A single leader constitutes the simplest form of swarm control. In this case the
swarm motion is determined by the leader’s velocity. With multiple (possibly
antagonistic) leaders, the swarm is not just steered, but may be stretched to
the limit until connectivity is lost. To this end, each robot needs to find an
appropriate balance between the influence of different leaders. See top of Fig. 10
for an illustration. We therefore combine both methods by a smooth transition
between velocity matching close to the leaders and leader pursuit when further
away; see the bottom of Fig. 10.

4.4.3 Stability Improvement and Thickness
Near Steiner points, connections along concave swarm boundaries may be
stretched by boundary forces. When the involved edges approach the upper
bound for communication, connections may be disrupted, to the point where the
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Fig. 10. (Top) A one-dimensional scenario with two leaders (red) moving in oppo-
site directions. (Bottom) With increasing distance to the leader, the effect shifts from
velocity matching to leader pursuit. (Color figure online)

swarm loses connectivity. By adding a thickness-dependent compression force,
we reduce neighbor distances without influencing the Steiner-tree shape of the
swarm; in effect, this works similar to compression stockings. Algorithmically,
the involved mechanisms resemble methods that have been studied in the con-
text of sensor networks, such as local methods for boundary detection and hop
distance from the boundary. This gives rise to notions such as the hop circle of
radius h with robot r as circle center: This is the set of all robots with a hop
count ≤h to c; only robots with hop distance at least h may be on the boundary,
so a hop circle of maximal radius around a given robot gives an indication of the
local thickness in its neighborhood. (For an example, see Fig. 11.)

Fig. 11. Thickness determination for a limb part of a swarm. The indicated triples of
numbers at each node r correspond to (b(r)/t(r)/h(r)), where b(r) is the hop count
from the boundary, t(r) is the local thickness, and h(r) is the circle center distance. A
largest hop circle is marked in blue. (Color figure online)

This allows local approaches to keep track of and maintain local thickness
and connectivity, even in the presence of external forces and robot failures. See
our paper [48] for more technical details.

4.5 Extensions

There are numerous possible extensions, most notably for dealing with a cohe-
sive swarm in the presence of obstacles. At this time, these are still under
development.
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Fig. 12. A comparison of strategies for the same example, for a swarm with n = 400
and failure rate 0. As indicated, columns correspond to strategies Base, Leader, and
All. Rows show the swarms at times T = 200, T = 2000, T = 3000, T = 7600,
T = 12, 000, with 60 steps per simulated second. When a swarm is no longer shown, it
has become disconnected right after the previous time step.

4.6 Acknowledgments

The content of this section is based on the abstract [22] and paraphrases the joint
work with Maximilian Ernestus, Michael Hemmer and Dominik Krupke con-
tained in the paper [48] and the thesis [23] of Maximilian Ernestus and Dominik
Krupke.
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5 Controlling Swarms by Global Forces

5.1 Motivation

One of the exciting new directions of robotics is the design and development
of micro- and nanorobot systems, with the goal of letting a huge population of
robots perform complex operations in a complicated environment. Due to scaling
issues, individual control of the involved robots becomes physically impossible:
While energy storage capacity drops with the third power of robot size, medium
resistance decreases much slower. A possible answer lies in applying a global,
external force to all particles in the swarm. This is what many current micro-
and nanorobot systems with many robots do: The whole swarm is steered and
directed by an external force that acts as a common control signal. These com-
mon control signals include global magnetic or electric fields, chemical gradients,
and turning a light source on and off.

5.2 Formal Aspects

We consider a two-dimensional grid world, with some cells occupied and others
free. Initially, the planar square grid is filled with some unit-square particles
(each occupying a cell of the grid) and some fixed unit-square blocks. All particles
are commanded in unison: a valid command is “Go Up” (u),“Go Right” (r),“Go
Down” (d), or “Go Left” (l). All particles move in the commanded direction until
they hit an obstacle or another particle. A representative command sequence is
〈u, r, d, l, d, r, u, . . .〉. We call these global commands force-field moves. We assume
that we can bound the minimum particle speed and that we can guarantee that
all particles have moved to their maximum extent.

5.3 Application Scenario

Becker et al. [8] demonstrate how to apply a magnetic field to simultaneously
move cells containing iron particles in a specific direction within a fabricated
workspace; see Fig. 13a. Other recent examples include using the global magnetic
field from an MRI to guide magneto-tactic bacteria through a vascular network
to deliver payloads at specific locations [12], and using electromagnets to steer
a magneto-tactic bacterium through a micro-fabricated maze [45]; however, this
still involves only individual particles at a time, not the parallel motion of a
whole, massive swarm. How can we manipulate the overall swarm with coarse
global control, such that individual particles arrive at multiple different destina-
tions in a (known) complex vascular network such as the one in Fig. 13b?

5.4 Context

The problem resembles the logic puzzle Tilt [72], and dexterity ball-in-a-maze
puzzles such as Pigs in Clover and Labyrinth, which involve tilting a board to
cause all mobile pieces to roll or slide in a desired direction. Problems of this type
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.025 mm 65 mm 0.5 mm 
(a) (Left) After feeding iron particles to ciliate eukaryon (Tetrahymena pyriformis)
and magnetizing the particles with a permanent magnet, the cells can be turned
by changing the orientation of an external magnetic field (see colored paths in the
center image). (Right) Using two orthogonal Helmholz electromagnets, Becker et al. [8]
demonstrated steering many living magnetized T. pyriformis cells. All cells are steered
by the same global field.

(b) Biological vascular network (cottonwood leaf). (Photo:
Royce Bair/Flickr/Getty Images.) Given such a network along
with initial and goal positions of N particles, is it possible to
bring each particle to its goal position using a global control sig-
nal? Note that this arrangement is not a tree, but a graph struc-
ture with many cycles. Matlab code for driving N particles
through this network is available at http://www.mathworks.

com/matlabcentral/fileexchange/42892.

Fig. 13. (Top) State of the art in controlling small objects by force fields. (Bottom)
A complex vascular network, forming a typical environment for the parallel naviga-
tion of small objects. This section investigates parallel navigation in discretized 2D
environments. (Color figure online)



Geometric Aspects of Robot Navigation 605

are also similar to sliding-block puzzles with fixed obstacles [18,37–39], except
that all particles receive the same control inputs, as in the Tilt puzzle. Another
connection is to Randolph’s Ricochet Robots [21], a game that allows individual
and independent control of the involved particles.

In the real world, driving ferromagnetic particles with a magnetic resonance
imaging (MRI) scanner gives examples of this challenge, from nano- to micro-
scales; see [74].

5.5 Algorithmic Insights

Clearly, having only one global signal that uniformly affects all robots at once
poses a strong restriction on the ability of the swarm to perform complex oper-
ations. The only hope for breaking symmetry is to use interactions between the
robot swarm and obstacles in the environment. The key challenge is to estab-
lish if interactions with obstacles are sufficient to perform complex operations,
ideally by analyzing the complexity of possible logical operations.

It is important to note that there are two fundementally different classes of
algorithmic problems, which we denote by External Computation and Internal
Computation.

5.5.1 External Computation
Considering the particle swarm as input for a given algorithmic problem, we are
faced with a number of questions that need to be resolved by a computing device
“outside” of the particle system, such as the following.

1. Given a map of an environment, such as the vascular network shown in
Fig. 13b, along with initial and goal positions for each particle, does there
exist a sequence of inputs that will bring each particle to its goal position?

2. Given a map of an environment, such as the vascular network shown in
Fig. 13b, along with initial and goal positions for each particle, what is the
shortest sequence of moves that will bring each particle to its goal position?

3. Given initial and goal positions for each particle in a swarm, how can we
design a set of obstacles and a sequence of moves, such that each particle
reaches its goal position?

Deliberate use of existing stationary obstacles leads to a wide range of pos-
sible particle configurations. In our work [4–6,69], we address all these issues.
For the first two questions, we show that they may lead to computationally dif-
ficult situations. We also develop several positive results for the third question.
The underlying idea is to construct artificial obstacles (such as walls) that allow
arbitrary rearrangements of a given two-dimensional particle swarm.

Theorem 1. Given a specified goal location and an initial configuration of mov-
able particles and fixed obstacles, it is NP-hard to decide if a move sequence exists
that ends with some particle at the goal location.
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The proof relies on a reduction from 3SAT. Suppose we are given n Boolean
variables x1, x2, . . . , xn, and m disjunctive clauses Cj = Uj ∨Vj ∨Wj , where each
literal Uj , Vj ,Wj is of the form xi or ¬xi. We construct a problem instance that
has a solution if and only if all clauses can be satisfied by a truth assignment
to the variables. This instance is composed of variable gadgets for setting indi-
vidual variables True or False, clause gadgets that construct the logical or of
groupings of three variables, and a check gadget that constructs the logical and
of all the clauses. A particle is only delivered to the goal location if the variables
have been set in such a way that the formula evaluates to True. See Fig. 14 for
an overview of the whole construction.

On the positive side, we can show that for a given labeled arrangement of
particles, arbitrary permutations can be achieved with appropriate sets of obsta-
cles. To this end, we consider a 2D array of particles, as shown in Fig. 15. For an
ar × ac matrix A and a br × bc matrix B, of equal total size N = arac = brbc, a
matrix permutation assigns each element in A a unique position in B.

Theorem 2. Let A and B be matrices with dimensions as above. Any matrix
permutation that transforms A into B can be executed by a set of obstacles in just
four moves. For N particles, the constructed arrangement of obstacles requires
(3N + 1)2 space and 4N + 1 obstacles. If particles move with a speed of v, the
required time for those four moves is 12N/v.

This can be employed to realize larger sets of permutations all at once, as
shown in Fig. 16.

The previous construction is efficient with respect to the number of required
moves, at the expense of a possibly higher number of obstacles. By allowing a
larger number of moves, we can limit the number of obstacles for achieving any
permutation, as shown in Fig. 17.

Theorem 3. We can construct a set of O(N) obstacles such that any ar × ac

arrangement of N particles can be rearranged into any other ar×ac arrangement
π of the same particles, using at most O(N2) force-field moves.

Proof. See Fig. 17. Use Theorem 2 to build two sets of obstacles, one each for
p and q, such that p is realized by the sequence 〈u, r, d, �〉 (clockwise) and q is
realized by 〈r, u, �, d〉 (counterclockwise). Then we use the appropriate sequence
for generating π in O(N2) moves.

On the other hand, minimizing the number of moves for achieving a desired
goal configuration for all particles turns out to be pspace-complete.

Theorem 4. Given an initial configuration of (labeled) movable particles and
fixed obstacles, it is pspace-complete to compute a shortest sequence of force-
field moves to achieve another (labeled) configuration.

The proof is largely based on a complexity result by Jerrum [42], who con-
sidered the following problem: Given a permutation group specified by a set of
generators and a single target permutation π, which is a member of the group,
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x1 x3 x4 x2 x3 x4 x4x1 x2 x1 x2 x3

OR OR OR OR

AND

(a) Initial state with particles (colored) on the upper right.
The objective is to move one particle into the grey target rectangle at lower

left.

(b) Setting variables to (False, True, False, True) does not satisfy this
3SAT instance.

(c) Setting the variables (True, False, False, True) satisfies this 3SAT
instance.

(d) Successful outcome. (True, False, False, True) moves a single particle
into the target region.

Fig. 14. Combining twelve variable gadgets, four 3-input or gadgets, and a 4-input
and gadget to realize the 3SAT expression (¬x1 ∨¬x3 ∨x4)∧ (¬x2 ∨¬x3 ∨x4)∧ (¬x1 ∨
x2 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ x3). (Color figure online)
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3 
4 

Fig. 15. In this image for N = 15, black cells are obstacles, white cells are free, and
colored discs are individual particles. The world has been designed to permute the
particles between ‘A’ into ‘B’ every four steps: 〈u, r, d, �〉. See the video at http://
youtu.be/3tJdRrNShXM. Visually, the distinction between particles of the same color
does not matter; however, the arrangement of obstacles induces a specific permutation
of individual particles. (Color figure online)

Fig. 16. For any set of k fixed, but arbitrary permutations of N particles, we can
construct a set of O(kN) obstacles, such that we can switch from a start arrangement
into any of the k permutations using at most O(log k) force-field moves. Here k = 4 and
‘A’ is transformed into ‘B’, ‘C’, ‘D’, or ‘E’ in eight moves: 〈r, d, (r/�), d, (r/�), d, �, u〉.

Fig. 17. Repeated application of two base permutations can generate any permutation,
when used in a manner similar to Bubble Sort. The obstacles in (A) generate the base
permutation p = (1, 2) in the clockwise direction 〈u, r, d, �〉 (B) and q = (1, 2, . . . , N)
in the counterclockwise direction 〈r, u, �, d〉 (C).

what is the shortest expression for the target permutation in terms of the gen-
erator? This problem was shown to be Pspace-complete in [42], even when the
generator set consists of only two permutations π1 and π2. Combining this with
the idea of our construction of Theorem 3 yields the claimed result: Use two sets
of obstacles for realizing π1 by a sequence of four clockwise moves and π2 by a

http://youtu.be/3tJdRrNShXM
http://youtu.be/3tJdRrNShXM
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sequence of four counterclockwise moves; then a shortest sequence of force-field
moves for achieving a desired target permutation π3 corresponds to a minimum
generation of π3 by π1 and π2.

5.5.2 Internal Computation
Considering the particle swarm as a complex system that can be reconfigured in
various ways, we are faced with issues of the computational power of the swarm
itself (as opposed to that of an external device), such as the following.

1. Can the complexity of particle interaction be exploited to model logical oper-
ations?

2. Are there limits to the computational power of the particle swarm?
3. How can we achieve computational universality with particle computation?

In [4,5,69], we give precise answers to all of these questions. In particular, we
show that the logical operations and, nand, nor, and or can be implemented
in our model using dual-rail logic. Using terminology from electrical engineering,
we call these components that calculate logical operations gates. We establish a
fundamental limitation for particle interactions: We cannot duplicate the output
of a chain of gates without also duplicating the chain of gates. This means that a
so-called fan-out gate cannot be generated. We resolve this missing component
with the help of 2× 1 particles, which can be used to create fan-out gates that
produce multiple copies of the inputs without needing duplicate gates, as shown
in Fig. 18 for a physical prototype. Using these fan-out gates, we provide rules
for replicating arbitrary digital circuits, allowing us to establish the full range of
computational universality as presented by complex digital circuits.

Fig. 18. Gravity-fed hardware implementation of particle computation. The reconfig-
urable prototype is set up as a fan-out gate using a 2 × 1 robot (white)
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5.6 Extensions

There are numerous extensions to the basic framework of control by uniform
global forces. In [58] we develop methods for mapping, foraging, and coverage
with a particle swarm. In [59] we show how to collect a particle swarm. In [44] we
show how to use uniform global forces in combination with appropriate obstacles
to efficiently sort and classify polyomino shapes.

In combination with “sticky” particles that bind together when brought into
contact, we can use the basic setup to build production lines for assembling
given shapes; see our paper [7] for a basic algorithmic and complexity analysis,
and [67] for more efficient methods that proceed in a hierarchical fashion.

5.7 Acknowledgments

The content of this section is based on the abstract [6] and paraphrases the
joint work with Aaron Becker, Erik Demaine, Golnaz Habibi, Jarrett Lonsford,
James McLurkin, Hahmed Mohtasham Shad, Rose Morris-Wright contained in
the papers [4,5,69]. For an animated visualization, see the video at https://
youtu.be/H6o9DTIfkn0.
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