SIAM J. COMPUT. (© 2019 the authors
Vol. 48, No. 6, pp. 1727-1762

COORDINATED MOTION PLANNING: RECONFIGURING A
SWARM OF LABELED ROBOTS WITH BOUNDED STRETCH*

ERIK D. DEMAINE’, SANDOR P. FEKETE!, PHILLIP KELDENICH!, HENK MEILJERS,
AND CHRISTIAN SCHEFFER?

Abstract. We develop constant-factor approximation algorithms for minimizing the execution
time of a coordinated parallel motion plan for a relatively dense swarm of homogeneous robots in the
absence of obstacles. In our first model, each robot has a specified start and destination on the square
grid, and in each round of coordinated parallel motion, every robot can move to any adjacent position
that is either empty or simultaneously being vacated by another robot. In this model, our algorithm
achieves constant stretch factor: if every robot starts at distance at most d from its destination, then
the total duration of the overall schedule is O(d), which is optimal up to constant factors. Our result
holds for distinguished robots (each robot has a specific destination), identical (unlabeled) robots,
and most generally, classes of different robot types (where each destination specifies a required type of
robot). We also show that finding the optimal coordinated parallel motion plan is NP-hard, justifying
approximation algorithms. In our second model, each robot is a unit-radius disk in the plane, and
robots can translate continuously in parallel subject to not intersecting, i.e., having disk centers
at Lo-distance at least 2. We prove the same result—constant-factor approximation algorithm to
minimizing execution time via constant stretch factor—when the pairwise Loo-distance between disk
centers is at least 2v/2 = 2.8284.... On the other hand, for N densely packed disks at distance at
most 2 4 § for a sufficiently small § > 0, we prove that a stretch factor of Q(N'/4) is sometimes
necessary (when densely packed), while a stretch factor of O(Nl/Q) is always possible.

Key words. robot swarms, coordinated motion planning, parallel motion, makespan, bounded
stretch, complexity, approximation

AMS subject classifications. 68Q25, 05C21, 68T40

DOI. 10.1137/18M1194341

1. Introduction. How do we coordinate the motion of many robots, vehicles,
aircraft, or people? If each mobile agent has a destination in mind, how can it find an
efficient route that avoids collisions with other agents as they simultaneously move to
their destinations? These basic questions arise in many application domains, such as
ground swarm robotics [55, 56], aerial swarm robotics [76, 13|, air traffic control [15],
and vehicular traffic networks [26, 61].

Multi-robot coordination has been studied since the early days of robotics and
computational geometry. As far back as the 1980s, the groundbreaking work by
Schwartz and Sharir [62] gave algorithms for coordinating the motion of several disk-
shaped objects among obstacles. Their algorithms run in time polynomial in the
complexity of the obstacles, but exponential in the number of disks. Around the same

*Received by the editors June 14, 2018; accepted for publication (in revised form) August 5, 2019;
published electronically November 26, 2019. An extended abstract containing major parts of this
paper appeared in the Proceedings of the Thirty-Fourth International Symposium on Computational
Geometry (SoCG 2018) [17]. There is a video [6] motivating, visualizing, and demonstrating the
concepts of this paper, reachable via https://www.youtube.com/watch?v=_2CsL_vaQTo.

https://doi.org/10.1137/18M 1194341
Funding: This work was partially supported by the DFG Research Unit Controlling Concurrent
Change, funding number FOR 1800, project FE407/17-2, Conflict Resolution and Optimization.
fMIT Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Tech-
nology, Cambridge, MA 02139 (edemaine@mit.edu).

¥Department of Computer Science, TU Braunschweig, Miihlenpfordtstr. 23, 38106 Braunschweig,
Germany (s.fekete@tu-bs.de, p.keldenich@tu-bs.de, c.scheffer@tu-bs.de).

8§Science Department, University College Roosevelt Middelburg, 4331 CB Middelburg, The
Netherlands (h.meijer@Qucr.nl).

1727

https://www.youtube.com/watch?v=_2CsL_vaQTo
https://doi.org/10.1137/18M1194341
mailto:edemaine@mit.edu
mailto:s.fekete@tu-bs.de
mailto:p.keldenich@tu-bs.de
mailto:c.scheffer@tu-bs.de
mailto:h.meijer@ucr.nl

1728 DEMAINE, FEKETE, KELDENICH, MEIJER, AND SCHEFFER

time, Hopcroft, Schwartz, and Sharir [39] and Hopcroft and Wilfong [40] showed that
it is PSPACE-complete to decide whether multiple robots can reach a given target
configuration, illustrating the significant theoretical challenge of coordinating many
individual robots.

Most other previous work on coordinated motion planning (see section 1.2) has
largely focused on sequential schedules, where one robot moves at a time, with objec-
tives such as minimizing the number of moves. In practice, however, robots usually
move simultaneously, so we desire a parallel motion schedule, with a natural objective
of minimizing the time until completion, called makespan.

How well can we exploit parallelism in a robot swarm to achieve an efficient
schedule? A simple lower bound for the time required for all robots to reach their
destinations is the time it takes to move just one robot to its destination in the
absence of other robots, i.e., by the maximum distance between a robot’s origin and
destination. Moving a dense arrangement of robots to their destinations while avoiding
collisions may require substantially more time than this lower bound. We define the
stretch factor to be the ratio of the time taken by a parallel motion plan divided by
the simple lower bound; see Figure 1.

QI/\ Jz 1 -
== |

F1c. 1. An instance from our video [6] for the grid case causing stretch larger than 1.

1.1. Owur results. In this paper, we provide several fundamental insights into
coordinated motion planning. Our main results show that, under mild assumptions
on the separation between robots, it is possible to achieve a constant stretch factor,
i.e., a stretch factor independent of the number of robots. These algorithms therefore
provide an absolute performance guarantee on the makespan of the parallel motion
schedule, which implies that the schedule is a constant-factor approximation of the
best possible schedule. For densely packed arrangements of robots (without our sep-
aration assumptions), we prove that constant stretch factor is no longer possible, and
give upper and lower bounds on the worst-case stretch factor.

More precisely, we study two models of coordinated motion planning. In the grid
model, robots occupy cells of the (2D) square grid and, in each round of motion, each
robot can move to any horizontally or vertically neighboring position that is either
empty or is simultaneously being vacated by a moving robot. Thus, each round of
motion can be defined by a disjoint collection of directed cycles in the dual grid, where
each robot simultaneously moves to the next position in its cycle. In the disk model,
each robot is a unit disk in the plane, and they can all move in parallel up to unit
speed so long as the disks remain disjoint. In both cases, each robot has a destination,
and we want to move all robots to their destination in the minimum possible time
(makespan).

We prove the following results:

1. It is strongly NP-complete to find the optimal makespan in the grid model;
see Theorem 3.1.

2. We give a polynomial-time O(1)-approximation algorithm for minimizing the
makespan in the grid model. In fact, the algorithm achieves the stronger
guarantee of a constant stretch factor; see Theorem 3.5.

COORDINATED MOTION PLANNING 1729

3. For our approach, we introduce a technique to separate planar (cyclic) flows
into so-called subflows whose thickness can be controlled by the number of
subflows; see Definition 3.8 and Lemma 3.9. This result is of independent
interest for network packet routing with bounded memory. Indeed, our The-
orem 3.5 implies that O(D) steps suffice to route any permutation of dilation
D on the grid, even with a buffer size of 1, resolving a 20-year-old open
question of Scheideler [60].

4. We extend our approach to establish constant stretch for the generalization
of colored robot classes, where each robot has a color, and each destination
specifies only the desired color of a robot that must arrive there; see Theo-
rem 4.1. This setting generalizes both labeled robots (as above) and unla-
beled /identical robots where we only care about which locations are occupied
by robots.

5. We extend our results to establish constant stretch in the disk model, pro-
vided the distance between any two robots is at least two disk diameters;
see Theorem 5.10. This result implies that efficient multi-robot coordina-
tion is always possible, even with nonconvex robots, under relatively mild
separability conditions (and no obstacles).

6. For the disk model with N unit disks and no separation condition, we establish
a lower bound of Q(N'/4) and an upper bound of O(v/N) on the worst-case
achievable stretch; see Theorems 5.8 and 5.11.

We also highlight the geometric difficulty of computing optimal trajectories even
in seemingly simple cases; see section 5.4.

The bulk of this paper provides the mathematical validation of these claims. The
interested reader may benefit from our video [6] that motivates, visualizes and demon-
strates the high-level concepts of this paper (reachable via https://www.youtube.com/
watch?v=_2CsL_vaQTo) before diving into the technical proof details.

1.2. Related work. Several variants of multiple-object motion planning prob-
lems have received a large amount of attention from researchers in various areas of
computer science and engineering; see [22] for a survey, and [29] for a recent book.
Their practical relevance is reflected by the fact that there are industrial solutions used
in automated warehouses for certain restricted forms of these problems [83]. There
are different independent criteria by which these problems can be characterized. A
very important distinction is between discrete and continuous scenarios. In the dis-
crete case, the input is a graph in which no two objects may use a vertex or edge at
the same time; depending on the scenario, we may be allowed to rotate fully popu-
lated cycles. In the continuous or geometric setting, the objects are shapes in some
geometric space which must be moved to a given target position in such a way that
their interiors do not intersect at any time. Depending on the scenario, the shapes
may or may not touch. Moreover, the objects may be confined to a certain region and
there may be stationary obstacles. Under these restrictions, it is unclear whether the
target configuration is reachable at all. Aronov et al. [4] demonstrate that, for up to
three robots of constant complexity, a path can be constructed efficiently if one exists.
Ramanathan and Alagar [52] as well as Schwartz and Sharir [62] consider the case of
several disk-shaped objects moving among polygonal obstacles. They both find algo-
rithms deciding whether a given target configuration is reachable. Their algorithms
run in time polynomial in the complexity of the obstacles, but exponential in the
number of disks. Hopcroft, Schwartz, and Sharir [39] and Hopcroft and Wilfong [40]
demonstrate that the reachability of a given target configuration is PSPACE-complete

https://www.youtube.com/watch?v=_2CsL_vaQTo
https://www.youtube.com/watch?v=_2CsL_vaQTo

1730 DEMAINE, FEKETE, KELDENICH, MEIJER, AND SCHEFFER

to decide; this already holds when restricted to rectangular objects moving in a rec-
tangular region. Their proof was later generalized by Hearn and Demaine [36, 37],
who proved that rectangles of size 1 x 2 and 2 x 1 are sufficient and introduced a
more general framework to prove PSPACE-hardness of certain block sliding games.
Moreover, this problem is similar to the well-known Rush Hour Problem, which was
shown to be PSPACE-complete by Flake and Baum [28]. For moving disks, Spirakis
and Yap [72] have proved strong NP-hardness of the same problem; however, their
proof makes use of disks of varying size. Bereg, Dumitrescu, and Pach [7] as well as
Abellanas et al. [1] consider minimizing the number of moves of a set of disks into a
target arrangement without obstacles. They provide simple algorithms and establish
upper and lower bounds on the number of moves, where a move consists of sliding
one disk along some curve without intersecting other disks. These bounds were later
improved on by Dumitrescu and Jiang [23], who also proved that the problem remains
NP-hard for congruent disks even when the motion is restricted to sliding.

Kirkpatrick and Liu [44] consider the case of moving two disks of arbitrary radius
from a start into a target configuration in an otherwise obstacle-free plane, minimizing
the sum of distances traveled by the disks. They provide optimal solutions for two
disks moving from an arbitrary initial configuration into an arbitrary goal configura-
tion. Their arguments do not seem to generalize to the makespan. Yu [84] provides
an expected constant-factor approximation for the optimal makespan in the grid case.

Diaz-Bénez et al. [21] consider the task of extracting a single object from a group
of convex objects, moving a minimal number of objects out of the way. They present
an algorithm that finds the optimal direction for extracting the object in polynomial
time.

On the practical side, there are several approaches to solving multiple-object
motion planning problems, both optimally and heuristically. For discrete instances
with a moderate number of objects, optimal solutions can be found using standard
search strategies like A* [35] in the high-dimensional search space of possible con-
figurations. Numerous techniques can be used to improve the efficiency of these
strategies [27, 33, 73]. Moreover, there is some work employing SAT solvers [41, 43]
to solve multiple-object motion planning problems to optimality. More recently, Yu
and LaValle [86] presented an exact algorithm using Integer Programming (IP) for
minimizing the makespan that works for hundreds of robots, even for challenging
configurations with densities of up to 100%.

For larger instances, one has to resort to heuristic solutions. In priority planning
[10, 20, 25, 32, 54, 77, 79], the paths are planned one-by-one by assigning priorities
to the objects and planning the movement in decreasing order of priority, treating all
objects with higher priority as moving obstacles. Kant and Zucker [42] decompose the
problem into planning the paths for all objects and avoiding collisions by adapting the
velocity of the objects appropriately, an approach on which several papers are based
[14, 48, 49, 51, 66]. Another approach is to compute paths for the objects individually
and resolve collisions locally [30].

Between these simple decoupled heuristics which only consider one object at a
time and high-dimensional coupled search algorithms lie dynamically coupled algo-
rithms [3, 5, 63, 64, 65, 67, 78] which aim for better solutions at the price of higher
computational costs. These algorithms typically consider individual objects and only
increase the dimension of the search space once a nontrivial interaction between ob-
jects is discovered. Recently, Wagner and Choset [81] provided an exact algorithm,
i.e., a method that computes a provably optimal solution, with a worst-case runtime
that is exponential in the number of robots; in addition, it is bounded suboptimal,

COORDINATED MOTION PLANNING 1731

i.e., it can check achievability for any given stretch factor. Furthermore, there are
also decentralized Al-based multiple-object motion planning approaches [11, 59].

With the advent of robot swarms, practical solutions to these problems became
more important and the robotics community started to develop practical sampling-
based algorithms [38, 57, 58, 69, 70, 74, 80] which, while working well in practice, are
not guaranteed to find an (optimal) solution. In another recent work, Yu and Rus [87]
present a practical algorithm based on a fine-grained discretization combined with an
IP for the resulting discrete problem to provide near-optimal solutions even for densely
populated environments. Other related work includes that of Rubenstein, Cornejo,
and Nagpal [55], who demonstrated how to reconfigure a large swarm of simple, disk-
shaped Kilobots; however, their method is sequential, relocating one robot at a time,
so a full reconfiguration of 1000 robots takes about a day, highlighting the relevance
of truly parallel motion planning. Further extensions to higher-dimensional problems
(with a wide range of additional motion constraints) are swarms of drones (e.g., the
work by Kumar; see [76]) and even air traffic control (see Delahaye et al. [15] for a
recent survey).

In both discrete and geometric variants of the problem, the objects can be labeled,
colored, or unlabeled. In the labeled case, the objects are all distinguishable, and each
object has its own, uniquely defined target position. This is the most extensively
studied scenario among the three. In the colored case, the objects are partitioned into
k groups, and each target position can only be covered by an object with the right
color. This case was recently considered by Solovey and Halperin [67], who present and
evaluate a practical sampling-based algorithm. In the unlabeled case, the objects are
indistinguishable, and each target position can be covered by any object. This scenario
was first considered by Kloder and Hutchinson [45], who present a practical sampling-
based algorithm. In this situation, Turpin, Michael, and Kumar [75] prove that it is
possible to find a solution in polynomial time, if one exists. This solution is optimal
with respect to the longest distance traveled by any one robot. However, their results
only hold for disk-shaped robots under additional restrictive assumptions on the free
space. For unit disks and simple polygons, Adler et al. [2] provide a polynomial-
time algorithm under the additional assumption that the start and target positions
have some minimal distance from each other. Under similar separability assumptions,
Solovey et al. [71] provide a polynomial-time algorithm that produces a set of paths
with total length at most OPT +4m, where m is the number of robots. However, they
do not consider the makespan, but only the total path length. On the negative side,
Solovey and Halperin [68] prove that the unlabeled multiple-object motion planning
problem is PSPACE-hard, even when restricted to unit square objects in a polygonal
environment.

Regarding discrete multiple-object motion planning, Calinescu, Dumitrescu, and
Pach [9] consider the nonparallel motion planning problem on graphs, where each
object can be moved along an unoccupied path in one move. They prove that both
in the unlabeled and in the labeled case, minimizing the number of moves required
is APX-hard. They provide 3-approximation algorithms for the unlabeled case on
general graphs. Moreover, they prove that the problem remains NP-complete on
the infinite rectangular grid. Their results are different from our results because the
objective they consider is not closely related to the makespan. For other work, see
[8, 18, 19, 34] for particular examples.

On grid graphs, the problem can be cast as a very restrictive variant of mesh-
connected routing, where each processor can only hold one packet at any time. How-
ever, approaches developed for this problem (see Kunde [47] and Cheung and Lau [12])

1732 DEMAINE, FEKETE, KELDENICH, MEIJER, AND SCHEFFER

typically assume that at least a constant number of packets can be held at any proces-
sor. On the other hand, on grid graphs, the problem resembles the generalization of
the 15-puzzle, for which Wilson [82] and Kornhauser, Miller, and Spirakis [46] have
given an efficient algorithm that decides reachability of a target configuration and
have provided both lower and upper bounds on the number of moves required. How-
ever, Ratner and Warmuth [53] proved that finding a shortest solution for this puzzle
remains NP-hard. Demaine, Demaine, and Verrill [16] also consider various grids. For
the triangular grid, they give efficiently verifiable conditions for checking whether a
solution exists.

During the review period of the abstract version [17] of our work, Yu [85] indepen-
dently proposed a similar approach that also achieves a constant-factor approximation
for the case of a rectangular grid.

2. Preliminaries. In the following, we provide formal definitions for the grid
case (treated in sections 3 and 4) and for the continuous case (the focus of section 5).

2.1. The grid case. In the grid setting of section 3 we consider a four-connected
ny X ng grid G = (V, E), where V. ={1,...,n1} x {1,...,n2}. A configuration of P
is a mapping C : V — {1,..., N, L}, which is injective on the labels {1,..., N} of the
N < |P| robots to be moved, whereas L denotes an empty square and is thus used
|P| — N times. The inverse image of a robot’s label £ is C™1(¢) = (x4,1,). We call
x¢ and y, the z- and y-coordinates of the robot. In the following, we consider a start
configuration Cs and a target configuration Cy; for i € {1,..., N}, we call C71(i) =
(zs,ys) and C; (i) = (w4, y¢) the start and target positions of the robot i. The L; (or
Manhattan) distance between a robot’s start and target positions is |25 — z¢|+|ys — ¢ |;
this is a lower bound on the number of steps to get a robot to its destination. The L.-
distance is max{|zs — x¢|, |ys — y¢|}, and we denote by d the maximum such distance
over all robots. Because of |zs — x|+ |ys —yi| < 2max{|zs— x|, |ys —ye|}, it suffices to
focus on d when establishing upper bounds on the length of a reconfiguration schedule.

A configuration C; : V. — {1,...,N, L} can be transformed within one single
transformation step into another configuration Co : V- — {1,..., N, L}, denoted C; —
Cy, if C7H(0) = C31(0) or (C7M(€),C5 () € E holds for all £ € {1,...,N}, ie.,
if each robot does not move or moves to one of the at most four adjacent squares.
Furthermore, two robots cannot exchange their squares in one transformation step,
i.e., for all occupied squares v # w € V, we require that Co(v) = Cy(w) implies
Co(w) # C1(v). A configuration Cs can be transformed into a configuration C; if there
is a sequence Cs — C; — --- — Cr — C; of transformation steps. For M € N, a
schedule is a sequence C; — --- — Cjps of transformations. The number of steps
in a schedule is called its makespan. Given a start configuration Cs and a target
configuration C;, the optimal makespan is the minimum number of steps in a schedule
starting with C; and ending with C;. Let m > 1. Note that for the 2 x 2, 1 x n,
and n x 1 rectangles, there are pairs of start and target configurations where no such
sequence exists. For all other rectangles, such configurations do not exist; we provide
an O(1)-approximation of the makespan in section 3.

2.2. The continuous case. For the continuous setting of section 5, we consider
N robots R :={1,..., N} C N. The Euclidean distance between two points p, q € R?
is |pq| == ||p—q||2. We model the robots by disks of radius one. The position of a robot
is the midpoint of its disk; thus, disjoint robots have a distance of at least 2. Every
robot r; has a start and a target position s;,t; € R? with |s;s;|, |[t;t;] > 2 for all i # j.
In the following, d := max,¢cg |s,t,| is the maximum distance a robot has to cover. A

COORDINATED MOTION PLANNING 1733

trajectory of a robot r; is a curve m; : [0, T;] — R?, where T; € Rt denotes the travel
time of r;. This curve m, does not have to be totally differentiable, but must be totally
left- and right-differentiable. Intuitively, at any point in time, a robot has unique past
and future directions that are not necessarily identical. This allows the robot to make
sharp turns, but does not allow jumps. We bound the speed of the robot by 1, i.e.,
for each point in time, both left and right derivative of m, have FEuclidean length at
most 1. Let m; : [0,7;] — R? and m; : [0,Tj] — R? be two trajectories; w.l.o.g.,
all travel times are equal to the maximum travel time Tp,.x by extending m,; with
m;(t) = m;(T;) for all T; < t < Tiyax. The trajectories m; and m; are compatible if
the corresponding robots do not intersect at any time, i.e., if |m;(t)m;(t)| > 2 holds for
all t € [0,T;]. A trajectory set of R is a set of compatible trajectories {mq,...,mn},
one for each robot. The (continuous) makespan of a trajectory set {mq,...,my} is
defined as max,,cgT;. A trajectory set {mi,...,mpy} realizes a pair of start and
target configurations S := ({s1,...,sn5}, {t1,-.-,tn}) if m(0) = s; and m;(T3) = ¢;
hold for all i € R. We are searching for a trajectory set {m1,...,my} realizing S
with minimal makespan.

3. Labeled grid permutation. Let n; > ny > 2, ny > 3 and let P be an
ny1 X ng rectangle. In this section, we show that computing the optimal makespan of
arbitrarily chosen start and target configurations Cy; and C; of niny > k > 1 robots
in P is strongly NP-complete. This is followed by an O(1)-approximation for the
makespan.

THEOREM 3.1. The minimum makespan parallel motion planning problem on a
grid is strongly NP-hard.

Proof. The proof is based on a reduction from the NP-hard problem MONOTONE
3-SAT, which asks to decide whether a Boolean 3-conjunctive normal form (3-CNF)
formula ¢ is satisfiable, where in each clause the literals are either all positive or all
negative [31]. All coordinates and the makespan M are constructed to be polynomial
in the input size, implying strong NP-hardness. A fully polynomial-time approzima-
tion scheme (FPTAS) is an (1 + €)-approximation algorithm with a runtime poly-
nomial in the number of robots and in % As M is constructed to be polynomial in
the number of variables and the number of clauses of ¢, the existence of an FPTAS
would imply the existence of an efficient algorithm computing schedules with optimal
makespan. Thus, there is no FPTAS unless P = NP.

For the remainder of the proof, let ¢ have n variables {xo, ..., 2,_1 } and m clauses
{C1,...,Cn}. From ¢, we construct an instance of the minimum makespan parallel
motion planning problem that has optimum makespan M if ¢ is satisfiable and M + 1
otherwise. During the description of the construction, we keep M variable, fixing its
value once the construction is complete. The structure of the resulting instance is
sketched in Figure 2.

Each variable x; is represented by a variable robot. Additionally, for each variable
there are two auziliary robots that force the variable robot to take one of two different
paths to its goal in any solution with makespan M; see Figure 2. The left auxiliary
robots start at positions (1,65 + 1) and move down towards their target positions
(1,65 41— M) in each time step. The right auziliary robots start at positions (M — 3,
—M +65+1) and have to move up towards their target positions (M —3,65+1). The
variable robot for variable x; starts at position (0, 65) and has to travel M — 2 units
to the right towards its goal position (M —2,67). In the first time step, each variable
robot can either wait or move upwards. Afterwards, it must move to the right in every

1734 DEMAINE, FEKETE, KELDENICH, MEIJER, AND SCHEFFER

\
i
\
o
clauses v \
&
\
o
v
aux. A
variables >
v
side steps i aux.
checkers

znfll" """""""" T R A e e e FK T,
0 O false s
211 (0,6)@-f---mmmmmmmm T M t EE R S S FX) (M —2,6)
0 false e
29 (0,0)8-p---mmmmmmmes T FK o (M —2,0)
(1,—M + ¥ b =3, -+ 1)

FiG. 2. Top: The structure of the resulting parallel motion planning problem instance. Bottom:
Start configuration (disks) and target configuration (crosses) of variable robots and their auziliaries.
The left auxiliary robot for x; starts at position (1,65 +1) and has to move down towards its target
position (1,65 +1 — M) in each time step. The right auxiliary robot for x; starts at (M — 3, —M +
65 + 1) and has to move up towards its target position (M — 3,65 + 1).

time step until passing the right group of auxiliary robots at x = M —3. It cannot wait
or move down before this point, as this would lead to a collision with the corresponding
right auxiliary robot. Therefore in any schedule with makespan M, after the kth time
step, each variable robot has z-coordinate k — 1 for any 1 < k < M — 3.

For each clause C; = {zj,,x;,,z;,} with j1 < j2 < js, we have three checker
robots c},c?, ¢} checking whether their corresponding literal satisfies the clause. The
checkers for clause C; start at positions of := (6(ni + j1),—6ni — f;),...,a} =
(6(m’+j3), —6ni— fi), where f; = 1 if and only if C; is negative and f; = 0 otherwise.

COORDINATED MOTION PLANNING 1735

- --@-L--- false -- --@-L--- false
Tj% = --0-:—---true

N —

6(ni+j) &
i (6(ni+7) +1

1

1

cf%

Fic. 3. (a) A checker ¢! for variable z; in a positive clause C;. (b) A checker cf for variable z;
in a negative clause C;. Checkers must wait if and only if the variable assignment does not match.

As depicted in Figure 3, a checker has to wait one time step for the corresponding
variable if and only if the checked literal is not true.

Checker ¢? has to move M — 1 units up to its target position 3 := a2 + (0, M —1).
Let dy := 6(j3 — j1) be the horizontal distance between the initial positions of ¢} and
c3, and let dy := 6(j3 — j2) analogously. Both d; and dy are always even and at
least 6; therefore s; := d—21 4+ 2 < d; and sy := %2 + 1 < dy are integer. We force c}
to take s; steps to the right towards its target position t} := a} + (s1, M — 1 — s7).
Analogously, ¢? has target position 2 := a + (s2, M — 1 — s2). Each checker travels a
total distance of M — 1; thus it is allowed to wait for one time step, but has to move
on an xy-monotone path towards its target position.

Because moves to the right do not change the position of a checker relative to
the variables, we may assume that the checkers move to the right from their initial
position before moving up. In fact, we enforce this behavior using auxiliary robots
as depicted in Figure 4. Moreover, each clause C; also has a clause robot ensuring
that there is at least one satisfied literal. The clause robots start to the right of the
checkers and above the variables and have to move M — 2 units to the left and two
units downwards, and therefore have to move towards their target in every round
without waiting for the checkers. The clause robot of each clause is placed such that
checkers for other clauses cannot interfere with its path; see Figure 2. To be more
precise, as shown in Figure 4, the clause robot stops at position ¢} — (3, 3) and starts
at position t} + (=1, M —5). The vertical offset between the checkers introduced by
the side steps that ¢! and ¢? perform is chosen such that the clause robot can pass
through the checkers without waiting if and only if one of the checkers did not wait.
This is the case if and only if at least one literal of the clause is satisfied.

It remains to determine the critical makespan M. This critical makespan M
must be large enough to allow the checkers of the last clause C,, to pass through the
variable robots and their clause robot. Moreover, it must also allow the variable robots
to cross paths with all checkers. The checkers of the last variable travel left of the line
x = 6n(m + 1) — 6. Therefore, a makespan M > 6n(m + 1) suffices for the variable
robots. Regarding the clauses, if the last clause is negative, the starting points of its
checkers are located on the line y = —6nm — 1. The topmost variable robot travels
below the line y = 6(n — 1) + 1. To keep our argument simple, we want to make sure
that the clauses stay strictly above all variables. Due to the position of the clauses,
this means that we have to ensure that the checker for the first literal of the last clause
has target position above the line y = 6(n — 1) + 5. Therefore, not accounting for the
side steps of the checkers, we have to set M > (6nm+1)+ (6(n—1)+5) = 6n(m+1).

1736 DEMAINE, FEKETE, KELDENICH, MEIJER, AND SCHEFFER

d
a9
A
A A
s1—1
o t % —1
— d 1
So — 1 i R R e R R o e 9--0-= 3" literal true
2 ! 1
=== 1--=-- == —9-+ 2" literal true
- -4} -1 215t literal true
! [i)
J1 J2 J3 ,17] +2 @
4
v

F1a. 4. Left: A group of auziliary robots is used to force the first two checkers of each clause to
perform their side steps before moving up. Fach auxiliary robot has to move downwards by M units.
Right: A clause robot (orange) meeting the corresponding checkers (black for satisfied checkers, red
for nonsatisfied checkers). (Color available online only.)

Clearly, the number of side steps performed by each checker is less than 6n. Therefore,
in total, a critical makespan of M := 6n(m + 2) is sufficient.

In our construction, a makespan of M is feasible if and only if for every clause
robot there is one checker that does not wait, which implies that each clause has a
satisfied literal under the assignment induced by the variable robots. Therefore, a
makespan of M is feasible if and only if ¢ is satisfiable.

In summary, we use 3n + 3m + 6n(m + 2) robots: n variable robots, 2n auxiliary
robots for the variable robots, 3m checker robots for m clauses, and at most 6n(m+2)
auxiliary robots for the checker robots.

Finally, observe that even though our reduction uses individually labeled robots,
three colors are already sufficient. One can use color 1 for variables, color 2 for
checkers, and color 3 for clauses and all auxiliaries. 0

Our constant-factor approximation is based on an algorithm that computes a
schedule with a makespan upper-bounded by O(n; + ns) described by Lemma 3.3.
Based on Lemma 3.3, we give a constant-factor approximation of the makespan; see
Theorem 3.4. Finally, we embed the algorithm of Theorem 3.4 into a more general
approach to ensure simultaneously a runtime polynomial in the number N of input
robots and a constant approximation factor; see Theorem 3.5.

Next, we give the details of the algorithm that computes a sequence of O(ny +
ng) steps transforming an arbitrary start configuration Cs into an arbitrary target
configuration C; of an n; X ny rectangle; see Lemma 3.3. This algorithm is based on
a sorting algorithm, called ROTATESORT, that uses swap operations, in which two
robots exchange their positions within one single step, as elementary operations. As
our model does not allow swap operations, we first have to show how to simulate swap
operations at the expense of increasing the makespan by a factor upper-bounded by
some constant.

COORDINATED MOTION PLANNING 1737

312 F3+6 (| 1[2]3

¥

Lstal|s]4

LD+
FNERYA
—t

AN+

Fic. 5. Using three moves for swapping two positions in a 2 X 3 arrangement.

In order to simulate swap operations, we first observe that Yu and LaValle [86]
proved that for a 3 x 3 square, each start configuration can be transformed into an
arbitrary target configuration. This result is easily established for 2 x 3 rectangles;
see Figure 5 for how to realize a transposition.

LEMMA 3.2. For a pair of start and target configurations Cs and Cy of a 2 x 3
rectangle, we can compute a sequence of at most seven steps transforming Cs into Cy.

Lemma 3.2 is the building block for permuting n; X ns rectangles within makespan
(’)(n1 “+ ng) .

LEMMA 3.3. For a pair of start and target configurations Cs and C; of an ny X ns
rectangle, we can compute in time polynomial in ny and ny a sequence of O(ny + ng)
steps transforming Cs into Cy.

Proof. The straightforward proof relies on covering the rectangle by a set of dis-
joint 2 x 3 and 3 x 2 rectangles, on which swap operations are performed in parallel,
with each swap operation exchanging the position of two adjacent robots. We say that
two swap operations are disjoint if all four positions of the two swaps are distinct. Al-
though direct swap operations of adjacent robots are not possible, Lemma 3.2 allows
us to perform an arbitrary number of pairwise disjoint swap operations within each
2 x 3 rectangle with O(1) transformation steps. As illustrated in Figure 6, we cover P
by 12 different layers of rectangles, such that each pair of adjacent unit squares from
P lies in one of the 2 x 3 rectangles or in one of the 3 x 2 rectangles.

In particular, we distinguish between 2 x 3 and 3 x 2 rectangles inside the n; X ngy
rectangle. Furthermore, we distinguish between different positions of 2 x 3 rectangles
according to row numbers modulo 2 and column numbers modulo 3; see Figures 6(a)—
(f). Analogously, we distinguish between different positions of 3 x 2 rectangles accord-
ing to row numbers modulo 3 and column numbers modulo 2; see Figures 6(g)—(1).
This results in 12 different classes of rectangles.

Given a set S of pairwise disjoint swap operations, we subdivide S into these 12
layers, such that the two robots of each swap operation lie in the same small rectangle
of the corresponding layer. Lemma 3.2 implies that all swap operations of one layer
can be done in parallel with O(1) transformation steps. Therefore, all swap operations
in S can be done in O(1) transformation steps.

This allows us to apply a sorting algorithm for n; X no meshes, called ROTATE-
SORT [50], whose only elementary steps are swap operations of adjacent cells. We
employ ROTATESORT by labeling the robots in the target configuration based on
the snake-like ordering guaranteed by ROTATESORT. Applying ROTATESORT to the
start configuration with the robots labeled in this way, we obtain the required target
configuration. Marberg and Gafni [50] show that ROTATESORT needs O(ni + n2)
phases, where each phase consists of pairwise disjoint swap operations. This leads to
O(ny + ng) transformation steps in our model. |

Based on the algorithm of Lemma 3.3, we can give a constant-factor approxima-
tion algorithm.

1738 DEMAINE, FEKETE, KELDENICH, MEIJER, AND SCHEFFER

a) b) c) d) e) f)

m)e[@[@[C[CEN [dal.daloee]) ERERREE)P [PREIE@E[®
eoveeco [@|1W | Mle [@.nleeeo [eeeleeee
ooceeoE [EeRe%W el [¥lewlbe Eowewo®
pEEEEEE §"®@@®@ oleelelld | |[@eoEEeo
oeeeese [tlueese cleoee) Eewoeae
ceooee [Eopslowel ceoesbe EeEedme
Pebbee obowoe LWL EELEe®

Fic. 6. (a)-(1) Covering of P by pairwise disjoint 2 X 3 and 3 X 2 rectangles in 12 layers.
(m)—(p) Simulating seven distinct swap operations by iteratively using the classes of rectangles of
(a), (b), and (g) as animated in our video [6].

THEOREM 3.4. There is an algorithm with runtime O(dnins) that, given an ar-
bitrary pair of start and target configurations of an ni X no rectangle with mazximum
distance d between any start and target position, computes a schedule of makespan
O(d), i.e., an approzimation algorithm with constant stretch.

For the algorithm of Theorem 3.4, Lemma 3.3 is repeatedly applied to rectangles
of side length O(d), resulting in O(d) transformation steps in total. Because d is a
lower bound on the makespan, this yields an O(1)-approximation of the makespan.

At a high level, the algorithm of Theorem 3.4 first computes the maximal Lj,¢
distance d between a robot’s start and target positions. Then we partition P into
a set T of pairwise disjoint rectangular tiles, where each tile ¢ € T is an n} x n}
rectangle for nj,n5 < 24d — 1 < 24d. Intuitively speaking, to ensure that each tile
has a side length of least 12d, we partition P into |1z] columns, followed by one row
of width between 12d + 1 and 24d — 1. Furthermore, we partition each column into
| 155/ tiles of height 12d followed by one tile of height between 12d 4 1 and 24d — 1;
therefore, a tile size of 24d is sufficient. Thus, instead of 24, we could have used any
other sufficiently large constant. We will analyze that for each side s of a tile ¢ only
the three tiles t1, to, t3 lying on the opposite side of the line induced by s and sharing
at least one point with ¢ may contain robots that want to travel from ¢ to t1, to, or
t3 or vice versa; see Figure 7 (left).

Our approach realizes these exchanges via the side s shared between t and ts,
where 5 is the tile that lies between ¢, and t3. For each pair (¢,t;) we will exchange
d robots between ¢ and t; or vice versa within one transformation step, implying that
3d robots need to pass s within one transformation step. Applying a sequence of 3d
transformation steps ensures that ©(d?) robots achieve their target step within O(d)
transformation steps. In order to allow this, we need tiles of side length of at least
4-3d = 12d. In particular, pushing 3d groups of 3d robots simultaneously from ¢, into
t within 3d transformation steps needs an axis-aligned ring R C ty of width 3d and
which is adjacent to the boundary of t5; see Figure 7 (right). Furthermore, realizing
each transformation step inside the tile needs another square t' C t5 of side length

COORDINATED MOTION PLANNING 1739

gso g: 3d |
t b2 ta 288308
d d d ¥
(_J?\ J.:Jbl » o — 12d
- - ’
TS R, #frot |
%(_J
3d
t . 3d
/‘2 SJ
t fo]e] O:
R Y i
8338888

Fic. 7. Left: A schematic illustration of why at most 3d robots need to pass in parallel within
one transformation step a side s of a tile t. Right: Pushing 3d rows of 3d robots over a side s of a
tile t within 3d transformation steps needs an axis-aligned ring R C to of width 12d that is adjacent
to the boundary of t. Furthermore, realizing each transformation step inside the tile needs another
square of side length 6d that is concentric with ta. (Color available online only.)

6d that is concentric with to; see the colored lines in Figure 7 (right). We then use
an algorithm based on flows to compute a sequence of O(d) transformation steps,
ensuring that all robots are in their target tile. Figure 8 shows an example of a pair
of start and target configurations and the resulting flow.

Once all robots are in the correct tile, we use Lemma 3.3 simultaneously on all
tiles to move each robot to the correct position within its target tile. The details of
the algorithm of Theorem 3.4 are given later in this section.

The above-mentioned tiling construction ensures that each square of P belongs
to one unambiguously defined tile and that each robot has a start and a target tile.

Based on the approach of Theorem 3.4 we give a O(1)-approximation algorithm
for the makespan with a runtime polynomial in the number N of robots to be moved.

THEOREM 3.5. There is an algorithm with runtime O(N?®) that, given an arbi-
trary pair of start and target configurations of a rectangle P with N robots to be moved
and mazximum distance d between any start and target positions, computes a schedule
of makespan O(d), i.e., an approzimation algorithm with constant stretch.

Intuitively speaking, the approach of Theorem 3.5 distinguishes two cases.

(1) Both | %2 | and the maximum distance d between the robots’ start and target
positions are lower-bounded by the number N of input robots.

(2) N> |%]or N>d.

In case (1), the grid is populated sparsely enough that the robots’ trajectories in
northern, eastern, southern, and western directions can be done sequentially by four
individual transformation sequences.

In case (2), the grid is populated densely enough that the approach of Theorem 3.4
can be applied while guaranteeing a polynomial runtime regarding the number N of
robots.

Proof. Our algorithm considers the two cases (1) N < [%t],d and (2) N > [%]
or N > d separately as follows.

1740 DEMAINE, FEKETE, KELDENICH, MEIJER, AND SCHEFFER

-,

] 1
- -—
pr

] 'd
pd
? £ 'did
¥) o[¥
A ot 5|
/
k— e —-‘
2 i

Fia. 8. A tiling of a 32 x 26 rectangle by four tiles with d = 1. Robots not in their target tile
are illustrated by small dots. Their target positions are depicted as white disks. The dual graph of
the tiling is illustrated by large dots and directed edges between them. The edges of the dual graph
are annotated with the value of the flow on the corresponding edge. In general, it is not guaranteed
that robots that have to change the tile lie adjacent to the border between their start and target tiles.
Howewver, this is the case for d =1, as illustrated in this figure.

In case (1), we apply the following approach whose steps, described next, are
all realizable because N < [ZL],d. We assume w.l.o.g. that n; and ny are even.
Otherwise, starting from the start configuration, we move all robots from the last line
into the second-to-last line, and all robots from the last column into the second-to-last
column within O(d) transformation steps. The reversed argument implies that there
is a sequence of O(d) transformation steps leading from an even-sized configuration
to the target configuration. Thus, from now on, we restrict our considerations to
even-sized rectangles.

For each pair of start and target configurations Cs and C; of P, there are two
configurations C, and C, (that are uniquely defined later), such that the two following
conditions are fulfilled: (1) the coordinates of the robots in C, are odd, and the
coordinates of the robots in C. are even, and (2) Cs and C. can be transformed into
C, and C; within O(d) transformation steps. Thus, we still have to give an approach
for how C, can be transformed into C, within O(d) transformation steps.

First, we ensure in parallel for all robots that they achieve the position that
is induced by the z-coordinate of their position in C. and the y-coordinate of their
position in C,. We call the corresponding configuration intermediate configuration C;
with intermediate positions and coordinates. In order to obtain the intermediate
configuration, starting from C,, we first push in parallel all robots that have to move
to the right one position upwards, then move them simultaneously to the right until
they arrive at their intermediate z-coordinate. Moreover, we push a robot immediately
one position downwards when it reaches its intermediate x-coordinate; see Figure 9.

COORDINATED MOTION PLANNING 1741

The start and ¢ Ql [[[« [@.® o[[]
target s el [N Ag T ™ o | |
configurations 41 ™~ N
C.,"dlgi: (I 3 ~ Cs_) "_>Ct
h 24 | ® Gr
12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Preprocessing ~ ¢1 (M) (]
to elllb:ul'e od 51 [V & o
ordinates 4
coordinates 4 ? Com - C,
2 (] (]
Ny [&
T3 343 ¢ 7 8 g 1011 12131415 16 17 18 19 20 21 32 33 24 35 26 37 98 20 30 31 32 33 34 35 36
Moving 61]
: S
robots 5 o 00 O
I eastern 1
direction 31 0
21 [] []
Lol O [T1TTT /@0l OB [T1[1 O TITI[IL
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Co— - —C
Moving 6 I]
B S
robots 5 ® [00
mn western 4 I]
direction 39 [v] 0
2111
1{]9 S [oo [o [@ o
133 13674 g {oft 1210314151617 (s 19 30 31 22 33 24 35 36 57 35 39 30 31 32 33 34 35 36
Moving 6110 5.2 a2 o 1o 5.)
robots 51 0 0 0
in northern 4
direction 31 my)
o
11 4@ -® 4 @ o
W‘ 2‘ é‘ 4‘ ')‘ d 7‘ V\‘ ‘Y‘ W‘U 1‘1 1‘2 W‘é 1‘4 l‘i W‘G 1‘7 l‘h‘ W“Y Z‘U Jl ‘2‘2 2‘3 JA ‘2‘5 2‘0 J'/' ‘2‘8 2‘5} é‘“ 15‘1 ‘5“2 é“i 15‘4 ‘5‘5 é‘b
Ci— - —C,
Moving i1 |@ 0 o) o [® O
robots 51 r® r® 1®
in southern 1
direction 31
24 =)))
1 T
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Postprocessing 61 1@ €] GP e[(@ ®
to generate i1 & [Y] [Y]
target 4
corfﬁguratlon 37 Ce— =G
from even 29 [])
coordinates ALLIT LTI I LI LTSI LI LI T T T T 1T
12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Fi1G. 9. A stepwise illustration of the approach for case (1) of Theorem 3.5.

After that, we apply the analogous approach for robots that have to move to the
left, resulting in the intermediate configuration.

Second, starting from the intermediate configuration, we apply the above-described
two-step approach for horizontal movements in an analogous version in order to en-
sure that the y-coordinate of each robot r is equal to the y-coordinate of r in the
configuration C., while guaranteeing that the z-coordinate of r stays the same. This
results in the configuration Ce.

The transformation steps leading from C; to C, and leading from C. to C; can be
computed in O(N - N) time by making use of the fact that the robots’ positions are ex-
plicitly given via their coordinates. In particular, in each row the robots’ positions are
processed in increasing order of their z-coordinates, as follows. Initially, all positions
are not reserved. Consider a robot ¢ with coordinates (x;,y;). The reserved position
of robot i is (Z;,y;), where T; > x; is the smallest odd value such that (Z;,y;) is not
reserved. Moving all robots in all rows in parallel to their reserved positions leads
to a schedule that ensures that all robots have odd x-coordinates within a makespan
no larger than O(N), which is by assumption no larger than O(d). Analogously, we
construct a schedule that ensures that all robots have odd y-coordinates within a

1742 DEMAINE, FEKETE, KELDENICH, MEIJER, AND SCHEFFER

{ {
i@ (") Q[Q@
® hANAY
e & o Xel e—o
[G—e \[®
c (] ® / i ®
g
@ [/@
Qo
® [V)

@/ *‘0

v i
° 0\04 S

Fic. 10. An illustration of how the approach for case (2) of Theorem 3.5 clusters the pairs of
robots’ start and target positions.

A

makespan no larger than O(d). The same reasoning implies that the sequences of
transformation steps leading from C, to the intermediate configuration and leading
from the intermediate configuration to C, can be computed in O(N - N) time.

In case (2), we apply the approach of Theorem 3.4 as a subroutine in the following
approach (illustrated in Figure 10). For each robot we consider the smallest rectangle
that contains the robot’s start and target positions. If the rectangle has a height
or width of 1, we extend the height or width to 2. Now we iteratively replace two
rectangles Ry and R intersecting each other by the smallest rectangle that contains
R1 and RQ.

This results in a set of rectangles that are pairwise intersection free, allowing us
to apply the approach of Theorem 3.4 to each resulting rectangle in parallel, while
ensuring that each robot is involved in at most one application of the approach of
Theorem 3.4.

As the side lengths of the initial rectangles are upper-bounded by d, we conclude
that the sum of the lengths of the finally computed rectangles is upper-bounded by
N - d, which in turn is upper-bounded by N?2 in that case. This implies a runtime of
O(d- N?) < O(N?3). a0

In the rest of section 3, we give the proof of Theorem 3.4, i.e., we give an algorithm
that computes a schedule with makespan linear in the maximum distance between
robots’ start and target positions. The remainder of the proof of Theorem 3.4 is
structured as follows. In section 3.1 we give an outline of our flow algorithm that
ensures that each robot reaches its target tile in O(d) transformation steps. Section 3.2
gives the full details of this algorithm.

3.1. Outline of the approximation algorithm of Theorem 3.4. We model
the trajectories of robots between tiles as a flow fr, using the weighted directed graph
Gr = (T, Er, fr), which is dual to the tiling T" defined in the previous section. In
Gr, we have an edge (v,w) € Ep if there is at least one robot that has to move
from v into w. Furthermore, we define the weight fr((v,w)) of an edge as the integer
number of robots that move from v to w. As P is fully occupied, fr is a circulation,
i.e., a flow with no sources or sinks, in which flow conservation has to hold at all
vertices. Because the side lengths of the tiles are greater than d, G is a grid graph

COORDINATED MOTION PLANNING 1743

with additional diagonal edges and thus has degree at most 8.
The maximum edge value of fr is ©(d?), but only O(d) robots can possibly leave

a tile within a single transformation step. Therefore, we decompose the flow fr of
robots into a partition consisting of O(d) subflows, where each individual robot’s
motion is modeled by exactly one subflow and each edge in the subflow has value at
most d. Thus we are able to realize each subflow in a single transformation step by
placing the corresponding robots adjacent to the boundaries of their corresponding
tiles before we realize the subflow. To facilitate the decomposition into subflows, we
first preprocess Gr. In total, the algorithm consists of the following subroutines,
elaborated in detail in section 3.2.

Step 1: Compute d, the tiling T', and the corresponding flow Gr.

Step 2: Preprocess Gr in order to remove intersecting and bidirectional edges.

Step 3: Compute a partition into O(d) d-subflows.

Step 4: Realize the O(d) subflows using O(d) transformation steps.

Step 5: Simultaneously, apply Lemma 3.3 to all tiles, moving each robot to its target

position.

3.2. Details of the approximation algorithm of Theorem 3.4. In this
section we give more detailed descriptions only for Steps 1-4 because Step 5 is a
trivial application of Lemma 3.3 to all tiles in parallel.

3.2.1. Step 1: Compute d, the tiling T, and the corresponding flow Gr.
The maximal distance between robots’ start and target positions can be computed in
a straightforward manner.

For the tiling, we assume that the rectangle P is axis-aligned and that its bottom-
left corner is (0,0). We consider &, := | {3 | vertical lines /1, ..., ¢} with z-coordinate
modulo 12d equal to 0. As already noted before, the constant 12 can be replaced by
any sufficiently large constant value. Analogously, we consider kj, := | {34 | horizontal
lines ¢, ... ,ézh with y-coordinate modulo 12d to 0. Finally, we consider the tiling
of P that is induced by the arrangement induced by ¢, ... ,E};ﬂ_l,ﬁ?, . ,Kﬁv_l and
the boundary of P; see Figure 8. This implies that the side length of a tile is upper-
bounded by 24d — 1.

Finally, computing the flow G is straightforward by considering the tiling 7" and
the robots’ start and target positions.

3.2.2. Step 2: Ensuring planarity and unidirectionality. After initial-
ization, we preprocess G, removing edge intersections and bidirectional edges by
transforming the start configuration C; into an intermediate start configuration C?,
obtaining a planar flow without bidirectional edges. This transformation consists of
two steps: (1) ensuring planarity and (2) ensuring unidirectionality.

Step (1). We observe that edge crossings only occur between two diagonal edges
with adjacent source tiles, as illustrated in Figures 11(a),(b). To remove a crossing,
it suffices to eliminate one of the diagonal edges by exchanging robots between the
source tiles. To eliminate all crossings, each robot is moved at most once, because
after moving, the robot no longer participates in a diagonal edge. Thus, all necessary
exchanges can be done in O(d) steps by Lemma 3.3, covering the tiling 7' by constantly
many layers, similarly to the proof of Lemma 3.3.

Step (2). We delete a bidirectional edge (v, w), (w,v) by moving min{ f7((v, w)),
fr((w,v))} robots with target tile w from v to w and vice versa, which
achieves that min{fr((v,w)), fr((w,v))} robots reach their target tile w and
min{ fr((v,w)), fr((w,v))} robots reach their target tile v, thus eliminating the edge

1744 DEMAINE, FEKETE, KELDENICH, MEIJER, AND SCHEFFER

[) ®
v L/ w, vy 1w 1
Nl de s
ol o A
[] []
—‘ go O o) 0%67 P ‘)7
3
. 3! 2
) wy V2 1 wy []

a) b) ¢) d)
eleleoeeeeEeEEeeEE |[PooeE@EEeEE@ @@
O®D|D|CHHRIB|D|B|® (3| (8)|69|Go)| G| B3| @) ED|)| ED| @) | 69| €| 6D
SeToiRErchrer bocciacin s
ooesleoaRlFeeelese® 1 @i 62%?:,@6
0000000 PRoeee e e® w@gmg @f“
©|6/66|9 @@leoleeelq de® (=t 3 @g
eloolddebleepoldone CPBE0RE ©
ooodP e @eeEe e
PEEEeEEEDRERARREE EEEEEEE Sl EiEl)E]E)
oo s sesee s ®

e) f)

Fic. 11. Illustration of the preprocessing (step (1): before and after removing crossing edges
(a),(b), and step (2): before and after removing bidirectional edges (c),(d)). The red arrows indi-
cate how robots change their positions during the preprocessing steps. (e),(f) Removing crossings
and bidirectional edges is performed by placing the corresponding robots in queues adjacent to the
boundary between the two corresponding tiles, as animated in our video [6]. (Color available online
only.)

with lower flow value. This process is depicted in Figures 11(c),(d). As in step (1),
this can be done in O(d) parallel steps by Lemma 3.3. As we do not add any edges,
we maintain planarity during step (2). Observe that during the preprocessing, we do
not destroy the grid structure of Grp.

Steps (1) and (2) maintain the flow property of fr without any other manipu-
lations to the flow fr, because both preprocessing steps can be represented by local
circulations.

3.2.3. Step 3: Computing a flow partition. After preprocessing, we parti-
tion the flow G into d-subflows.

DEFINITION 3.6. A subflow of Gr is a circulation Gt = (T, E', f§), such that
E' CEp, and 0 < fl(e) < fr(e) for alle € E'. If fi.(e) < z for all e € E' and some
z € N, we call G% a z-flow.

The flow partition relies on an upper bound on the maximal edge weight in Gp.
By construction, tiles have side length at most 24d; therefore, each tile consists of at

most 576d? unit squares. This yields the upper bound in the following observation; a
tighter constant factor can be achieved using a more sophisticated argument.

OBSERVATION 3.7. We have fr(e) < 576d* for all e € Er.

DEFINITION 3.8. A (z,{)-partition of the flow Gr is a set of £ z-subflows {G1 =
VM, E1, f1)y- oo Ge= (Vi, Eq, fo)} of Gr, such that Gy, ...,Gy sum up to Grp.

LEMMA 3.9. We can compute a (d, O(d))-partition of G in polynomial time.

COORDINATED MOTION PLANNING 1745

Proof. In a slight abuse of notation, throughout this proof, the elements in sets
of cycles are not necessarily unique. A (d, O(d))-partition can be constructed using
the following steps.

e We start by computing a (1, h)-partition C of G consisting of h < ning cy-
cles. This is possible because G is a circulation. If a cycle C intersects itself,
we subdivide C' into smaller cycles that are intersection-free. Furthermore, h
is clearly upper bounded by the number of robots nins, because every robot
can contribute only 1 to the sum of all edges in Gp. As the cycles do not
self-intersect, we can partition the cycles C by their orientation, obtaining
the set Cq, of clockwise and the set C5 of counterclockwise cycles.

e We use C¢, and Cy to compute a (1, 2')-partition C}, U CZ U Cl U CZ with
k' < ning, such that two cycles from the same subset C},, CZ, Ck, or C%
share a common orientation. Furthermore, we guarantee that two cycles from
the same subset are either edge-disjoint or one lies nested in the other. A
partition such as this can be constructed by applying a recursive peeling
algorithm to C,, and C as depicted in Figure 12, yielding a decomposition
of the flow induced by C¢, into two cycle sets C}, and C?), where C}, consists
of clockwise cycles and C% consists of counterclockwise cycles, and a similar
partition of C. In particular, we apply the following approach iteratively to
C¢y: we consider the union A of the area bounded by the cycles from C,,. We
remove a flow value of 1 from all edges of the outer boundary component of
A. In particular, we add the corresponding 1-subflow G to (C%) and remove
G, from C;y. Analogously, we remove 1-subflows from C;, that are induced
by inner boundary components and add these 1-subflows to (C%.

o Afterwards, we partition each set (Cé), C?, CL, and (C% into O(d) subsets,
each inducing a d-subflow of Gp. This can be done as follows. Let C €
{C},C2,C! ,(C?)}. Recall that every pair of cycles from C consists either of
one cycle nested inside the other or of edge-disjoint cycles. The cycles induce
a dual forest D = (C, Ep), where a cycle v has a child w if and only if w lies
inside v and there is no other cycle lying in v that w lies in.

We label the cycles by their depth in D modulo 576d and let G; be the flow
induced by all cycles carrying label 4, thus obtaining O(d) subflows G;.

Finally, we show that each subflow G; obtained in this way is a d-subflow of Gp.
To this end, we observe the following. Let e € Ep be an arbitrarily chosen edge and
let v,w € C be two cycles sharing e. This implies that v and w lie nested inside of
each other; w.l.o.g., assume that w lies inside v. Thus, in D, v lies on the path from
w to its root, and e is contained in all cycles on the path between v and w. On the
other hand, due to Observation 3.7, all cycles containing e lie on a path of length at
most 576d? in D. Therefore, e has a weight of at most 576d” _ 7 in each G;, and G;

576d
is a d-subflow. 0

3.2.4. A subroutine of Step 4: Realizing a single subflow. In this section,
we present a procedure for realizing a single d-subflow G/ of Gr.

DEFINITION 3.10. A schedule t := Cy — -+ — Cjy1 realizes a subflow G/ =
(T, E', f}) if, for each pair v,w of tiles, the number of robots moved by t from their
start tile v to their target tile w is fr.((v,w)), where we let fI.((v,w)) =0 if (v,w) ¢
E.

LEMMA 3.11. Let Gt = (T, E., f7.) be a planar unidirectional d-subflow. There
is a polynomial-time algorithm that computes a schedule Cy — --- — Cyy1 realizing
G/ for a constant k € O(1).

1746 DEMAINE, FEKETE, KELDENICH, MEIJER, AND SCHEFFER

peeling
the boundary

unfolding the boundary on each peeling separately

Fic. 12. Top: Recursive peeling of the area bounded by the cycles from C¢y. Note that an edge
e vanishes when fr(e) cycles containing that edge are removed by the peeling algorithm described
above. Bottom: Unfolding cycles that are peeled simultaneously, combined with the nested structure
of the peeled boundaries. This leads to a tree, as animated in our video [6].

Proof. Our algorithm uses k¥ = O(d) preprocessing steps C; — -+ — Cy, as
depicted in Figures 13(a),(b), and one final realization step Cy — Ci41, shown in
Figure 13(c), moving the robots from their start tiles into their target tiles.

The preprocessing replaces diagonal edges by pairs of orthogonal edges—see the
red arrows in Figure 13(a)—and places the moving robots next to the border of their
target tiles. Note that the replacements of the diagonal edges cannot be done as
part of the preprocessing of Step 2. This is because the replaced diagonal edges may
be part of circular flows that cannot be realized locally, as is done for crossing or
bidirectional edges in Step 2 of our algorithm.

For the final realization step we compute a pairwise disjoint matching between
incoming and outgoing robots, such that each pair is connected by a tunnel inside the
corresponding tile in which these tunnels do not intersect each other; see Figure 13(a).
The final realization step is given via the robots’ motion induced by moving each
robot into the interior of the tile and by moving this one-step motion through the
corresponding tunnel into the direction of the corresponding outgoing robot.

The preprocessing steps C; — --- — Ci. Let v be an arbitrary tile. We place all
robots corresponding to horizontal and vertical edges (v, w) of G in a row adjacent
to the side shared by v and w. We can do this for all tiles using O(d) parallel steps
by applying Lemma 3.3.

COORDINATED MOTION PLANNING 1747

321
J
i 8
M
. o =
wo| eu . B2 8
'@I 1l o=
LT B2,
r 1 o e
.'1'— 2 2 AREEE
v
d d i (c) A crossing-free matching of
d b i (b) Configuration and incoming and outgoing robots
(a) Preprocessing of di- flow after preprocess- and the connecting paths inside
agonal edges. ing. the corresponding tile, for d = 3.

F1G. 13. Procedure for computing transformation steps that realize a d-subflow. Figures (a)
and (b) illustrate how we preprocess G’T such that Eéw consists of horizontal and vertical edges
only. Figure (c) illustrates the main approach. White disks illustrate start positions, and black disks
illustrate target positions.

Next, we eliminate diagonal edges (w,v) € Ef. as follows. There are two tiles
sharing a side with both w and v; let u be one of them. First we place the f((w,v))
robots with start tile w and target tile v in a row next to the side between w and wu.
Then, we move them to u by exchanging them with f7((w,v)) robots with both start
and target tile u that lie next to the side between u and v, as shown in Figure 13(a).
In the resulting flow, the diagonal edge (w,v) with weight fr.((w,v)) is replaced by
adding a flow of value f7.((w,v)) on the edges (w,u), (u,v).

We process all tiles as described above in two parallel phases by applying the
approach of Lemma 3.3 twice: first on all rows with even index and then on all rows
with odd index, thus ensuring that parallel applications of Lemma 3.3 do not interfere
with each other.

The realization step Cy, — Cr+1. Let t be an arbitrary tile. For the transformation
step Cr — Ck11, we need a matching between incoming and outgoing robots of ¢, such
that there is a set of nonintersecting paths in ¢ connecting each incoming robot with
its corresponding outgoing robot. As illustrated in Figure 13(c), these paths induce
the required transformation Cy, — Ci41.

We compute this matching by selecting an incoming robot 7;, and matching it
to a robot ryy¢, such that there is a path p C Ot between r;, and r,,; that does
not touch another incoming or outgoing robot. We remove the matched robots from
consideration and repeat the matching procedure until no further unmatched robots
exist.

The nonintersecting paths between the positions of the matched robots are con-
structed as follows. For i > 1, the ith hull of ¢ is the union of all squares on the
boundary of the rectangle remaining after the hulls 1,...,7 — 1 are removed. The
path between r;, and r.,; consists of three pieces, as shown in Figure 13(c). Let Ot
be the boundary of t. For the ith matched pair of robots, the initial and the last part
of the path are straight line segments orthogonal to dt, from the position of r;, to
the (d 4 4)th hull and from the (d + ¢)th hull towards the position of r,,;. The main

1748 DEMAINE, FEKETE, KELDENICH, MEIJER, AND SCHEFFER

part of the path lies on the (d+ ¢)th hull, connecting the end of the initial part to the
beginning of the last part. 0

3.2.5. Step 4: Realizing all subflows. In the following we extend the idea
of Lemma 3.11 to £ < d subflows instead of one and demonstrate how this can be
leveraged to move all robots to their target tile using O(d) transformation steps.

LEMMA 3.12. Let § := (G1 = (4, E1, f1),...,Ge = (Vi, Ey, fo)) be a sequence of
¢ < d unidirectional planar d-subflows of Gr. There is a polynomial-time algorithm
computing O(d) + £ transformation steps Cy — -+ — Ciyp realizing S.

Proof. Let t be an arbitrary tile. Similarly to the approach of Lemma 3.11, we
first apply a preprocessing step guaranteeing that the robots to be moved into or out
of ¢ are in the right position close to the boundary of ¢; see Figure 14(a). Thereafter
we move the robots into their target tiles, using ¢ applications of the algorithm from
Lemma 3.11 without the preprocessing phase; see Figure 14(a). In particular, we
realize a sequence of ¢ d-subflows by applying ¢ times the single realization step of the
algorithm from Lemma 3.11.

In order to ensure that a sequence of ¢ realization steps from Lemma 3.11 without
intermediate preprocessing steps realizes a sequence of ¢ d-subflows, we apply the
following O(d) preprocessing steps for all £ realization steps in advance: For each side
of the tile ¢, we place all leaving or entering robots that belong to the same subflow
in a common row and stack these rows in the order which is induced by the sequence
of the subflows to be realized; see Figure 14(a). Finally, pushing all stacked robots
downwards into the direction of the boundary 0t of the tile ensures that processing
one realization step implies that all robots involved in the following realization step
lie in a row adjacent to Ot; see Figure 14.

In the following we describe how we place the robots in their start tiles as a
preprocessing step. First, we use the same preprocessing step as in Lemma 3.11 to
eliminate diagonal edges. For a simplified illustration, we describe the remainder of the
preprocessing in two steps that can be realized by just one application of Lemma 3.3.
After elimination of diagonal edges, we proceed by stacking the rows of robots moving
out of ¢ in the order in which the subflows are to be processed; see Figure 14(a). Then
we push the robots towards the boundary 0t of their start tile until they meet either
Ot or another moving robot. See Figure 14(a), image 2, for an example.

The above described preprocessing ensures that after each application of the al-
gorithm of Lemma 3.11, all robots moving out of ¢ in the next transformation step
lie in a row adjacent to 0t. Therefore this preprocessing can be used to replace the
preprocessing done in Lemma 3.11. For an example, see Figure 14(a), images 3-9.

As ¢ < d, the stacked rows have a height of at most d. Thus, they are contained
in hulls 1 to d. Therefore, and because the flows are unidirectional and diagonals
are eliminated, the structure of the stacks is not damaged by the applications of
Lemma 3.11, allowing us to realize { < d subflows in O(d) transformation steps
instead of one.]

LEMMA 3.13. There is a polynomial-time algorithm computing O(d) transforma-
tion steps moving all robots into their target tiles.

Proof. By Lemma 3.9, we can compute a (d, cd)-partition of Gp for ¢ € O(1).
We group the corresponding d-subflows into % = ¢ sequences, each consisting of at
most d d-subflows. We realize each sequence by applying Lemma 3.12, using O(d)
transformation steps for each sequence. This leads to O(cd) = O(d) steps for realizing
all sequences of d-subflows. 0

COORDINATED MOTION PLANNING 1749

Preprocessing

for realizing ¢ subflows in a row.

¢ = 6 Applications of the Algorithm of Lemma 3.11

(a) Stacking the rows of robots corresponding to the flow values on the
edges of the subflows to be realized.

678

(b) The realization of a single subflow and the cor-
responding matching between five incoming and five
outgoing robots involved in that subflow.

FiG. 14. Realizing a sequence of subflows by stacking the rows of robots to be moved onto each
other in the order in which the subflows are realized.

1750 DEMAINE, FEKETE, KELDENICH, MEIJER, AND SCHEFFER

For the proof of Theorem 3.4, we still need to analyze the time complexity of our
approach, which we do next.

Proof of Theorem 3.4. The steps of our algorithm have the following time com-
plexity.

Initialization Step 1: Computing d, T, and G is possible in O(nin2) time.

Steps 2 and 5: The application of Lemma 3.3 requires O(d?®) time for each tile,
so these steps can be done in O(dnins) time.

Step 3: All subroutines of Step 3 can be done in an overall time of O(ninz). In
particular, the (1, h)-partition Co of G can be computed in) _ . fr(e) € O(ninz)
time by a simple greedy algorithm. The number of edges in all cycles from C com-
bined is at most nine, which is the number of robots in P. Thus, resolving self-
intersections of cycles in C can be done in O(nins) time. As |[Co| € O(ning), the
partition of C into (C%), (C%), CL, and (C% takes time O(ninsy). Furthermore, the par-
titioning of C},, C%,, Ck, and C into O(d) d-subflows can be done in time O(nyny).

Step 4: The parallel applications of Lemma 3.3 to disjoint rectangles can be
computed in O(dninsg). Furthermore, the construction of all connecting paths between
incoming and outgoing robots for all tiles needs O(dnins) time per application of the
algorithm of Lemma 3.12. By applying Lemma 3.12 constantly many times, Step 4
needs O(dning) time. O

4. Variants on labeling. A different version is the unlabeled variant, in which
all robots are the same. A generalization of both this and the labeled version arises
when robots belong to one of k£ color classes, with robots from the same color class
being identical.

We formalize this variant by using a coloring ¢ : {1,...,nins} — {1,...,k} for
grouping the robots. By populating unoccupied cells with robots carrying color k41,
we may assume that each unit square in the environment P is occupied. The robots
draw an image I = (I',...,I*), where I" is the set of cells occupied by a robot with
color i. We say that two images I, and I; are compatible if in Iy and I; the number
of cells colored with color 7 is equal for each color i = 1,..., k. By moving the robots,
we want to transform a start image I into a compatible target image I;, minimizing
the makespan.

THEOREM 4.1. There is an algorithm with runtime O(k(N)?log(N) + N3) for
computing, given start and target images I, I with mazximum distance d between
start and target positions, an O(1)-approximation of the optimal makespan M, and a
corresponding schedule.

Proof. We transform the input into an instance of the labeled variant, such that
an O(1)-approximation for the labeled instance provides an O(1)-approximation for
the colored instance. For each color i, we consider the two point sets A%, B® C R?,
where A’ contains the center points a! of all unit squares v € I and B’ contains the
center points b of all v € I}.

A bottleneck matching between A and B is a perfect matching between A’ and
B’ that minimizes the maximal distance. The cost of an optimal bottleneck matching
between A and B is in O(M), because a transformation sequence induces a bottle-
neck matching on all color classes. Efrat, Itai, and Katz [24] show that the geometric
bottleneck matching problem can be solved in O(|A + B|*®log|A + B|) time.

A set of k bottleneck matchings between the sets A? and B? induces labeled start
and target configurations Cy, Cy. Applying the algorithm from section 3 to these
yields a sequence of transformation steps of length O(M). O

COORDINATED MOTION PLANNING 1751

5. Continuous motion. In this section, we consider the continuous geometric
case in which the robots are identical geometric objects that have to move into a
target configuration in the plane without overlapping at any point in time. We want
to minimize the makespan under these conditions, where the velocity of each robot is
bounded by 1.

5.1. A lower bound for unbounded environments. In this section we give
a worst-case lower bound of Q(N'/4d) for the continuous makespan where N is the
number of robots. To be more precise, we construct a pair of start and target config-
urations of N robots as illustrated in Figure 15(a). In this instance, we have d = 2.
In Theorem 5.8, we show that the optimal continuous makespan of this instance is in
Q(N'/%), yielding the worst-case lower bound stated above.

More formally, let {m1, ..., mx} be an arbitrary trajectory set with makespan M,
realizing the start and target configurations as illustrated in Figure 15(a). By applying
a simple continuity argument, we show that there must be a point in time ¢ € [0, M]

such that the area of the convex hull Conv(my(t),...,mn(t)) of myi(t),...,mn(t) is
lower bounded by c¢N + Q(N?3/4), where ¢N is the area of Conv(my(0),...,my(0)).
Assume M € o (N'/*) and consider the area of the convex hull Conv(my ('), ..., my(t'))

of my(t'),...,my(t') at some point #' € [0, M]. This area is at most ¢N + O(V/'N) -
0 (N 1/ 4), because asymptotically, the area gained during the movement is bounded
by the product of makespan and circumference. This contradicts the lower bound
stated above.

A key ingredient for the construction of the time point ¢ € [0, M] is the fact that
the distance between the centers of two robots changes continuously. In fact, we know
that the Euclidean distance between two centers is 2-Lipschitz because the velocity
of the robots is bounded by 1.

DEFINITION 5.1. A function f : R — R 4s A-Lipschitz (continuous) if |f(z) —
f@W)] < Mz —y| holds for all z,y € R.

OBSERVATION 5.2. For all i,j € R, the distance between the centers m;(-) and
m;(-) of robots i and j is 2-Lipschitz.

Let V' be the Voronoi diagram of the sites mq(M),...,my(M) restricted to
Conv(my(M),...,mn(M)) in the target configuration, as illustrated in Figure 15(b).
For m € {mq,...,myn} and ¢t € [0, M], let V(m(t)) denote the Voronoi region of
m(t) with respect to sites {mi(t),...,my(t)}. Let p be the trajectory of an ar-
bitrary robot not on the convex hull in the target configuration. Furthermore, let
Ply---,06 € {m1,...,mn} be the trajectories of the six robots 1,...,6 adjacent to p
in the target configuration.

In the following, we show that there is a time interval I = [t/,# + 55] such that
the area of V(p(t")) is lower bounded by 3.479 for all " € I; see Lemma 5.5. This
is larger than the area of V(p(0)) and V(p(M)) by a constant factor. Based on that,
we construct the time point ¢ € [0, M] such that the area of Conv(my(t),...,my(¢))
is lower bounded by c¢N + Q(N3/4); see Lemma 5.6. To this end, we need to relate
the area of a Voronoi region to the length of the corresponding Delaunay edges.

LEMMA 5.3. Let t' € [0,M] and p(t') € {m1(t'),...,mn(")}. If the mazimal
distance between p(t') and its Voronoi neighbors is X\ € [2,4005(500)), the area of
V(p(t)) is at least

é 3sin | arccos i —itn 90° — arccos é —i—i
7 | 3sin {arccos 7 8 arccos { o 75

1752 DEMAINE, FEKETE, KELDENICH, MEIJER, AND SCHEFFER

(b) Voronoi diagram in the start and target configurations.

FiG. 15. The start and target configurations of our lower-bound construction where an arrow
points from a start position to the corresponding target position.

COORDINATED MOTION PLANNING 1753

which is at least 3.479 for \ € [2.1,2.2]. Furthermore, the area of V(p(M)) in the
target configuration is % = 21/3 < 3.465.

Proof. Let p1(t') € {m1(t'), ..., mn(t')} be the center of arobot with |p(¢)p1(t')| =

A. Because all Voronoi neighbors of p(¢') have distance less than 4 cos(50°), the
angle between two Voronoi neighbors of p(t') in p(t’') is greater than 50°. Thus,
p := p(t') has at most six Voronoi neighbors, and the area of V(p(¢')) is mini-
mized if p(¢’) has five additional Voronoi neighbors pa(t'), ..., ps(t"). We can assume
lp(t)p2(t')] = -+ = |p(t')ps(t')| = 2 because this does not increase the area of V(p(t')).
W.lo.g., let p1 :=p1(t'),...,ps := ps(t') be in counterclockwise order around p. This
situation is depicted in Figure 16.

(a) Configuration with minimal area (b) Configuration with minimal area
of A1 NV (p) and Ae¢ NV (p). of A; NV (p) for i € {2,...,5}.

Doy ‘
P2

Ng D3

p
Pe (d) Lower bound on the
(¢) Lower bound on the area of AgN area of A; NV (p) for i €

V(p). {2,...,5}

Fic. 16. Lower bounding the area of V(p) by lower bounding the sum of the areas of the
intersections of V(p) with the Delaunay triangles /\; fori € {1,...,6} for a mazimal distance of 2.5
between p1 and p.

We find a lower bound on V(p) by lower bounding the intersections of V(p) with
the Delaunay triangles that are adjacent to p, i.e., with the triangles built by the
edges p1po, - .., psps and pgp; with p; see Figure 16. The area of the two triangles A\
and Ag built by p1p2 and pgp, with p are minimized by assuming the configuration
of Figures 16(a),(b), i.e., for [p1p2| = |p1ps| = 2.

In the configuration of Figures 16(a),(b), we lower bound the area of Ag NV (p)
as follows: we subdivide the area of Ag N V(p) into three subsets A, B, and C, and
lower bound the area of Ag NV (p) by the sum of lower bounds for |A|, |B|, and |C]|.

Let u, v, and ¢ be the midpoints of ppg, pp1, and Ag; see Figure 16(b). Further-

1754 DEMAINE, FEKETE, KELDENICH, MEIJER, AND SCHEFFER

more, let h be the vertical side length of A, and let ¢ be the vertical side length of B.
The interior angle of Agat pis arccos(). Thus, we obtain h = sin (arccos ()) which
implies |A| = 2 i‘sm (arccos (%)). The interior angle of B at ¢ is 90° — arccos (%).
Hence, we get E = Z tan (90O — arccos (i‘)) because the length of B’s horizontal side is
%. Therefor& |§| = % 2+ tan (90° — arcc)\os (2))- Finally, we have |C| = 3 (h—{) =
2 (sin (arccos (%)) — 4 tan (90° — arccos (3))). As Ag N V(p) and Ay N V(p) are
symmetric, this gives us a lower bound of 2(|A| + |B| 4+ |C]) on [(A1 U Ag) NV (p)].
Furthermore, the area of (AyU---U As) N V(p) is minimized by the configura-
tion, implying the highest possible packing density, illustrated in Figures 16(c),(d)
for |pep| = - |p6p| \p2p3| = .-+ = |psps| = 2. Therefore, this area is at least
4.3 |0 =4-1- 1. 2:v/3 = Jz. Allin all, we obtain [V (p)| > 2(|A|+|B|+|C|) + 7
For A € [2.172.2], this is at least 1.17046 + % > 3.479. In the target configura-

tion, we have |p(M)p;(M)| = 2 for ¢ € {1,...,6}. Therefore the area of V(p(M)) is

6 _

<5 = 2V/3 < 3.465. ul
Next, we prove that there is a time ¢’ with an interval I := [t/,¢ + 21—0] during

which the area of Conv(p,p1,...,ps) is greater by a constant factor than the area

of Conv(p,p1,...,pe) in the target configuration. To this end, we use the following
observation that is an immediate consequence of the intermediate value theorem.

OBSERVATION 5.4. There is a time t' € [0, M] for which the maximal distance
between p(t') and pi(t'),...,ps(t') is 2.2.

LEMMA 5.5. There is a time t' € [0, M] such that for all t" € [t',t' + 55], the area
of V(p(t'")) is at least 3.479 > 1.004 - |V (p(M))].

Proof. Let A(t) be the maximal distance between p(t) and pi(t),...,pe(t). By
Observation 5.4, there is a maximal time ¢’ with A(¢') = 2.2. Therefore, and because
2.2 < 4cos(50°) < 2v/2, the points pi(t'),...,ps(t') are the Voronoi neighbors of
p(t'). By Observation 5.2, A(¢t) is 2-Lipschitz. This, together with the maximality of
¢/, implies 2.1 < A(t”) < 2.2 for ¢” € [t/,t' + 55]. Thus, Lemma 5.3 applies and yields
[V(p(t"))] = 3.479 > 1.004 - |V (p(M))| for all " € [t',t’ + 55]. 0

LEMMA 5.6. There is a t € [0, M] for which the area of Conv(mi(t),...,mn(t))
is lower-bounded by 3. 479({20MJ — \/iw(Q\/]v—i— M)) + 2f((LQOMJ))

Proof. By Lemma 5.5, for each robot ¢ that does not lie on the boundary of the
start configuration, there is a point in time ¢ € [0, M] such that the area of V (p(¢"))
is at least 3.479 for all ¢ € [t/,¢' + 55]. The continuous pigeonhole principle yields
a time point ¢ € [0, M] such that the area of k := |52-| € ©(4);) Voronoi regions
V(ga(t)),...,V(gr(t)) is at least 3.479. For all the remaining Voronoi regions, the
area is at least 21/3 corresponding to the largest possible packing density as achieved
in the start and target configurations.

We give an upper bound N < \@W(Z\/N + M) on the number of robots whose
Voronoi regions are not contained in Conv(mq(t),...,my(t)). W.lo.g., we assume
that all these regions are Voronoi regions whose area we lower bounded by 3.479.
Moreover, we can assume all of these regions have zero area, i.e., ignoring them when
lower bounding the area of Conv(m;(t),...,my(t)). Thus, we obtain that the area
of Conv(mq(t),...,mpn(t)) is at least

BATO(k — N) +2v/3(N — k) = 3479 (| 555] = V2r (2VN + M)) +2V3 (N = (| 595])) -

COORDINATED MOTION PLANNING 1755

Fic. 17. An upper-bound construction for the number of robots whose Voronoi regions may
intersect the boundary of the smallest enclosing ball for {m1(t),...,mn(t)}. The radius of the
smallest enclosing ball is upper-bounded by the distance from the center to the boundary in the start
configuration plus the considered makespan illustrated by the dashed circles.

It still remains to prove the upper bound N < \/§7r(2\/ﬁ + M) on the number
of robots whose Voronoi regions are not contained in Conv(mq(t),...,my(t)). First,
we observe that the length of the boundary of Conv(my(t),...,mpy(t)) is at most
B := 27(2V/N + M), because 2v/N + M is an upper bound on the radius of the
smallest ball containing mq(t),...,my(¢). In order to estimate N, we consider the
maximal number of points from [0, B] xR>(¢ whose Voronoi regions intersect the z-axis.
This number is achieved for the configuration as illustrated in Figure 17, implying
N < % = V27(2V/N + M), thus concluding the proof. d

LEMMA 5.7. For each time t € [0, M], the area of Conv(my(t),...,mn(t)) is
lower-bounded by 2v/3N + 2 (v/N + M)M.

Proof. In the start configuration, the intersection of each Voronoi cell with
Conv(my(0),...,my(0)) has an area of 2v/3. Thus, the convex hull of the
start configuration has an area of at most 2¢/3N. We give an upper bound on
the area A gained during the motion, i.e., the area of Conv(my(t),...,mn(t)) \
Conv(mq(0),...,mn(0)), corresponding to the gray region in Figure 17. The
length of the boundary dConv(my(t),...,mx(t)) is at most 2w(v/N + M), imply-
ing A < 27w(v/N + M)M, thus concluding the proof.]

THEOREM 5.8. There is an instance with optimal makespan M € Q(NY4); see
Figure 15.

Proof. Combining the bounds from Lemma 5.6 and Lemma 5.7 yields
N N
3.479 QQOMJ - Var (2N + M)) +2V3 (N - QQOMD)
< 2V3N + 27(VN + M) M.

N
o 0,014 {QOMJ —3,479v2n (2\/N n M) < 27(vV'N + M) M.

If M € Q(VN) holds, we are done. Otherwise we obtain &+ € O(MVN) &
VN € O(M?), and thus M € Q(N'/*), concluding the proof. |

1756 DEMAINE, FEKETE, KELDENICH, MEIJER, AND SCHEFFER

It is a straightforward consequence of continuity that the above arguments still
apply if disks do not touch in the start configuration, as long as the initial distance
of adjacent disk centers is at most 2 + § for a sufficiently small § > 0.

COROLLARY 5.9. There is a constant § > 0, such that the optimal makespan can
be M € Q(N'YY), even if no two disk centers are closer than 2 + 6.

5.2. An upper bound for unbounded environments. Next we give upper
bounds on the stretch and makespan for moving disks in unbounded environments.
First, we show that we can achieve constant stretch for well-separated robots.

THEOREM 5.10. If the distance between the centers of two robots of radius 1 is
at least 4 in the start and target configurations, we can achieve a makespan in O(d),
i.e., constant stretch.

FIG. 18. A mesh size of 2v/2 avoids robot collisions, and the cell diagonals have length 4. Note
that robots may have arbitrary shape, as the separation argument applies to their circumcircles.

Proof. We consider a grid D with mesh size 2¢/2. In this way, as shown in
Figure 18, two robots starting simultaneously from different cells and traveling along
two incident edges can touch when they reach the midpoints, but do not collide.
Moreover, the diagonals have length 4. By choosing a grid that has no robot center
on a grid line, every cell of D contains at most one start and one target position of a
robot. Additionally, we can move each robot in the start and target configuration to
the center of its own cell, allowing us to to use our algorithm from section 3. Overall,
we achieve a set of trajectories with makespan in O(d). d

In the remainder of this section we give an O(v/N)-approximation algorithm for
the continuous makespan for this kind of well-separated arrangements, by extending
the approach for discrete grids.

Again, we make use of an underlying grid with mesh size 2v/2. Our algorithm
proceeds in three phases: (1) moving the robots to vertices of the grid, (2) applying
our O(1)-approximation for the discrete case, and (3) moving the robots from the
vertices of the grid to their target positions. To ensure a O(\/N)-approximation, we
move each robot center to a grid vertex within a distance of O(v/N). Phases (1) and
(3) are symmetric in the following sense. By applying the steps of phase (1) to the
target configuration in reverse, we compute a grid configuration that serves as target
configuration for phase (2).

Phase (1) works as follows. (1.1) We begin by sorting the N robots according to
the (x,y)-lexicographical order. Then we subdivide them into [\/N W vertical slices,

COORDINATED MOTION PLANNING 1757

each containing at most [\/N W robots. To the right of every slice, we add a vertical
buffer slice of width 4v/2 by moving all robots not yet considered by 4v/2 units to the
right. These trajectories are used in parallel; the distance covered by each robot is
in O(V/N). The buffer slices guarantee that in all following steps, the robots in each
vertical slice are independent of each other.

(1.2) We continue by sorting the robots within the vertical slices according to
the (y, z)-lexicographical order. We separate the robots by ensuring vertical distance
at least 4v/2 between every pair of robots. This can be done by moving the robots
upwards, starting from the second-to-lowest one. These trajectories can be done in
parallel, and the distance covered by each robot is in O(v/N). (1.3) We finally move
each robot to the bottom-left vertex of the grid cell containing its center.

THEOREM 5.11. There is an algorithm that computes a trajectory set with con-
tinuous makespan of O(d + v N). If d € Q(1), this implies a O(V/N)-approzimation
algorithm.

Proof. Phase (1) guarantees that either the horizontal or the vertical distance
between each pair of robots is at least 4y/2. Therefore, in each grid cell, there is at
most one robot and each robot is moved to its own grid vertex. In phase (2), each robot
is moved by O(d’) units, where d’ is the maximal distance between a robot’s start and
target position in the grid. As the distance each robot covers in phases (1) and (3)
is in O(v/N), the distance traveled in phase (2) is in O(d + v/N). Therefore, the
trajectory set computed by the algorithm has continuous makespan in O(d + v'N).
The runtime as described above is pseudopolynomial; it becomes polynomial by using
standard compression techniques, e.g., by compressing large empty rectangles. 0

5.3. Colored and unlabeled disks. We can combine the positive results of
the previous section with the technique of Theorem 5.10 to achieve the same result
for colored (and in particular, unlabeled) disks.

COROLLARY 5.12. There is an algorithm with runtime O(k(mn)®log(mn) +
dmn) that computes, given start and target images I, I, an O(1)-approzimation of
the optimal makespan M and a corresponding set of trajectories.

Proof. The proof proceeds analogously to Theorem 4.1: after computing an op-
timal bottleneck matching, apply Theorem 3.4 in the setting of Theorem 5.10. O

5.4. Difficulties with exact solutions. For small instances, we might hope
to obtain provably optimal trajectories, as opposed to solutions that are within a
provable constant factor of the optimum. Such scenarios might arise both in practice
and as gadgets (building blocks) for NP-hardness proofs.

In this section, we briefly consider one simple such scenario: moving one disk to
the opposite side of another disk that wants to remain where it is. Refer to Figure 19.
This is closely related to recent work by Kirkpatrick and Liu [44], who devote a whole
paper to computing optimal trajectories for two disks in arbitrary initial and target
configurations, with the objective of minimizing the total distance traveled instead of
the makespan. A key insight is that optimal trajectories consist of a limited number
of circular arcs. This is not necessarily the case for trajectories that minimize the
makespan. Even for the seeming simplicity of our example, we do not have a proof
of optimality of the trajectory T3 shown on the right. This illustrates the difficulty of
characterizing and establishing optimal trajectories that minimize the total duration
of a parallel schedule, highlighting the special role of geometry for the problem.

1758 DEMAINE, FEKETE, KELDENICH, MEIJER, AND SCHEFFER

(0,0493)

(-2,0) (2,0)

Fic. 19. Mowing the left unit disk A from position a to position a’ at distance 4, with disk B
starting and ending at b =1'. See our video [6] for animations of the following two solutions. Left:
Trajectory T1 rotates disk A around the stationary disk B resulting in makespan 27 = 6.28....
Trajectories Ty rotate both disks around the centers mi and ma, resulting in makespan Vor =
4.44.... Right: Choosing a circular arc through (—2,0),(2,0) and the (numerically optimized)
point (0,0.493...) for disk A (with B moving accordingly at distance 2) yields the trajectory T3 with
makespan 4.16. ...

6. Conclusion. We have presented progress on several algorithmic problems
in parallel motion planning. We hope that this research will open up a new field
of approximation algorithms for optimal motion plans to achieve desired goals. In
particular, the following open problems are natural next steps.

The first set of problems consider complexity. We showed that the labeled problem
of section 3 is NP-complete in the grid. It is natural to conjecture that the geometric
version is also hard. It seems tougher to characterize the family of optimal trajectories
(as explored in section 5.4), so even membership in NP seems challenging.

A second set of questions considers the relationship between stretch factor and
disk separability in the continuous setting. We believe that the upper bound of
O(V/N) on the worst-case stretch factor for dense arrangements is tight. What is the
critical separability o* of disks for which constant stretch can be achieved? As we
have shown, o* € [2 + 0,2.8284 ...] when using L.-distances. How does the stretch
factor increase as a function of N below this threshold ¢*? For sparse arrangements
of disks, simple greedy straight-line trajectories between the origins and destinations
of disks encounter only isolated conflicts, resulting in small stretch factors close to 1,
namely, 1+ 0(1). What is the relationship between (local) density and the achievable
stretch factor along the whole density spectrum?

Finally, practical motion planning requires a better handle on characterizing and
computing optimal solutions for specific instances, along with lower bounds, possibly
based on numerical methods and tools. Moreover, there is a wide range of additional
objectives and requirements, such as accounting for acceleration or deceleration of
disks, turn cost, or multistop tour planning. All of these are left for future work.

Acknowledgment. We thank the anonymous reviewers of a preliminary version
of the paper for helping to improve the overall presentation.
REFERENCES
[1] M. ABELLANAS, S. BEREG, F. HURTADO, A. G. OLAVERRI, D. RAPPAPORT, AND J. TEJEL,

Moving coins, Comput. Geom., 34 (2006), pp. 35-48.
[2] A. ADLER, M. DE BERG, D. HALPERIN, AND K. SOLOVEY, Efficient multi-robot motion plan-

COORDINATED MOTION PLANNING 1759

ning for unlabeled discs in simple polygons, IEEE Trans. Automat. Sci. Eng., 12 (2015),
pp- 1309-1317.

K. M. AL-WAHEDI, A Hybrid Local-global Motion Planner for Multi-agent Coordination, mas-
ter’s thesis, Case Western Reserve University, 2000.

B. ArRoNOV, M. DE BERG, A. F. VAN DER STAPPEN, P. SVESTKA, AND J. VLEUGELS, Motion
planning for multiple robots, Discrete Comput. Geom., 22 (1999), pp. 505-525.

M. BARER, G. SHARON, R. STERN, AND A. FELNER, Suboptimal variants of the conflict-based
search algorithm for the multi-agent pathfinding problem, in Proceedings of the Seventh
Annual Symposium on Combinatorial Search (SoCS), 2014, pp. 19-27.

A. T. BECKER, S. P. FEkeTE, P. KELDENICH, L. LIN, AND C. SCHEFFER, Coordinated
motion planning: The video, in Proceedings of the 34th International Symposium on
Computational Geometry (SoCG), 2018, pp. 74:1-74:6; video available via http://www.
computational-geometry.org/SoCG-videos/socgl8video/.

S. BEREG, A. DUMITRESCU, AND J. PACH, Sliding disks in the plane, Internat. J. Comput.
Geom. Appl., 18 (2008), pp. 373-387.

P. BERMAN, E. D. DEMAINE, AND M. ZADIMOGHADDAM, O(1)-approzimations for mazimum
movement problems, in Proceedings of the 14th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX), 2011, pp. 62-74.

G. CALINESCU, A. DUMITRESCU, AND J. PACH, Reconfigurations in graphs and grids, SIAM J.
Discrete Math., 22 (2008), pp. 124-138, https://doi.org/10.1137/060652063.

C. E. CaMPBELL AND J. Y. S. LuH, A Preliminary Study on Path Planning of Collision
Awvoidance for Mechanical Manipulators, Tech. report, School of Electrical Engineering,
Purdue University, 1980.

Y. F. CHEN, M. Liu, M. EVERETT, AND J. P. How, Decentralized non-communicating mul-
tiagent collision avoidance with deep reinforcement learning, in Proceedings of the 32nd
IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 285-292.

S. CHEUNG AND F. C. M. LAU, Mesh permutation routing with locality, Inform. Process. Lett.,
43 (1992), pp. 101-105.

S.-J. CHUNG, A. A. PARANJAPE, P. DAMES, S. SHEN, AND V. KUMAR, A survey on aerial
swarm robotics, IEEE Trans. Robotics, 34 (2018), pp. 837-855.

R. Cui, B. Gao, AND J. GUO, Pareto-optimal coordination of multiple robots with safety guar-
antees, Auton. Robots, 32 (2012), pp. 189-205.

D. DELAHAYE, S. PUECHMOREL, P. TSIOTRAS, AND E. FERON, Mathematical models for aircraft
trajectory design: A survey, in Air Traffic Management and Systems, Springer, 2014,
pp. 205-247.

E. D. DEMAINE, M. L. DEMAINE, AND H. VERRILL, Coin-moving puzzles, in More Games of No
Chance, Math. Sci. Res. Inst. Publ. 42, Cambridge University Press, 2002, pp. 405-431.

E. D. DEMAINE, S. P. FEKETE, P. KELDENICH, H. MEIJER, AND C. SCHEFFER, Coordinated
motion planning: Reconfiguring a swarm of labeled robots with bounded stretch, in Pro-
ceedings of the 34th International Symposium on Computational Geometry (SoCG), 2018,
29.

E. D. DEMAINE, M. T. HAJiaGHAYI, H. MAHINI, A. S. SAYEDI-ROSHKHAR, S. OVEISGHARAN,
AND M. ZADIMOGHADDAM, Minimizing movement, ACM Trans. Algorithms, 5 (2009), 30.

E. D. DEMAINE, M. T. HAJIAGHAYI, AND D. MARX, Minimizing movement: Fized-parameter
tractability, ACM Trans. Algorithms, 11 (2014), 14.

V. R. DESARAJU AND J. P. How, Decentralized path planning for multi-agent teams with
complex constraints, Auton. Robots, 32 (2012), pp. 385-403.

J. M. Diaz-BANEZ, M. A. HEREDIA, C. PELAEZ, J. A. SELLARES, J. URRUTIA, AND I. VENTURA,
Convez blocking and partial orders on the plane, Comput. Geom., 51 (2016), pp. 55-66.

A. DUMITRESCU, Motion planning and reconfiguration for systems of multiple objects, in Mobile
Robots: Perception & Navigation, S. Kolski, ed., InTech, 2007, pp. 1-20.

A. DUMITRESCU AND M. JIANG, On reconfiguration of disks in the plane and related problems,
Comput. Geom., 46 (2013), pp. 191-202.

A. EFRAT, A. ITa1, AND M. J. KATZ, Geometry helps in bottleneck matching and related prob-
lems, Algorithmica, 31 (2001), pp. 1-28.

M. ERDMANN AND T. LOZANO-PEREZ, On multiple moving objects, Algorithmica, 2 (1987),
pp. 477-521.

S. P. FEKETE, B. HENDRIKS, C. TESSARS, A. WEGENER, H. HELLBRUCK, S. FISCHER, AND
S. EBERS, Methods for improving the flow of traffic, in Organic Computing—A Paradigm
Shift for Complex Systems, C. Miiller-Schloer, H. Schmeck, and T. Ungerer, eds., Auto-
nomic Systems 1, Springer, Basel, 2011, pp. 447—460.

A. FELNER, M. GOLDENBERG, G. SHARON, R. STERN, T. BEJA, N. R. STURTEVANT, J. SCHAEF-

http://www.computational-geometry.org/SoCG-videos/socg18video/
http://www.computational-geometry.org/SoCG-videos/socg18video/
https://doi.org/10.1137/060652063

1760

(28]
[29]

(30]

37]

(38]

(39]

[40]

[41]

[44]

[45]

[46]

M.

M.

M

P.

DEMAINE, FEKETE, KELDENICH, MEIJER, AND SCHEFFER

FER, AND R. HOLTE, Partial-expansion A* with selective node generation, in Proceedings
of the 26th AAAI Conference on Artificial Intelligence (AAAI-12), 2012, pp. 471-477.

. W. FLAKE AND E. B. BAuM, Rush Hour is PSPACE-complete, or “Why you should gener-
ously tip parking lot attendants,” Theoret. Comput. Sci., 270 (2002), pp. 895-911.

. FLoccHINI, G. PRENCIPE, AND N. SANTORO, Distributed Computing by Mobile Entities,

Lecture Notes in Comput. Sci. 11340, Springer, 2019.

. FREUND AND H. HOYER, On the on-line solution of the findpath problem in multi-robot

systems, in Proceedings of the 3rd International Symposium on Robotics Research (ISRR),

O. Faugeras and G. Giralt, eds., 1985, pp. 253—262.

R. GAREY AND D. S. JOHNSON, Computers and Intractability; A Guide to the Theory of

NP-Completeness, W. H. Freeman, New York, 1990.

. GERAMIFARD, P. CHUBAK, AND V. BULITKO, Biased cost pathfinding, in Proceedings of

the 2nd AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

(ATIDE-06), 2006, pp. 112-114.

GOLDENBERG, A. FELNER, R. STERN, G. SHARON, N. R. STURTEVANT, R. C. HOLTE, AND

J. SCHAEFFER, Enhanced partial expansion A*, J. Artificial Intelligence Res., 50 (2014),

pp. 141-187.

. T. HAJIAGHAYI, R. KHANDEKAR, M. R. KHANI, AND G. KORTSARZ, Approzimation algo-
rithms for movement repairmen, ACM Trans. Algorithms, 12 (2016), 54.

E. HarT, N. J. NILSSON, AND B. RAPHAEL, A formal basis for the heuristic determination
of minimum cost paths, IEEE Trans. Syst. Sci. Cybern., 4 (1968), pp. 100-107.

R. A. HEARN AND E. D. DEMAINE, PSPACE-completeness of sliding-block puzzles and other

problems through the mondeterministic constraint logic model of computation, Theoret.
Comput. Sci., 343 (2005), pp. 72-96.

R. A. HEARN AND E. D. DEMAINE, Games, puzzles, and computation, A K Peters, Wellesley,

S.

—

J.

MA, 2009.

HirsCH AND D. HALPERIN, Hybrid motion planning: Coordinating two discs moving among
polygonal obstacles in the plane, in Algorithmic Foundations of Robotics V, Springer, 2004,
pp- 239-255.

. E. HOPCROFT, J. T. SCHWARTZ, AND M. SHARIR, On the complexity of motion planning

for multiple independent objects; PSPACE-hardness of the “warehouseman’s problem,”
Internat. J. Robotics Res., 3 (1984), pp. 76-88.
E. HopCcROFT AND G. T. WILFONG, Reducing multiple object motion planning to graph
searching, SIAM J. Comput., 15 (1986), pp. 768785, https://doi.org/10.1137/0215055.

R. HuaNG, Y. CHEN, AND W. ZHANG, A nowvel transition based encoding scheme for planning

as satisfiability, in Proceedings of the 24th AAAI Conference on Artificial Intelligence
(AAAI-10), 2010, pp. 89-94.

. KANT AND S. W. ZUCKER, Toward efficient trajectory planning: The path-velocity decom-
position, Internat. J. Robotics Res., 5 (1986), pp. 72-89.

H. Kautz AND B. SELMAN, Unifying SAT-based and graph-based planning, in Proceedings of

the 16th International Joint Conference on Artificial Intelligence (IJCAI), Vol. 99, 1999,
pp. 318-325.

. KIRKPATRICK AND P. Liu, Characterizing minimum-length coordinated motions for two
discs, in Proceedings of the 28th Canadian Conference on Computational Geometry
(CCCQ), 2016, pp. 252-259.

. KLODER AND S. HUTCHINSON, Path planning for permutation-invariant multi-robot forma-

tions, IEEE Trans. Robot. Autom., 22 (2006), pp. 650-665.

D. KORNHAUSER, G. MILLER, AND P. SPIRAKIS, Coordinating pebble motion on graphs, the

M

S.

S.

—

—

diameter of permutation groups, and applications, in Proceedings of the 25th Annual Sym-
posium on Foundations of Computer Science (FOCS), 1984, pp. 241-250.

. KUNDE, Routing and sorting on mesh-connected arrays, in Proceedings of the 3rd Aegean
Workshop on Computation (AWOC), Springer, 1988, pp. 423-433.

LAVALLE AND S. A. HUTCHINSON, Optimal motion planning for multiple robots having in-
dependent goals, IEEE Trans. Robot. Autom., 14 (1998), pp. 912-925.

LEROY, J.-P. LAUMOND, AND T. SIMEON, Multiple path coordination for mobile robots: A
geometric algorithm, in Proceedings of the 16th International Joint Conference on Artificial
Intelligence (IJCAI), 1999, pp. 1118-1123.

. M. MARBERG AND E. GAFNI, Sorting in constant number of row and column phases on a

mesh, Algorithmica, 3 (1988), pp. 561-572.
PENG AND S. AKELLA, Coordinating multiple robots with kinodynamic constraints along
specified paths, Internat. J. Robotics Res., 24 (2005), pp. 295-310.
. RAMANATHAN AND V. ALAGAR, Algorithmic motion planning in robotics: Coordinated mo-

https://doi.org/10.1137/0215055

[59]

[60]
[61]

(62]

[71]

[72]
(73]
[74]
[75]

[76]

COORDINATED MOTION PLANNING 1761

tion of several disks amidst polygonal obstacles, in Proceedings of the Second IEEE Inter-
national Conference on Robotics and Automation (ICRA), Vol. 2, 1985, pp. 514-522.

D. RATNER AND M. K. WARMUTH, Finding a shortest solution for the N x N extension of

M

J.

G

~ A X =2 Q@ @

M.

M

the 15-puzzle is intractable, in Proceedings of the Fifth AAAI Conference on Artificial
Intelligence (AAAI-86), 1986, pp. 168-172.

REGELE AND P. LEvi, Cooperative multi-robot path planning by heuristic priority adjust-
ment, in Proceedings of the 19th IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2006, pp. 5954-5959.

. RUBENSTEIN, A. CORNEJO, AND R. NAGPAL, Programmable self-assembly in a thousand-
robot swarm, Science, 345 (2014), pp. 795-799.

SAHIN AND A. WINFIELD, EDS., Special issue on swarm robotics, Swarm Intell., 2 (2008).

. SALZMAN, M. HEMMER, AND D. HALPERIN, On the power of manifold samples in exploring
configuration spaces and the dimensionality of narrow passages, IEEE Trans. Automation
Sci. Eng., 12 (2015), pp. 529-538.

. SANCHEZ AND J.-C. LATOMBE, Using a PRM planner to compare centralized and decoupled
planning for multi-robot systems, in Proceedings of the 19th IEEE International Conference
on Robotics and Automation (ICRA), 2002, pp. 2112-2119.

. SARTORETTI, J. KERR, Y. SHI, G. WAGNER, T. K. S. KUMAR, S. KOENIG, AND H. CHOSET,
Primal: Pathfinding via reinforcement and imitation multi-agent learning, IEEE Robot.
Automat. Lett., 4 (2019), pp. 2378-2385.

. SCHEIDELER, Universal Routing Strategies for Interconnection Networks, Lecture Notes in

Comput. Sci. 1390, Springer, 1998.

. SCHRECKENBERG AND R. SELTEN, EDS., Human Behaviour and Traffic Networks, Springer,
2004.

T. SCHWARTZ AND M. SHARIR, On the piano movers’ problem: 111. Coordinating the motion
of several independent bodies: The special case of circular bodies moving amidst polygonal
barriers, Internat. J. Robotics Res., 2 (1983), pp. 46-75.

. SHARON, R. STERN, A. FELNER, AND N. R. STURTEVANT, Meta-agent conflict-based search
for optimal multi-agent path finding, in Proceedings of the Symposium on Combinatorial
Search (SoCS), 2012, pp. 97-104.

. SHARON, R. STERN, A. FELNER, AND N. R. STURTEVANT, Conflict-based search for optimal
multi-agent pathfinding, Artificial Intelligence, 219 (2015), pp. 40-66.

. SHARON, R. STERN, M. GOLDENBERG, AND A. FELNER, The increasing cost tree search for
optimal multi-agent pathfinding, Artificial Intelligence, 195 (2013), pp. 470-495.

. SIMEON, S. LEROY, AND J.-P. LAUMOND, Path coordination for multiple mobile robots: A

resolution-complete algorithm, IEEE Trans. Robot. Autom., 18 (2002), pp. 42-49.

. SOLOVEY AND D. HALPERIN, k-color multi-robot motion planning, Internat. J. Robotics Res.,
33 (2014), pp. 82-97.

. SOLOVEY AND D. HALPERIN, On the hardness of unlabeled multi-robot motion planning,
Internat. J. Robotics Res., 35 (2016), pp. 1750-1759.

. SOLOVEY AND D. HALPERIN, Sampling-based bottleneck pathfinding with applications to
Fréchet matching, in Proceedings of the 24th Annual European Symposium on Algorithms
(ESA), 2016, pp. 76:1-76:16.

. SOLOVEY, O. SALZMAN, AND D. HALPERIN, Finding a needle in an exponential haystack:
Discrete RRT for exploration of implicit roadmaps in multi-robot motion planning, Inter-
nat. J. Robotics Res., 35 (2016), pp. 501-513.

. SOLOVEY, J. YU, O. ZAMIR, AND D. HALPERIN, Motion planning for unlabeled discs with op-
timality guarantees, in Proceedings of the 11th Conference Robotics: Science and Systems

(RSS), 2015.

. SPIRAKIS AND C. K. YAP, Strong NP-hardness of moving many discs, Inform. Process. Lett.,

19 (1984), pp. 55-59.

. STANDLEY, Finding optimal solutions to cooperative pathfinding problems, in Proceedings of

_the 24th AAAT Conference on Artificial Intelligence (AAAI-10), 2010, pp. 173-178.

. SVESTKA AND M. H. OVERMARS, Coordinated path planning for multiple robots, Robotics

Autonomous Systems, 23 (1998), pp. 125-152.

TurPIN, N. MICHAEL, AND V. KUMAR, Trajectory planning and assignment in multirobot

systems, in Algorithmic Foundations of Robotics X, Springer, 2013, pp. 175-190.

. TurpiN, K. MOHTA, N. MICHAEL, AND V. KUMAR, Goal assignment and trajectory planning
for large teams of interchangeable robots, Autonomous Robots, 37 (2014), pp. 401-415.

[77] J. P. vAN DEN BERG AND M. H. OVERMARS, Prioritized motion planning for multiple robots,

in Proceedings of the 18th IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2005, pp. 430-435.

1762

(78]

[79]

DEMAINE, FEKETE, KELDENICH, MEIJER, AND SCHEFFER

J. P. VAN DEN BERG, J. SNOEYINK, M. C. LIN, AND D. MANOCHA, Centralized path planning
for multiple robots: Optimal decoupling into sequential plans, in Proceedings of Robotics:
Science and Systems (RSS), Vol. 2, 2009, pp. 2-3.

M. CAp, P. NovAK, M. SELECKY, J. FAIGL, AND J. VOKRINEK, Asynchronous decentralized
prioritized planning for coordination in multi-robot system, in Proceedings of the 26th
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013,
pp. 3822-3829.

G. WAGNER AND H. CHOSET, M*: A complete multirobot path planning algorithm with perfor-
mance bounds, in Proceedings of the 24th IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2011, pp. 3260-3267.

G. WAGNER AND H. CHOSET, Subdimensional expansion for multirobot path planning, Artificial
Intelligence, 219 (2015), pp. 1-24.

R. M. WILSON, Graph puzzles, homotopy, and the alternating group, J. Combin. Theory Ser. B,
16 (1974), pp. 86-96.

P. R. WURMAN, R. D’ANDREA, AND M. MoOUNTZ, Coordinating hundreds of cooperative, au-
tonomous vehicles in warehouses, AI Magazine, 29 (2008), pp. 9-20.

J. Yu, Constant Factor Optimal Multi-Robot Path Planning in Well-Connected Environments,
preprint, https://arxiv.org/abs/1706.07255v1, 2017.

J. Yu, Constant Factor Time Optimal Multi-Robot Routing on High-Dimensional Grids in
Mostly Sub-Quadratic Time, preprint, https://arxiv.org/abs/1801.10465, 2018.

J. YU AND S. M. LAVALLE, Optimal multirobot path planning on graphs: Complete algorithms
and effective heuristics, IEEE Trans. Robotics, 32 (2016), pp. 1163-1177.

J. Yu AnND D. Rus, An effective algorithmic framework for near optimal multi-robot path
planning, in Proceedings of the 27th IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2015, pp. 495-511.

https://arxiv.org/abs/1706.07255v1
https://arxiv.org/abs/1801.10465

	Introduction
	Our results
	Related work

	Preliminaries
	The grid case
	The continuous case

	Labeled grid permutation
	Outline of the approximation algorithm of Theorem 3.4
	Details of the approximation algorithm of Theorem 3.4
	Step 1: Compute d, the tiling T, and the corresponding flow G_T
	Step 2: Ensuring planarity and unidirectionality
	Step 3: Computing a flow partition
	A subroutine of Step 4: Realizing a single subflow
	Step 4: Realizing all subflows

	Variants on labeling
	Continuous motion
	A lower bound for unbounded environments
	An upper bound for unbounded environments
	Colored and unlabeled disks
	Difficulties with exact solutions

	Conclusion
	References

