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Abstract— We consider a central challenge that is mission
critical for the successful operation of large-scale satellite
constellations in Low-Earth Orbit: How can we coordinate the
short-term download operations for the enormous amounts of
generated data, based on wireless line-of-sight connections to a
limited number of stationary ground station? These issues are
critical for the future growth of space systems, with multiple
commercial space operators competing for downloading their
commercial data in a timely fashion, relying on the services
of a scarce set of ground stations that is subject to numerous
strong constraints, so it cannot simply be expanded.

We present a distributed auction-based scheduling approach
for maximizing the value of the downloaded data. Our method
allows competing satellite operators to bid for contact times
and has a fair and transparent price estimation based on the
competition. On its own, it can also be used with a simple
bidding strategy to obtain good schedules; this is demonstrated
on benchmark simulation with up to 1080 satellites. As a
consequence, we are able to achieve values rates of 74%
of available data, compared to 28% for standard greedy
strategies.

I. INTRODUCTION

The trend of using distributed space systems–such as
satellite constellations–instead of monolithic systems has
been growing for the last decade. Some of the newly
announced constellations feature more than 1000 satellites.
Traditional spacecraft operations involve manual control of
the spacecraft by skilled human operators, following a 4-eyes
principle. Even when operators batch multiple telecommands
together, this process is still time-consuming and prone to
errors. In addition, the autonomy level aboard traditional
spacecraft is low; critical activities, such as anomaly identi-
fication and resolution, must be supervised by the operators.
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This manual approach is not (linearly) scalable to large
satellite constellations, resulting in a variety of algorithmic
challenges for automated operation. According to the NASA
Technology Roadmap [1]: “Demand continues for ground
systems which will plan more spacecraft activities with
fewer commanding errors, provide scientists and engineers
with more functionality, process and manage larger and
more complex data more quickly, all while requiring fewer
people to develop, deploy, operate and maintain them”. This
gives rise to numerous problems of robotics and automation,
many of which involve extremely complex systems and
requirements.

One of the critical aspects of satellite constellation op-
eration is being able to promptly retrieve the generated
payload data. For satellites in low-earth orbit (LEO), this
data is typically based on visual imaging, with total size
growing quadratically with increasing image resolution and
linearly with time resolution; in fact, the demand for up-
to-date, fine-grained images is one of the driving forces
behind the rapidly expanding number of satellite in current
and projected constellations. Downloading this data relies on
wireless communication between the orbiting satellites and a
limited number of stationary ground stations with powerful
parabolic antennas, requiring a direct line of sight; note
that even when the underlying metadata (describing size and
importance of payload data consisting of image files) is rela-
tively small (and thus rapidly communicated), the download
times for the actual payload data itself are considerable. As
a consequence, these communication links become a critical
bottleneck for successful, timely operation of a satellite
constellation. However, coordinating these communications
for massive satellite constellations and enormous amounts of
data involves excruciatingly difficult optimization problems.

Currently, most satellite systems have their own dedicated
ground stations. However, the demand for growing the num-
ber of satellites (e.g., for providing high-resolution, short-
term imaging data) is quite high, whereas the building and
operation of ground station (which should be located at
high geographic latitudes, i.e., close to the poles in order
to provide frequent communication windows) is subject to
numerous geographic, logistic and political constraints, as
well as quite expensive. As a consequence, it is foreseeable
that ground stations will have to be shared, enabling these
systems to be more dynamic and deal with temporary band-
width bottlenecks while also lowering the prerequisites of
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new satellite systems. Furthermore, outsourcing the main-
tenance of the ground stations to a Ground Station as a
Service will allow satellite operators to focus on the satellites
themselves. While there are already sophisticated scheduling
algorithms for prioritizing important data in the presence of
limited bandwidth (as described in the section on related
work), they miss the element of a bidding and pricing scheme
for competing satellite systems needed for such a service.

In this paper, we present an auction-based approach for
coordinating and prioritizing download activities of a satellite
constellation fit for a Ground Station as a Service system. In
it, satellite operators bid on communication slots of ground
stations and are billed correspondingly. If the occupancy
is high, the prices automatically rise such that important,
i.e., high-valued data is prioritized. We also demonstrate the
power of our approach on benchmark constellations with
more than 1000 satellites and a time window of 36 days:
Our auction-based approach manages to retrieve ∼74% of
the total data valuation, compared to merely ∼28% that are
achieved by a standard greedy-type approach that is typically
used by human operators with automation assistance.

II. RELATED WORK
A. Scheduling in General

Scheduling is a common problem in computer science
with a vast amount of research and literature. A thorough
introduction to the topic is given by Pinedo [2]. In addition
to scheduling theory in general, there has been a considerable
body of work on scheduling in the context of satellites. In her
PhD thesis, Spangelo [3] considers operational challenges
specific to small satellites in LEO, such as restricted on-
board energy and data storage capacity.

Unfortunately, finding an optimal solution for even very
restricted offline versions of the scheduling problem is known
to be NP-hard. Therefore, exact solutions do not scale to
large constellation sizes. However, for practical purposes,
an algorithm that always achieves an optimal schedule is
often not needed, motivating approximations algorithms and
heuristics that are considered in the literature.

Scheduling problems that arise in practice are often in-
herently online in nature, i.e., scheduling decisions must
be made without complete information. This also holds
true for satellite operations: not all customer requests are
known ahead of time, so it may be desirable to change the
schedule after observing an event of interest. Furthermore,
anomalies may occur during operation. Li et al. [4] consider
an online scheduling variant with stochastic arrivals of urgent
tasks and sequence-dependent setup times. They make a
distinction between normal and urgent tasks. Reschedul-
ing during orbit (between ground contacts) requires au-
tonomous decision-making with limited/local information
by the satellite. This is especially true if rescheduling is
triggered because the satellite itself observed/measured an
event of interest. Urgent customer request may be relayed
via inter-satellite communication links (if available) from
ground station to satellite. Stottler [5] reports a prototype
implementation for a scheduler that incorporates case-based

reasoning to automatically resolve conflicts. This conflict
resolution is based on past decision-making and approval of
human schedulers. A method for scheduling services in large
satellite constellations is described by Marinelli et al. [6],
in which types of scheduling problems are identified, and
a time-indexed integer programming formulation is used.
They also describe a practical heuristic approach based on
Lagrangian relaxation and a Fix-and-Relax algorithm. The
method was experimentally evaluated with promising results
on the GALILEO project in research between Telespazio and
the European Space Agency. Augenstein et al. [7] describe
the scheduling algorithm that is used for the Terra Bella
constellation. They consider the following problem setting
and constraints: agile satellites that can change orientation,
non-zero setup times for ground stations between different
satellite contacts, a required minimum contact frequency for
each satellite to transmit health/telemetry data and the ability
for human operators to manually “lock-in” or “lock-out” a
given contact. The objective is to balance image collection
and data downlinking time, while maximizing the image
collection of priority-weighted targets. Lee et al. [8] show
a genetic algorithm for scheduling, which is designed with
regard to the Korea Multi-Purpose Satellite (KOMPSAT)
series.

B. Decentralized Auction Based Scheduling

As an alternative to centralized scheduling, Wellman [9]
proposed auction-based decentralized scheduling, with com-
peting agents bidding for resources. The schedule and the
prices for the resources are determined by auction or market
mechanisms. Prices may be purely virtual, but can also be
used to determine actual usage fees. Agents work for their
own advantage and may hold information private regarding
their strategy. They have to evaluate the trade-offs of acquir-
ing resources to maximize their objectives potentially with a
limited budget.

In our case, satellites bid for communication slots of
ground stations trying to maximize their downlinked data
value while minimizing the overall costs. Therefore, the
ground stations act as auctioneers. As in other auction-
based mechanisms, the auctioneer continuously posts the
price quotes to the agents. The agents communicate their
bids iteratively, so that they can react to competing parties.
After a fixed time window, the auctioneer computes the final
schedule and price.

An auction may be differentiated across many parameters
such as price determination algorithm, event timing, bid
restriction, and intermediate price revelation. One of the
most important distinctions is whether an individual auction
allocates a single resource or several resources at once
(combinatorial auctions).

The term combinatorial auction was popularized by
Rasseneti et al. [10] in 1982. Later work on the complexity
of the problem [11] showed that it is NP-hard to determine
an allocation once all bids have been submitted to the
auctioneer. These results lead to further research on the
topic [12]. Solving distributed scheduling problems with
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market mechanisms has be proposed multiple times [13],
[14]. Wellman [15] named his approach market-oriented
programming (MOP).

Prior work has successfully applied market-inspired mech-
anisms to scheduling [16], [17] and other distributed resource
allocation problems. Several have adopted the framework of
general equilibrium theory and have found that the compu-
tational markets behave predictably when the conditions of
the theory are met [15]. Additionally, the MOP approach
was applied to a variety of discrete optimization problems.
It has been successfully adopted to scheduling problems in
manufacturing [18], [19], [20] and train or airport slot alloca-
tion [21], [22], [23]. Moreover, the benefits of the approach
have been widely used in transportation services [12], [24].

Depending on the application of the scheduling problem,
one can investigate bidding strategies that produce better
solutions [25]. Bidding strategies like iBundle [26] (in which
the price update is based on bid prices from unsuccessful
agents) have brought great success to train scheduling prob-
lems [21].

III. PRELIMINARIES

Given the difficult conditions (with enormous distances
and large amounts of data), ground stations and satellites
use directed antennas for high-bandwidth communication.
This requires satellites not only to be in range, but also
necessitates precise adjustments of both sides, which can
take up to two minutes. This also implies that satellites and
ground stations have to be informed in advance of scheduled
contacts. Because satellites in LEO are moving very fast
(they can orbit earth in 90 minutes), the feasible contact
windows are only a few minutes long. In addition, many
satellite constellations operate in sun-synchronous orbits. As
a consequence, satellite distribution is heterogeneous, with
particularly high density near the poles, as polar orbits and
ground stations increase the frequency of contact windows.

This leads to a basic model with the following underlying
assumptions; some of them constitute slight but legitimate
simplifications that are used in the following experiments.

• Ground station and satellites can establish a connection
if the line of sight is not interrupted and a pass can be
reliably predicted. Hence, for every satellite and ground
station there is a continuously extended list of feasible
contact windows (each having a minimal start and a
maximal end time) in which data could be transmitted
if there are no conflicts (see next point).

• Satellites and ground stations each need 2 minutes of
adjustment time before each scheduled contact. During
adjustment and contact, no other contacts can be per-
formed.

• For simplicity, we use a homogeneous bandwidth. The
amount of downloaded data hence can be measured in
contact time.

• The onboard storage of each satellite is limited to the
amount that could be downloaded in 10 000 seconds.
If the memory is full, the least valuable data is auto-
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Fig. 1. Based on data value estimations and pass predictions, bids on
contact intervals for each satellite are computed and sent to the corre-
sponding ground stations. The ground stations constantly collect these bids
and determine the highest bids and their current prices. Based on this
information, the satellites can update their unsuccessful bids.

matically deleted. Data is created randomly (uniformly
distributed size, value, and time).

• A contact can be performed if it is scheduled at least
three hours in advance.

• The satellite operator has a knowledge of the data value
on board of the satellites.

The last two assumptions are non-trivial but can be
implemented by an additional low-bandwidth connection
which are less restrictive than high-bandwidth connections
and sufficient since the corresponding data is much smaller
than the actual payload. But even without such an additional
connection, data value can to some degree be predicted and
supported by piggybacking informations during other con-
tacts. Some satellites also do not need to be informed about
contacts in advance because they automatically anticipate
data from ground stations in reach and adjust correspond-
ingly to some ground station.

To evaluate the scheduling quality, we consider in our
experiments the objective of data and value rate as well as
minimizing contact pauses. The data rate is the percentage
downloaded of all generated data. The value rate is analogous
but considers the value of the data.

IV. CONCEPT

In our algorithm (see Fig. 1), each satellite acts as a
bidder who wants to buy contact times on ground stations to
maximize the value of its downlinked data minus the price
paid for the contacts. Ground stations act as auctioneers that
accept bids on usage intervals and continuously determine
the currently highest bids and their prices. A bid wins the
auction when it remains the highest bid until a specified time
before the beginning of its interval, such that there is enough
time to actually schedule the contact. The currently highest
bids are broadcast frequently, so satellites can move their bids
into intervals with lower prices. All bids that are not marked
as highest bid can be retracted or updated. The prices have
to be fair and based on the actual demand (i.e., competition)
such that they can be used as an actual fee in a Ground
Station as a Service system. Note that neither the satellite
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nor the ground station will actually do any computations;
these are carried out by separate computers, as the satellites
do not have the required computational and communicational
capabilities. Hence, the data value estimation for the satellites
that is important to determine the bid amount is only based
on meta-information and predictions.

There are two primary components:
1) An auctioneer’s algorithm that determines the highest

bids and their prices. It needs to be fast for continuous
evaluation and transparent to proof its fairness.

2) A bidding strategy for satellites that can be different
for each satellite.

While centralized scheduling algorithms like the one of
Lee et al. [8] can be used to obtain a comparable (possibly
even better) schedule, they miss a pricing scheme and do
not allow different dynamic bidding strategies for competing
satellite operators. Our approach provides not only a good
scheduling quality, but also a fair pricing scheme and indi-
vidual control for each satellite operator.

V. AUCTIONEER’S ALGORITHM
A. Optimal Bid Selection

If a ground station is given a set of offers for intervals,
it is not obvious how to select the highest bidders. While
for independent resources one could simply always take
the highest offer, this is not the case if the resources are
overlapping as it is the case for time intervals: Multiple
short intervals with low offers can together outweigh a high
offer for a long interval. While one could still accept the
interval with the highest offer or the highest relative offer
(price/length), either strategy would encourage to either buy
very long intervals or to drive out the competition by very
short intervals. The most reasonable approach is to select
the intervals as winning bids that in combination are willing
to pay the most. The optimal selection of winning bids
can be computed efficiently, which allows us to repeat this
procedure at a high frequency.

Theorem 1: Given a set of n intervals and corresponding
prices. We can compute the optimal selection of intervals
such that no two selected intervals are intersecting and the
sum of prices is maximal in O(n log n) time or O(n) if the
intervals are already sorted by their end.

Proof: This problem is also known as the Weighted
Interval Scheduling Problem. It can be solved in O(n log n)
resp. O(n) via a simple dynamic program [27, Chapter 6.1].

Let WIS(B, p) denote the optimal Weighted Interval Schedule
for intervals B and prices/weights p. If there are multiple
such solutions, return the one with the most intervals (can
be easily integrated into the dynamic program).

B. Price estimation

A natural approach to pricing a winning bid is the Vickrey
principle, with the winning bid paying the price of the second
highest bid. Applying this to our case with overlapping inter-
vals requires some care, as there is no such thing as a clear
“second highest bid”; e.g., the competition may be based

on a long interval that has been outbid by multiple smaller
intervals. To get a fair pricing, we set every price initially
to some small value (such as zero or one) and increase the
price only if the interval is not among the winners and their
offer is not yet reached. This process ends when none of the
prices of the losing bids can be increased anymore because
they reached their current (maximum) offer. If the price of a
winning bid is not limited by its offer, it would also have the
same price even if its offer had been higher. This achieves
the Vickrey principle, with the price mainly determined by
the competition and not by the own offer. The algorithm is
described in Alg. 1, an example is given in Fig. 2.

Data: A set B of bids with begin, end, and offer. A
map price : B → R

+
0 with (initial) prices. A

price increase function inc : R+
0 → R

+
0

Result: A subset W ⊆ B of winning bids and map
of prices price : W → R

+
0

W = WIS(B, price);
while ∃b ∈ B \W : price[b] < b.offer do

for b ∈ B \W do
price[b] = min(inc(price[b]), b.offer);

end
W = WIS(B, price);

end
return W, price;

Algorithm 1: Auctioneer’s Algorithm.

There are multiple options to increase the price, e.g.,
adding a constant value, a percentage of the current price, or
a percentage of the maximum offer. Each of these solutions
results in different runtimes.

Theorem 2: Algorithm 1 with n bids and the highest offer
being h terminates after at most

• O(n2 ∗ h) steps for constant increments, e.g. +1.
• O(n2 ∗ log h) steps for proportional increments, e.g.

+20% (initial price has to be positive).
• O(n2) steps for e.g., +0.05 ∗ b.offer.

Proof: In every step, at least one price is increased and
every bid can only be increased O(h)/O(log h)/O(1) times.
Sorting the bids for the end takes O(n log n) and reevaluating
W takes O(n).

Lemma 1: For a set of bids B, Algorithm 1 returns the
same winning bids as WIS(B, b → b.offer) if the solution is
unique.

Proof: Further increments of the prices in Algorithm 1
do not change the winning bids, because all losing bids
cannot increase their offer to become more attractive. The
solution is thus identical to WIS(B, b → b.offer).

In practice one can achieve a significant improvement by
estimating the winning and losing bids first (because they do
not have to pay anyways). Then we directly set the losing
bids to their maximum price and prevent many alternating
increments.

Theorem 3: If we set the price of the losing bids directly
to their maximum and assuming the bids are sorted in
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Initial schedule

New bids arriving: Recompute bid selection

Time

0 (5)

0 (9)

2 (8)

1 (11)

1 (2)

1 (6) 0 (7)

1 (4)

1 (5)

1 (9)

Increase losing bids

2 (8)

1 (11)

1 (2)

1 (6) 0 (7)

1 (4)

1 (5)

1 (9)

Recompute bid selection
(maximize price, prefer solutions with more bids)

8 (8)

5 (11)

2 (2)

6 (6) 0 (7)

4 (4)

5 (5)

6 (9)

Repeat previous two steps
until all losing bids reached their limit

Fig. 2. Example of the auctioneer’s algorithm. Every block is a bid for
a time interval. It contains the current price and in brackets the limit. Red
bids are the current bid selection. Dashed bids have reached their limit.

advance, Algorithm 1 with n bids and the highest offer being
h terminates after at most

• O(n ∗ h) steps for constant increments, e.g. +1.
• O(n ∗ log h) steps for proportional increments, e.g.

+20% (initial price has to be positive).
• O(n) steps for e.g., +0.05 ∗ b.offer,

Proof: Let W ′ be the winning bids, determined by
WIS(B, b → b.offer). In every step, W ∩ W ′ never de-
creases. Let w′ be the last bid to be added to W ∩ W ′.
It is incremented in every round, because it is losing in
every round except the last one. This is only possible
O(n)/O(log n)/O(1) times.
By using a binary search to find the increment on which the
solution changes can improve the runtime further. However,
in both cases the prices can drastically differ to the original
version.

VI. BIDDING STRATEGY

Every satellite can have its own strategy that best fits its
purpose. A simple strategy can be to consider all feasible
intervals on all ground stations and estimate their gain by
using the value of the currently available (and not already

Constellation 1 2 3 4

Inspiration Galileo Artificial Dove OneWeb
Number of S/C 39 40 400 1080
Orbit region MEO LEO LEO LEO
Inclination/deg 56 85 97 87.9
Eccentricity/- 0.001 0.001 0.001 0.001
Number of ground stations 2 6 5 6

TABLE I
SATELLITE CONSTELLATIONS USED FOR EXPERIMENTAL EVALUATION.

scheduled) data and the prices of the intersecting highest
bids. Then one bids on the interval with the highest expected
gain and marks this interval and the corresponding data as
scheduled (if this bid loses, this is undone). The maximum
offer should not be the estimated value but only some per-
centage above the currently estimated price because at some
price, another interval has a higher gain. This is repeated
until there are no more intervals with positive gain on any
ground station. The relative value of later bids decreases as
the “good data” is already used for the previous bids. In
order to discretize the set of intervals, we only consider those
that begin at event points, such as the beginning of other
highest bids, as well as periodical event points (e.g., every
5 minutes). This basic approach can be further refined by a
number of methods, as follows.

• Use a prediction for future data value gain until the
beginning of the considered interval.

• Consider the success probabilities of the previous bids
for your value estimations and possibly even bid for
conflicting intervals.

• Use the “second best opportunity” to estimate the max-
imum one would pay for an interval before switching
to the second best. As intervals have different lengths,
this is not trivial.

• Considering that intervals farther in the future may be
subject to higher price increases.

• Multiple lower bids can outbid a higher bid. However,
these bids are usually from different (not cooperating)
satellites, so it is reasonable to occasionally try bids that
do not seem to have a chance.

VII. EXPERIMENTAL EVALUATION OF
SCHEDULE QUALITY

To validate the schedule quality of our method, we have
evaluated four different satellite constellations, as shown in
Table I. They contain the Galileo constellation, a slightly
enlarged constellation version of the Dove constellation of
Planet, and one modeled after the planned OneWeb constel-
lation. The Galileo constellation is in medium earth orbit
and is significantly slower, i.e., passes and pauses are much
longer than for the LEO constellations. Each of the four cases
was simulated for a schedule of 36 days to compute realistic
contact windows. The satellites continuously generate data
whose size and value is determined by a uniform probability
distribution.
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Fig. 3. Data and value rate for different constellations over 36 days. For
the first two experiments with few satellites, the performance of the greedy
approaches and our auction-based approach are relatively similar. However,
the performance of the greedy approaches drops significantly for the two
larger experiments while our auction-based approach still achieves relatively
good rates.

A. Greedy Algorithm

To get a comparison for the schedule quality, we also
implemented a greedy algorithm. It schedules for a time
interval (e.g., 1-3 hours) all intervals by iteratively selecting
the contact with the highest (relative) download value until
no more contacts can be scheduled. We use one variant with
the highest absolute value and one variant with the highest
relative value (value/length). On tie, the shorter contact is
chosen such that conflicts are minimized. This is fairly
similar to how a human approaches this problem.

B. Experimental Results

In Fig. 3 one can see that for the second constellation,
almost all data can be downloaded, even with a greedy
approach. For the third and fourth constellation, our auction-
based approach still achieves a relatively high rate, while the
greedy approach drops considerably. The reason is that it is
no longer possible to download all data, so an algorithm
has to make the best choices; this also implies an increasing
difference between value rate and data rate. An excerpt of a
schedule is shown in Fig. 5. The results for Galileo can be
explained by the long contact-less intervals that keep a lot
of the data out of reach.

C. Contact pauses

Besides the value of the data, one is also interested
in minimizing the maximal pauses between two contacts,
i.e., the continuous time without contact. Both greedy and
our auction-based algorithm can have relatively long pauses
without further adjustments. However, the bidder strategy
of the satellites can easily be adapted to keep these pauses
small. If the last scheduled contact of a satellite is too old,
the estimated value is increased based on the time distance
such that it continuously increases. The satellite will now
give continuously increasing bids, until it wins a bid after
which this “boost” is reset. The result are much shorter
maximum contact pauses for the satellites (see Fig. 4), while
the downloaded value is only slightly worse. This shows the
flexibility of our approach.

Fig. 4. If one wants to keep the contact pauses of a satellite short, one
can increase the bids with the length of the current contact pause in order
to easily minimize those. (Top) Contact pauses without optimization for the
Dove-like constellation. (Bottom) Contact pauses with optimization. The
maximum pause has almost been cut in half while barely reducing the data
and value rate.

VIII. CONCLUSION

We have provided an auction-based method for optimizing
the download schedules for large-scale constellations of
spacecraft. Our simulation results demonstrate the power of
our approach. Future developments can be expected from
inter-satellite communications, which will give rise to even
more complex perspectives of collecting and aggregating
data, as well as more flexibility than strategies involving fixed
ground stations. We are optimistic that similar methods will
be useful and increase in importance as the challenges for
automated spacecraft continue to increase.
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