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Abstract—ARM-FPGA coupled platforms allow accelerating
the computation of specific algorithms by executing them in the
FPGA fabric. Several computation steps of our case study for
a stereo vision application have been accelerated by hardware
implementations. Dynamic Partial Reconfiguration places these
hardware tasks in the programmable logic at appropriate times.
For an efficient scheduling, it needs to be decided when and where
to execute a task. Although there already exist hardware/software
scheduling strategies and algorithms, none exploit all possible
optimization techniques: re-use, prefetching, parallelization, and
pipelining of hardware tasks. The scheduling algorithm proposed
in this paper takes this into account and optimizes for the
objectives latency/throughput and power/energy.

Index Terms—FPGA, dynamic partial reconfiguration, hard-
ware acceleration, task graph, scheduling, stereo vision

I. INTRODUCTION

Tightly coupled ARM-FPGA systems, such as the Xilinx
Zynq-7000 SoC, benefit from high bandwidth interfaces be-
tween hard-wired processor cores and the FPGA fabric. This
feature allows efficient acceleration of data-intensive compu-
tations by parallelizing the execution in the programmable
logic. If the processing power of the hard-wired ARM-based
processor system does not suffice for an application, the
computation of large data payloads can be outsourced and
executed in the programmable logic as a hardware accelerated
task. The number of concurrently dispatchable tasks is limited
by the available resources in the programmable logic. How-
ever, the ability of SRAM-based FPGAs to support Dynamic
Partial Reconfiguration (DPR) allows a very flexible use of
the available resources in a Time-Space Partitioning (TSP)
manner. If the given resources do not suffice for a static
and concurrent implementation of all required hardware tasks,
DPR allows to sequentially load and execute those tasks.

The continuous enhancement of DPR support in the FPGA
vendors’ toolchains helps to propagate the use of DPR in
embedded systems. Also for safety-critical/mixed-criticality
systems, DPR promises an increase of computation perfor-
mance and a reduction of power consumption. For such
systems, security and real-time aspects need to be considered.
By developing a framework for hardware acceleration through
DPR for the highly secure Genode OS [1], security aspects are

already addressed [2]. However, real-time aspects have not
been covered adequately yet.

Therefore we focus in this paper on hardware/software
task scheduling for ARM-FPGA platforms that satisfies real-
time requirements and guarantees latency or throughput rates.
Additionally, the developed scheduling algorithm optimizes
for low power and low-energy consumption. This makes the
approach interesting for applications with tight constraints on
power/energy, which are e.g. inherent to space missions.

The rest of this paper is organized as follows. Section II
describes a platform suited for efficient hardware task execu-
tions. The exemplary stereo vision application introduced in
Section III makes use of this platform. Section IV discusses
constraints and objectives of a scheduling algorithm, which is
explained in Section V. The developed algorithm is evaluated
in Section VI.

II. PLATFORM FOR HARDWARE TASK ACCELERATION
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Fig. 1. Platform for hardware accelerated task execution in a Zynq-7000 SoC.

Fig. 1 depicts a flexible platform for hardware task ac-
celeration implemented on a Xilinx Zynq-7000 SoC with a
processing system (PS) and programmable logic (PL). The
platform provides n reconfigurable regions in which hardware
modules for accelerated task execution can be placed. Before
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execution, a region has to be configured via the Processor
Configuration Access Port (PCAP) with the partial bitstream
of the hardware module. One AXI High Performance (AXI
HP) interface is used for exchanging processing data between
the PS and PL with a maximum theoretical bandwidth of
up to 2400MByte/s in both read and write direction [3].
Parametrization data for hardware tasks is communicated via
the AXI General Purpose (AXI GP) interface. The AXI
Stream Interconnect allows reconfigurable regions to exchange
processing data with each other, or to read from and write to
DDR memory via m DMA IP-cores, which translate between
memory mapped and stream communication. Related work
makes use of similar platforms for hardware acceleration
by DPR. [4], [5], [6], and [7] use different concepts for
transferring processing data, but the overall architecture is
comparable.

The interface of a reconfigurable region needs to be selected
carefully. On the one hand, the interface should be kept as
simple as possible. All interface signals cross the border
between the static and reconfigurable FPGA parts, which
restricts their routing and requires decoupling mechanisms. On
the other hand, the interface should be as flexible as possible.
Different hardware tasks have different input and output data
amounts and types, which has to be mapped to the generic
region interface.

As depicted in Fig. 1, a reconfigurable region consumes
up to two input streams and generates a single output stream
in the proposed platform. This satisfies the communication
needs of a wide range of coarse-grained signal/image pro-
cessing operations. Additionally, arbitrary operation parame-
ters (thresholding values, etc.) can be set via the AXI Lite
Interface. However, the defined interface is not suited for
some applications, e.g., a QAM demodulation would need
two outputs. Such algorithms require an adapted platform,
interleaving of stream data, or a higher decomposition level. A
very fine-grained decomposition ultimately results in separate
arithmetic operations consisting of two operands and one
result, which also fits to the selected interface definition.

The size of reconfigurable regions is another important deci-
sion to be taken at design time. A varying size allows a flexible
use of FPGA fabric resources. Small regions are created for
efficient execution of simple algorithms, large regions with a
higher number of logic-, DSP- and RAM resources allow the
implementation of more complex algorithms.

Due to the routing and resource overhead in the FPGA fabric
required by each reconfigurable region interface, a large num-
ber of regions will drop the overall resource usage efficiency.
Hence, it is beneficial to keep the decomposition level low and
to create larger hardware modules and regions that are able to
execute several computation steps in conjunction.

For an efficient scheduling, several optimization techniques
for hardware task acceleration have been identified. Four out
of five can be applied with the proposed platform and can be
exploited by a scheduling algorithm.

1) Re-use of hardware modules avoids lengthy reconfig-
uration processes, because a module is already configured.

This helps reducing the overall execution time and keeps the
memory bandwidth impact of configuration data transfers low.
However, a reconfigurable region cannot execute another task
while waiting for re-use, possibly resulting in long stall times.

2) Prefetching hides reconfiguration time by reconfiguring a
region with the proper hardware module before activation of a
task. The task can execute immediately after activation, under
the assumption of a correct prediction of upcoming tasks.

3) Parallelization can be applied for tasks that operate on
their processing data in a streaming fashion. The AXI Stream
Interconnect allows not only for processing data transfers
from and to DDR memory, but also between reconfigurable
regions. If a preceding hardware task produces data that is
consumed and processed in a succeeding hardware task, the
data stream can be forwarded directly. The succeeding task
processes the first datum as soon as it has been computed
in the preceding task, which occurs after a short latency
(see Fig. 2). For operations on large datasets, this latency
can be neglected compared to a task’s execution time. As
both tasks are executed almost in parallel, the total makespan
(time elapsing from task graph activation to termination of
last node) of a task graph can be reduced. Furthermore,
write back to and read from DDR memory is avoided, which
reduces DMA transactions. Applying this technique avoids
stalls caused by waiting for a free DMA channel. As the AXI
Stream Interconnect has very limited data buffering resources,
parallel tasks have to be synchronized and may not start their
computation before all hardware modules of parallel tasks are
configured in the FPGA fabric, resulting in potential stalls.
This synchronization also thwarts fast tasks, which inherit the
execution time of the slowest task executed in parallel.

Region 2

Region 1 T1

T2

T1

T2

T1

sequential mode parallel mode

t
T2

processing 
element

Fig. 2. Tasks executed in sequential and parallel mode.

4) Pipelining of consecutive iterations of a task graph
can increase the repetition rate and hence throughput. For
throughput considerations, it is not sufficient to only calculate
the makespan of a task graph. Additionally, the resulting task
graph schedule needs to be examined for potential overlapping
executions in different reconfigurable regions. E.g., in Fig. 3
the execution of task T4 from the first task graph iteration
overlaps with a reconfiguration process of the next task graph
iteration.

5) Relocation of hardware tasks is the process of moving
an already scheduled task from one reconfigurable region to
another and is discussed for example in [6]. This process
requires a hardware task to be interrupted and resumed at
a later point in time, or in other words, preemption of
hardware tasks. Preemption requires capturing and restoring
the hardware task’s state, which has been discussed in some
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Fig. 3. Pipelining two task graph executions.

related work [8]. However, this process adds complexity to the
design and is not completely fail safe from our point of view,
e.g., interrupting a DMA transfer could result in unexpected
behavior. Besides, we do not expect a significant reduction
of makespan or throughput gain as additional reconfiguration
processes prolong the overall solution. Hence, relocation of
hardware tasks and preemption will not be supported by our
platform.

III. STEREO VISION CASE STUDY

Imaging algorithms are generally suited for hardware accel-
eration, because operations are often repeated on every pixel
and can be parallelized. Therefore, we chose to run a stereo vi-
sion computation on the discussed platform which is designed
for a space robot used for a planetary surface exploration. The
corresponding task graph is depicted in Fig. 4 as a Directed
Acyclic Graph (DAG) with fork and join operations. First,
both (left and right) camera raw images are converted from
bayer to RGB format (debayer). In a second step, camera
distortions are removed and both images are transformed into
a common coordinate system (rectify). The stereo match task
runs a Sobel filter over both images and computes a disparity
map using the SAD block matching technique. This hardware
task is a good example for different levels of parallelization:
the number of disparities computed in parallel can be chosen
freely at design time, which allows negotiating execution time
with hardware resource usage. The disparity to pointcloud task
generates a colored pointcloud from disparity map and the left
rectified RGB image. Subsequently, the pass through filter task
is applied in z direction (depth) of the pointcloud and cuts
off implausible points. The extracted pointcloud is used as an
input for different applications such as object recognition and
visual odometry. We assume that the following applications
require a minimum frame rate of 1 fps, which is taken as the
throughput criteria to satisfy.

All edges of the task graph are affected by transfer of
streamable processing data. When executed as a hardware task,
each edge requires either a DMA channel to be opened, or
direct forwarding via the AXI Stream Interconnect. Some tasks
additionally require parametrization data, e.g. the rectify task
has to know if it operates on the left or right image.

The task graph is targeted to run on a platform such as the
one depicted in Fig. 1 with n = 2 reconfigurable regions of
different size and one processor core as Processing Elements
(PEs). The smaller region is reconfigured in 8ms, the larger

debayer
left

debayer
right

rectify
left

rectify
right

stereo
matching

disparity to 
pointcloud

pass through 
filter

Fig. 4. Task graph for a stereo vision computation.

one in 18ms. Two DMA cores (m = 2) allow data transfer
from memory to reconfigurable regions and vice versa.

Tasks requiring a complex hardware module with a large
FPGA fabric footprint are restricted to the larger Region 2.
This applies to the rectify task and the highly parallelized
stereo matching (see Table I). Another stereo matching variant
with lower parallelization and a smaller footprint also fits
into Region 1. Simple computations (debayer and disparity
to pointcloud) with low resource demands can be placed in
both regions. All tasks are also implemented in software, using
appropriate OpenCV functions. Up to now, the pass through
filter has not yet been accelerated in hardware, hence this task
may be executed in software only.

The execution times of all tasks in Table I have negli-
gible jitter. This is because the presented image processing
algorithms are not input dependent. Some tasks benefit more
from hardware acceleration than others. E.g., the rectify task
yields a speedup factor of 7.5 when executed in hardware. On
the other hand, the debayer executes faster in software. This
effect is caused by the higher processor core clock (667MHz)
compared to the slower hardware clock (100MHz).

IV. PROBLEM DESCRIPTION

The selected platform provides mechanisms for hardware
acceleration of this task graph. However, the flexibility of
outsourcing suitable computations to the programmable logic
needs to be exploited appropriately. There exist numerous
options for assigning the tasks of the (still quite simple) task
graph of the introduced case study to PEs.

Many solutions already exist for task graph execution in
software that also guarantee bounded latencies for real-time
applications. This setup could be best compared to a multi-
processor problem statement as the platform provides multiple
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TABLE I
EXECUTION TIMES FOR STEREO VISION TASKS [ms].

Task Region 1 Region 2 Processor 1
(small) (large)

reconfiguration / CSW 8 18 0

debayer 36 36 32

rectify - 38 286

stereo match 4561 228 7469

disparity to pointcloud 528 528 615

pass through filter - - 412
1 This value has not been measured in hardware execution yet, and

has been estimated considering simulation results and hardware
implementations with similar complexity.

PEs for the execution of a task. However, due to the particular
constraints and peculiarities that come with hardware accel-
eration using DPR, state-of-the-art multiprocessor scheduling
strategies cannot be applied for the introduced platform.
The following constraints differ from a pure multiprocessor
scheduling problem:

• Hardware task execution is non-preemptive.
• Software task execution is not affected by the preceding

constraint and furthermore preemptive.
• The reconfiguration process for switching between hard-

ware tasks is many times longer than a context switch
(CSW) in software.

• The reconfiguration process can be applied to only one
region at a time.

• The amount of communication is limited. The number of
concurrent DMA transfers is strictly upperbounded by a
limited the number of read/write channels provided by
the platform.

• Execution times of a task heavily depend on the selected
PE. In general, the execution in hardware is faster com-
pared to software, however some tasks do not benefit from
hardware acceleration (see Table I).

Deciding when to move a computation from software as a
hardware task to which reconfigurable region considering the
given constraints is an optimization problem. Even for simple
task graphs such as the one provided in the case study in
Section III, this quickly grows to a sophisticated challenge.

Related work has already solved hardware (and software)
task scheduling for various assumptions. [9] identified hard-
ware task scheduling as an MILP problem and simplifies
the calculation by scheduling a subset of the task graph at
a time with k tasks per iteration. Based on those results,
[10] formulated heuristics for an optimization of execution
time and also takes the floorplanning of reconfigurable regions
into account. [6] applies both Best Fit In Space and Best Fit
In Time strategies and considers execution of tasks in both
hardware and software. [11] virtualizes hardware tasks and
treats reconfigurable regions as critical resources. A regions is
locked for the duration of a hardware task. If a new hardware
task tries to access a locked region, it has to stall until the
lock is released and the contention is resolved.

Although almost all approaches optimize the execution time
by using the optimization techniques re-use and prefetching,
yet none exploit parallelization and pipelining. In general,
communication bandwidth to/from reconfigurable regions is
assumed to be unlimited, which conflicts with practical im-
plementations. In order to analyze the communication appear-
ance, task dependencies in a task graph need to be classified
according to the type of data transfer. Huang et al. [12] prove
that a scheduler reducing data movements between tasks also
yields shorter processing times. However, their work does not
target task-based reconfigurations of small FPGA areas.

In general multiple functions are mapped to one processing
unit, resulting in a task graph that consists of connected
components with different activation periods. This also has
not yet been considered for hardware/software scheduling.

On this account, we developed an off-line solver for
hardware/software scheduling on ARM-FPGA platforms that
considers the named shortcomings. The main objective of the
solver is to minimize latency and maximize throughput of a
given task graph. Energy and power are handled as additional
objectives.

A. Task Graph Characterization

Related work ( [9], [13] and others) makes use of task
graphs for restricting the task execution order. However, this
is not sufficiently far-reaching. The platform needs to serve
different communication needs and different types of data
transfers between tasks, which needs to be considered for an
efficient scheduling.

Tasks may exchange parameters only as depicted in
Fig. 5(a), e.g., a threshold value returned by the calculation in
task T1 is used as an input argument of task T2. In the given
platform, such parameters can simply be passed via the AXI
Lite Interconnect.

Other tasks exchange complete sets of processing data,
which applies for many filters and arithmetic operations on
regular data structures. This data needs to be transfered over
the AXI Stream Interconnect. If the data is processed in the
same sequential order, then it is streamable (Fig. 5(b)). If the
processing order alters, it is not streamable (Fig. 5(c)) and has
to be buffered in DDR memory.

AT1 T2B C

T1 T2

D E F

A B C D E F

F E D C B A

T1 T2<parameter>

(b)

(c)

(a)

Fig. 5. Types of task dependencies: (a) parameter-only, (b) streamable, (c)
non-streamable.

Many hardware tasks, such a repeated operation on every
pixel of an image, execute the three steps load, process,
and store in a pipelined manner for each datum. The overall
measured execution time of these tasks cannot be split into
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time fractions for a load-, process-, and write phase. Other
hardware tasks first load a complete dataset before processing
it, which allows a more detailed timing analysis. However,
this does not affect the overall scheduling as the hardware
module has to be configured in a region during all three phases.
Therefore, it is sufficient to consider an overall execution time
for each hardware task.

B. Latency and Throughput Objective

When minimizing the makespan (latency) and maximizing
the repetition rate (throughput) of a task graph, multiple
aspects have to be considered.

1) The execution time of a single task is assumed to be
predictable, as input-independent algorithms produce very lit-
tle jitter. However, the execution time depends on the selected
PE. The performance of execution in software benefits from
higher clock rates of the processor cores compared to the
FPGA fabric. On the other hand, the lack of parallelization
in a processor core usually results in execution times that are
considerably longer. There are tasks that are more suitable for
parallelization and yield higher speedup factors than others
when executed in hardware. Additionally, the degree of par-
allelization correlates to the available resources, resulting in
speedup factors dependent on the size of the reconfigurable
region. Hence, it is not sufficient to minimize the idle time
in each PE for a minimal makespan. There may be solutions
with longer idle times but more efficient task-PE assignments
and shorter execution times.

2) The need for reconfiguration depends on the task graph
history. For an optimum schedule, the number of reconfigura-
tion processes should be minimized by means of re-use. The
reconfiguration time scales linearly with the reconfiguration
area and is therefore accurately predictable for each region.

3) There are different reasons for stall times for tasks. These
include waiting for a free PE, waiting for a free DMA chan-
nel, and blocking due to an already ongoing reconfiguration
process.

The contributions of these three parts to the overall
makespan depend on each other. Hence, an optimum solution
needs to balance between shortest execution times, minimum
number of reconfiguration processes, and minimal stall times.

C. Power and Energy Objective

Battery-powered devices always strive for reduced energy
consumption. Devices with limited power supplies or un-
available heat sinks are also restricted in their peak power
consumption. Both energy and power consumption can be
estimated for memories, processors, and FPGA fabrics quite
accurately, using device vendors’ power models. Hardware
task acceleration provides multiple options for the computation
of a given task graph, which differ in energy and power
efficiency. For example, a task executed in software generally
consumes more power in conjunction with longer execution
times. Because of the large variance of power and energy con-
sumptions, the scheduling solver optimizes those parameters
as an additional objective.

TABLE II
POWER PROPORTIONS [mW].

Task Region 1 Region 2 Processor 1
(small) (large)

pstatic 11 40 511

pdyn(debayer) 6 6 276

pdyn(rectify) - 103 276

pdyn(stereo match) 661 132 279

pdyn(disparity to pc) 16 18 297

pdyn(pass through) - - 284
1 This value has not been measured in hardware execution yet, and

has been estimated considering simulation results and hardware
implementations with similar complexity.

The calculation of the total energy and power consumed
is split into several parts. For each PE, the static power
pstatic(PE), consumed without executing any task, is spec-
ified. The dynamic power pdyn(PE, task) specifies the addi-
tional consumption of a PE when a task is executed. Fur-
thermore, the energy consumption for read and write memory
transactions is computed.

As an example, the separate power proportions have been
calculated in Table II for the case study described in Sec-
tion III. For memory transactions, 0.22mJ/Mbyte have been
calculated in read direction and 0.19mJ/Mbyte in write direc-
tion. In the given case study, memory transactions contribute
only a fraction to the total power consumption and will be
neglected in the following calculations. While execution power
varies little for different reconfigurable regions, the power
demand for software execution is significantly higher.

V. ALGORITHM

In this section, we present an algorithm optimizing the
energy consumption of the produced schedule subject to
throughput and peak power usage constraints. If minimizing
energy consumption is only a secondary goal, we can use
our algorithm to optimize for throughput or latency as well.
This can be done by performing binary search for the optimal
throughput or latency value based on whether our algorithm
finds a solution or reports the problem to be infeasible.

As input, our algorithm takes a description of all available
regions and modules as well as a task graph. The task graph
may consist of several connected components. Each compo-
nent has to be processed periodically and has its own activation
period; we assume harmonic periods, i.e., the longest occurring
period (hyperperiod) TFPS is a multiple of all periods. In order
to deal with the periods, we copy each component according
to the number of periods that fit into the hyperperiod. Each
copy is assigned a release time corresponding to its period.
We express throughput constraints as follows. Except for its
first occurrence, each task graph component has a deadline
corresponding to its period; this deadline is relative to the
finish time of the first copy of the task graph. Optionally,
an absolute deadline may be given as well. Moreover, the
entire schedule must be repeatable after applying pipelining
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as depicted in Fig. 3. In other words, after pushing all tasks
of iteration 1 of the schedule as far as possible to the left
(possibly overlapping iteration 0), all components in iteration
1 must also satisfy their deadlines; i.e., the only occurrence of
a component that may take longer to execute than its period
is the first occurrence of that component in iteration 0. A
necessary condition for the schedule to satisfy the throughput
constraints is that none of the processing elements is busy for
longer than TFPS. However, this condition is not sufficient due
to DMA and power constraints.

The scheduling problem we consider generalizes several
well-known NP-hard problems, such as PARTITION; therefore,
we are dealing with a computationally hard problem. One of
the most promising approaches to solving practical instances
of computationally hard problems to optimality is the use of
integer programming solvers such as IBM ILOG CPLEX [14]
or GLPK [15]. Due to the large number of constraints, some of
which are difficult to formulate efficiently in a linear fashion,
directly solving a formulation of the entire scheduling problem
as Mixed Integer Linear Program (MILP) is impractical.
Moreover, we cannot expect to find an optimal solution for
most larger instances in reasonable time; therefore, we need
a search procedure that can be turned into an incomplete
search that may miss the optimal solution, instead producing
a solution of sufficient quality. In order to achieve this goal,
we use a combination of combinatorial optimization methods
and A∗ search; there are several well-known variants of A∗

that turn the complete search into a faster, incomplete one.
In a first step, our algorithm generates the set S of super
tasks; intuitively speaking, a supertask is a single task or a
parallelized group of tasks together with a concrete, feasible
mapping of the tasks to processing elements.

Definition 1: A super task consists of a set of tasks S and a
mapping ρ of these tasks either to processing elements, subject
to the following constraints.

• For every task t ∈ S with module mt, it must be possible
to execute mt on processing element ρ(t).

• The mapping must be injective, i.e., no processing ele-
ment must contain more than one task.

• The tasks in S must all come from the same task graph
T .

• The vertex-induced subgraph T [S] must be (weakly)
connected.

• All edges in T [S] must be streamable.
• If ρ maps a task t to be executed in software, S = {t}.
• The number of data-afflicted edges coming into S in T

must not be greater than the number of DMA channels.
The same must hold for the edges going out of S.

• The sum of peak power requirements of all tasks must
not exceed the limit.

Potentially, the number of super tasks is exponential in the
number of processing elements; however, the task graphs,
DMA constraints and low number of regions typically keep the
number of super tasks manageable so that we can explicitly
enumerate the whole set S.

Our search handles states consisting of initial pieces of a
schedule. A state can be transformed into a successor state by
applying one of the two following operations.

• Reconfiguring a region r to a new module m.
• Running a super task on a set of processing elements

which must be properly configured.

Each state contains a pointer to its predecessor state together
with the operation leading to this state. Moreover, it contains
the current time tcur corresponding to the beginning of the
last operation, the current amount of power used, the energy
cost so far and the current number of DMA channels used.
It also keeps track of the time at which the last scheduled
reconfiguration finishes. For each processing element g, a state
contains information about the configuration of g and the last
operation performed on g. For each module m, a state contains
information about the number of tasks with module m that
have not yet been scheduled. For each task s, a state contains
information about whether the task was already scheduled. We
measure time, energy consumption and power required using
fixed-point arithmetic to avoid rounding issues.

When performing an operation, we have to determine the
earliest point tnext in time where this operation may begin
and update tcur accordingly. We start the operation as soon
as possible, disallowing any slack; this helps us to avoid
handling each time individually. For reconfigurations, tnext is
determined by the time at which the last scheduled reconfigu-
ration is done and the reconfigured region stops executing. For
execution of super tasks, this is determined by the time the last
task and reconfigurations on the affected processing elements
finish, by release times and by power usage and DMA channel
constraints. Note that tnext need not be greater than tcur;
this can happen for instance if there is a processing element
on which we have not scheduled an operation recently. If
tnext < tcur, we disallow performing the operation. If tnext =
tcur, we only allow the operation if it is greater than the
previous operation w.r.t. some fixed order on the operations.
This time order rule serves to break symmetries, i.e., to prevent
considering identical states multiple times. Furthermore, we
disallow any reconfiguration on a region for which the last
operation has been a reconfiguration. Additionally, we discard
any state with violated deadlines. Moreover, we disallow any
reconfiguration of a region to a module that does not have to be
executed anymore according to the counter stored in the state.
These rules help to avoid obviously suboptimal solutions and
ensure that the longest solution we have to consider has 2n
operations, where n is the number of tasks; it consists of one
reconfiguration and one single-task execution for each task.

In order for A∗ to perform reasonably well, the A∗ al-
gorithm requires a good heuristic to estimate the cost for
transforming a state corresponding to a partial solution into a
goal state corresponding to a complete solution. The algorithm
is only complete if the heuristic underestimates this cost; in
our case, this means that we need an estimate for the energy
cost. In order to reduce the number of states we have to
consider, we also use a heuristic that checks whether our
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throughput constraints can still be met; if this is not the
case for a certain state, we can simply discard that state. In
the following, we describe an integer linear program H that
can simultaneously check for the feasibility of the throughput
constraints and produce a lower bound on the remaining
energy consumption. H relaxes several aspects of the problem
(such as DMA and power constraints and task dependencies)
and is thus not suitable to solve the problem exactly. Solving
an integer program for each state is too expensive; therefore,
we only solve the LP relaxation of the problem. However,
integer programming solvers such as CPLEX include several
families of cutting planes that can be used to strengthen the
LP relaxation. Letting the solver generate such cutting planes
helps improving the accuracy of the heuristic at the expense
of more computation time per state.

For each region g and each module m, the integer program
H contains a variable rg,m ∈ {0, 1} that indicates whether
g must be reconfigured to m. For each task s that is not
yet scheduled and each processing element g that s can be
executed on, H contains a variable ts,g ∈ {0, 1} that indicates
whether s is executed on processing element g. For each
processing element g, let Tg be the maximum of tcur and
the time until which g is busy. Moreover, let T (s, g) be the
execution time of s on g, let P (s, g) be the power consumption
while executing s on g and Trec(g) be the reconfiguration time
of g. For each processing element g, let Ig be the idle time on
g at the beginning of our solution; if g is empty, let Ig = Tg .
For each region g, we can express the remaining execution
time on g as

Trem(g) :=
∑

Task s

T (s, g)ts,g +
∑

Module m

Trec(g)rg,m;

for software execution, the right summand corresponding to
reconfiguration times can be ignored. Additionally, let H
include a variable TMAX ∈ N corresponding to the maximum
busy time among all processing elements. We can express the
energy Prem(g) used on the remainder of the execution on a
processing element g as

(TMAX − Tg + Ig) · pstatic(g) +
∑

Task s

P (s, g)T (s, g)ts,g.

The integer program H is defined as follows.

min
∑

Region g

Prem(g) s.t.

∀s :
∑

Region g

ts,g = 1 (1)

∀g∀s with module m : rg,m ≥ ts,g (2)
∀g : Tg + Trem(g)− Ig ≤ TMAX (3)

TMAX ≤ TFPS (4)

If H is infeasible for a state, this state can be discarded; it is
not possible to satisfy the throughput constraints starting from
this state. On the other hand, if H is feasible, its solution
value can be used to compute a heuristic that underestimates
the total energy cost of the state.

TABLE III
MAKESPAN AND THROUGHPUT IMPROVEMENT PER OPTIMIZATION

TECHNIQUE.

Optimization Makespan Throughput Energy
Technique Reduction Gain Savings
Re-use 2% 3% 2%

Prefetching 0.6% 3% 2%

Parallelization 3% 4% 3%

Pipelining - 50% 26%

Relocation 0% 0% 0%

VI. EVALUATION

Once fed with the task execution times from Table I and
platform restrictions (m = 2, n = 2), the scheduling algorithm
outputs the Gantt chart depicted in Fig. 6 as an optimum
schedule. Both debayer and rectify modules are re-used when
executing the corresponding task on left and right image data.
Parallelization is applied between debayer and rectify tasks.
The total makespan of the task graph is 1288ms. By pipelining
two iterations of the task graph, a repetition rate of up to
1.166 fps (a period of 858ms) can be achieved, satisfying
the throughput requirement using 646.032mJ per iteration
including static power usage.

For the stereo vision case study, we additionally calculated
the makespan and throughput with deactivated optimization
techniques identified in Section II. Table III lists the achieved
performance gains and energy savings for each optimization
technique.

Both re-use and prefetching do not improve the overall so-
lution significantly. The contribution of reconfiguration time to
the total makespan is quite small, hence these two techniques
saving reconfiguration time have little effect.

Making use of parallelization produces only a small per-
formance increase, because it is applied to the tasks with
shortest execution times (debayer and rectify). However, this
feature can show its strength when applied to tasks with longer
execution times.

For the presented case study, pipelining yields a throughput
gain of 50%. It exploits that the next iteration of the task graph
may start while the last task (pass through filter) is still being
executed on Processor 1. We have to state, that pipelining
yields an exceptional large gain for the given case study. We
expect a large mean variation for throughput gains through
pipelining depending on the scheduling problem. Note that
pipelining does not reduce the makespan of a single iteration
of the task graph. Only when considering multiple iterations,
this technique increases the repetition rate and throughput.

The relocation feature is not supported by our platform.
Still, we tried to further optimize the schedule using this
technique. However, no improved solution has been found.
This can be explained by the added reconfiguration overhead
that worsens the overall schedule when interrupting a hardware
task.
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Fig. 6. Gantt chart for the stereo vision case study.

The ability of the scheduling algorithm to process multiple
connected components in a task graph with different activation
periods has not been exploited in the given case study. How-
ever, it is an important feature for general hardware/software
scheduling problems. As a next step in our case study, object
recognition and visual odometry is being implemented with
hardware acceleration, both using the already generated point-
cloud. Generally, the visual odometry is a simpler computation
compared to object recognition, however it requires a higher
frame rate and hence a different activation period. With the
developed scheduling algorithm, such problem statements can
be solved.

Furthermore, it allows to consider interfering processing
load. A separate task with a distinct activation period can con-
servatively reserve execution time on processor cores for back-
ground tasks and interrupt handlers. This is a good method
for modeling additional processing load not related to the
actual data-intensive computation. For processor cores, such
interference is evident, e.g., interrupt handlers with a higher
priority may interrupt the actual computation of a task graph.
But also hardware tasks can be affected by interference. Our
stereo vision case study is part of an autonomous space robot
used for exploration. When operating in such environments,
SRAM-based FPGAs are exposed to radiation that induces
Single Event Upsets (SEUs). Once detected, those errors
require countermeasures, e.g. re-running the last computation
step. Such repetition events cannot be planned in advance,
however our scheduling algorithm allows to model interference
and conservatively reserve execution time on reconfigurable
regions.

VII. CONCLUSION

The overall performance of an embedded system can be
increased by outsourcing the execution of specific tasks into
the programmable logic of an ARM-FPGA platform using
Dynamic Partial Reconfiguration. However, long reconfigura-
tion times, a limited number of DMA channels, and further
constraints restrict the scheduling of task graphs using this fea-
ture. The developed algorithm optimizes both makespan and
throughput. Additionally, the power and energy consumption
can be minimized. We showed that making use of different
optimization techniques improves the solution appreciably. Not
only existing strategies (re-use and prefetching), but also new
strategies developed by us (parallelization and pipelining) in-
crease both makespan/throughput and power/energy efficiency
for our stereo vision case study.
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