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We study the problem of folding a polyomino P into a polycube Q, allowing faces of

Q to be covered multiple times. First, we define a variety of folding models according
to whether the folds (a) must be along grid lines of P or can divide squares in half

(diagonally and/or orthogonally), (b) must be mountain or can be both mountain and

valley, (c) can remain flat (forming an angle of 180◦), and (d) must lie on just the
polycube surface or can have interior faces as well. Second, we give all the inclusion

relations among all models that fold on the grid lines of P . Third, we characterize all

polyominoes that can fold into a unit cube, in some models. Fourth, we give a linear-time
dynamic programming algorithm to fold a tree-shaped polyomino into a constant-size

polycube, in some models. Finally, we consider the triangular version of the problem,

characterizing which polyiamonds fold into a regular tetrahedron.

Keywords: Folding; origami folding; polycubes; polyominoes.

1. Introduction

When can a polyomino P be folded into a polycube Q? The answer to this basic

question depends on the precise model of folding allowed. At the top level, two main

types of foldings have been considered in the literature: polyhedron folding (as in

Part III of Ref. 9) and origami folding (as in Part II of Ref. 9).

Polyhedron folding perhaps originates with Ref. 11. In this variant of the prob-

lem, the folding of P must exactly cover the surface of Q, with a single layer

everywhere. This requirement is motivated by sheet metal bending and other

manufacturing applications with thick material, where it is desired to form a

given shape with the material without creating layers of doubled thickness. If

we make the additional assumption that at least one square of P maps to a

whole square of Q, an easy polynomial-time algorithm can determine whether P

folds into Q in this model: guess this mapping (among the O(|P | · |Q|) choices),

and then follow the forced folding to test whether Q is covered singly every-

where. Without this assumption, algorithms for edge-to-edge gluing of polygons

into convex polyhedra11 (Ref. 9, Ch. 25) can handle the case where the grid

of P does not match the grid of Q, but only when Q is convex. Specific to

polyominoes and polycubes, there is extensive work in this model on finding

polyominoes that fold into many different polycubes3 and into multiple different

boxes.1,12–15

In origami folding, the folding of P is allowed to multiply cover the surface

of Q, as long every point of Q is covered by at least one layer of P . This model
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is motivated by folding thinner material such as paper, where multiple layers of

material are harmless, and is the model considered here. General origami folding

results8 show that every polycube, and indeed every polyhedron, can be folded from

a polyomino of sufficiently large area. Two additional results consider the specific

case of folding a polycube, with precise bounds on the required area of paper. First,

every polycube Q can be folded from a sufficiently large Ω(|Q|) × Ω(|Q|) square

polyomino.6 (This result also folds all the interior grid faces of Q.) Second, every

polycube Q can be folded from a 2|Q| × 1 rectangular polyomino, with at most

two layers at any point.5 Both of these universality results place all creases on a

fixed hinge pattern (typically a square grid plus some diagonals), so that the target

polycube Q can be specified just by changing the fold angles in a polyomino P

whose shape depends only on the size |Q| and not on the shape of Q.

In this paper, we focus on the decision question of whether a given polyomino P

can fold into a given polycube Q, in the origami folding model. In particular, we

characterize the case when Q is a single cube, a problem motivated by three puzzles

by Nikolai Beluhov4; see Fig. 1. This seemingly simple problem already turns out

to be surprisingly intricate.

We start in Sec. 2 by refining different folding models that allow or disallow

various types of folds: (a) folds being just along grid lines of P or also along diag-

onal/orthogonal bisectors of grid squares, (b) folds being all mountains or a com-

bination of mountain and valley, (c) folds being strictly folded or can remain flat

(forming an angle of 180◦), and (d) folds being restricted to lie on just the poly-

cube surface or folds being allowed to have interior faces as well. Then, in Sec. 3,

we characterize all grid-aligned models into a hierarchy of the models’ relative

power.

Next, in Sec. 4, we characterize all the polyominoes that can be folded into a

unit cube, in grid-based models. In particular, we show that all polyominoes of at

least ten unit squares can fold into a unit cube using grid and diagonal folds, and

list all smaller polyominoes that cannot fold into a unit cube in this model. Observe

that the polyominoes of Fig. 1 each consist of at least ten unit squares, though

they furthermore fold into a cube using just grid-aligned folds. In this more strict

model, we characterize which tree-shaped polyominoes lying in a 2 × n and 3 × n
strip fold into a unit cube. This case matches the puzzles of Fig. 1 except in the

Fig. 1. Three polyominoes that fold along the grid lines into a unit cube, from puzzles by Nikolai
Beluhov.4
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“tree-shaped” requirement; it remains open to characterize cyclic polyominoes that

fold grid-aligned into a unit cube.

We also give some algorithmic results and consider the triangular grid. In

Sec. 5, we give a linear-time dynamic programming algorithm to fold a tree-shaped

polyomino into a constant-size polycube, in grid-based models. In Sec. 6, we con-

sider the analogous problems on the triangular grid, characterizing (rather easily)

which polyiamonds fold into a regular tetrahedron, in grid-based models. Finally,

we present some open problems in Sec. 7.

2. Notation

A polyomino P is a two-dimensional polygon formed by a union of |P | = n unit

squares on the square lattice connected edge-to-edge. We do not require all adja-

cent pairs of squares to be connected to each other; that is, we allow “cuts” along

the edges of the lattice. A polyomino is a tree shape if the dual graph of its unit

squares (the graph with a vertex per square and an edge for each connected pair of

squares) is a tree. Analogously, in one dimension higher, a polycube is a connected

three-dimensional polyhedron formed by a union of unit cubes on the cubic lattice

connected face-to-face. If a polyomino or polycube is a rectangular box, we refer

to it by its exterior dimensions, e.g., a 2 × 1 polyomino (domino) or a 2 × 2 × 1

polycube. We denote the special case of a single unit cube by C.

We study the problem of folding a given polyomino P to form a given poly-

cube Q, allowing various different combinations of types of folds: axis-aligned +90◦

and +180◦ mountain folds, −90◦ and −180◦ valley folds, fold angles of any degree,

diagonal folds through opposite corners of a square, and half-grid folds that bisect

a unit square in an axis-parallel fashion.a

All faces of Q must be entirely covered by folded faces of P , but in some cases

we allow some faces of P to lie inside Q without covering any face of Q. A face of P

is an interior face of Q if it is not folded onto any of the (boundary) faces of Q. For

example, if we consider a chain of unit squares in a polyomino, two folds of +60◦

along edges of two opposite edges of a unit square of P result in a V-shape with

two interior faces; see Figs. 2(a) and 2(b) for examples. A folding model F specifies

(a) (b)

Fig. 2. Examples for interior faces shown in green. They connect to the red cube edges (color
online).

aWe measure fold angles as dihedral angles between the two incident faces, signed positively for
mountain (convex) and negatively for valley (reflex) folds.
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a subset of F = {+90◦,−90◦, +180◦, −180◦, any◦; grid; interior faces; diagonal;

half-grid} as allowable folds.

3. Folding Hierarchy

We say that model Fx is stronger than Fy (denoting this relation by Fx ≥ Fy) if,

for all polyomino-polycube pairs (P,Q) such that P folds into Q in Fy, P also folds

into Q in Fx. If there also exists a pair (P ′, Q′) such that P ′ folds into Q′ in Fx,

but not in Fy, then Fx is strictly stronger than Fy (Fx > Fy). The relation ‘≥’

satisfies the properties of reflexivity, transitivity and antisymmetry, and therefore

it defines a partial order on the set of folding models. Figure 3 shows the resulting

hierarchy of the folding models that consist of combinations of the following folds:

{+90◦,−90◦, +180◦, −180◦, any◦; interior faces; grid}.
Integrating diagonal and half-grid folds (which we omit from the hierarchy of

Fig. 3) can result in even stronger models. For instance, a 1× 7 polyomino can be

folded into a unit cube C in model {±90◦, 180◦; grid; diagonal} (see Fig. 4), but not

12
10

14

11

13

22 24

25

F4

F6

4,5

15

8, 9

6,7

20,21 18,19

2316,17

F2

1 32

F1

F3

F5

F7

F8

F9

Fig. 3. Hierarchy of fold operations. The nodes correspond to the following folding models: F1 =
{+90◦; grid}, F2 = {±90◦; grid}, F3 = {+90◦; interior faces; grid}, F4 = {+90◦, 180◦; grid},
F5 = {±90◦; interior faces; grid}, F6 = {±90◦, 180◦; grid}, F7 = {+90◦, 180◦; interior faces;
grid}, F8 = {±90◦, 180◦; interior faces; grid}, and F9 = {any◦; interior faces; grid}. A black arrow
from Fy to Fx indicates that Fx > Fy . Blue and green arrows indicate incomparable models. The
labels on arrows correspond to the relations’ numbers from the proof of Theorem 1 (color online).

Fig. 4. A 1×7 polyomino can be folded into a unit cube C in model {±90◦, 180◦; grid; diagonal}.
The mountain and valley folds are shown in red and blue, respectively (color online).
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(a) (b)

Fig. 5. In case we allow ±90◦, 180◦, half-grid folds, and diagonal folds only, shape P does not
fold to a unit cube C. However, if we do not require faces of C to be covered by full unit squares of

P , P does fold into C, the mountain (red) and valley folds (blue) are shown in (b) (color online).

in {any◦; interior faces; grid} (the strongest model shown in Fig. 3). The example

shown in Fig. 5 shows that Fall = {any◦; interior faces; grid; diagonal; half-grid} is

strictly stronger than F = {any◦; interior faces; grid; diagonal}.
We need the following lemma to prove the hierarchy of Fig. 3.

Lemma 1. Folding the tree shape P2 shown in Fig. 7(b) into the 2×1×1 polycube

Q2 shown in Fig. 7(f) with F8 = {±90◦, 180◦; interior faces; grid} requires interior

faces. (Either of the faces 3 or 9 shown in Fig. 6 can be the interior face.)

Proof. We label the faces of P2 as shown in Fig. 6. The case analysis below shows

that a folding without interior faces does not exist, as in every case we are forced

to fold away at least two faces. Since |P2| = 11 and Q2 has 10 faces, there will not

be enough remaining faces to complete the folding.

First note that any ±180◦ folds will reduce the figure to at most 10 squares, and

it is easy to check that these cannot be folded to Q2 without an additional overlap.

Furthermore, all of the folds between pairs of exterior faces of Q2 have the same

orientation, so (in the absence of ±180 degree folds to reverse the orientation) any

fold from P2 to Q2 that avoids interior faces can only use one of the two angles

+90◦ or −90◦. Therefore, it is sufficient to check that P2 cannot be folded to Q2

using only +90◦ folds and only exterior faces.

If face 5 covers one of the 1 × 1 faces of Q2, faces 9 and 11 are forced to cover

faces 1 and 2, respectively, thus doubling two faces. If face 5 covers part of a 1× 2

face of Q2, then there are two subcases: If face 4 or face 6 covers the adjacent 1× 1

Fig. 6. The shape P2 needs interior faces to be folded into a 2× 1× 1 polycube.
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(a) (b) (c)

(d)

(e) (f) (g) (h)

Fig. 7. Examples for Theorem 1: polyominoes (a) P1, (b) P2, (c) P3, and (d) P4; and polycubes

(e) a unit cube Q1 = C, (f) a 2× 1× 1 polycube Q2, (g) a 3× 3× 2 polycube Q3 with a 1-cube

hole centered in a 3× 3 face, and (h) a 5-cube cross Q4.

face of Q2 then faces 7 and 8 are forced to cover faces 3 and 4, respectively, thus

doubling two faces. If face 4 or face 6 covers the other half of the 1 × 2 face of

Q2 then faces 9, 10 and 11 are forced to collectively cover faces 1, 3 and 4, thus

doubling at least two faces. Therefore, it is not possible to fold P into Q2 without

interior faces.

The following establishes the relationships between models presented in Fig. 3.

Theorem 1. The folding models consisting of combinations of the following folds

{+90◦, −90◦, +180◦, −180◦, any◦; interior faces; grid} have the mutual relations

presented in Fig. 3. In particular, these mutual relations hold for polyominoes with-

out holes.
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Proof. First note that all containments are obvious: for any two models Fx and

Fy corresponding to two nodes of the hierarchy given in Fig. 3 such that there is

an arrow from Fy to Fx, trivially Fx ≥ Fy. It remains to give examples to show

that either two models are incomparable or that one is strictly stronger than the

other, that is, to show that there exists a polyomino that folds into a given polycube

under one folding model, but not under the other. All cases can be shown using the

polyomino-polycube pairs shown in Fig. 7. They fold with: (a) +90◦, 180◦ folds,

(b) +90◦ and interior faces (see Lemma 1), (c) ±90◦ folds, (d) +90◦, 180◦ and

interior faces.

Example (a) establishes relations 2, 4, 7, 12, 15, 19, 20, 23.

Example (b) establishes relations 3, 6, 9, 10, 13, 16, 21, 22.

Example (c) establishes relations 1, 5, 8, 11, 14, 17, 18, 24.

Example (d) establishes relation 25.

Let F1 = {+90◦; grid}, F2 = {±90◦; grid}, F3 = {+90◦; interior faces; grid},
F4 = {+90◦, 180◦; grid}, F5 = {±90◦; interior faces; grid}, F6 = {±90◦, 180◦;

grid}, F7 = {+90◦, 180◦; interior faces; grid}, F8 = {±90◦, 180◦; interior faces;

grid}, and F9 = {any◦; interior faces; grid}.
First we will give a detailed proof for Relation 25. We will then present the

proofs for the other relations more briefly.

Relation 25: F9 = {any◦; interior faces; grid} is strictly stronger than F8 =

{±90◦, 180◦; interior faces; grid}. Any polyomino P that folds into polycubeQ in F8

also folds into Q in F9. To prove a strict relation, we must show that there exists

some polyomino P ′ that folds into some polycube Q′ in F9, but that does not fold

into Q′ in F8. Let Q′ consist of five cubes forming a cross as in Fig. 7(h) (Q′ = Q4),

and let P ′ be as in Fig. 7(d) (P ′ = P4). Assume that P ′ can be folded into Q′ in the

folding model F8. Polyomino P ′ consists of 24 unit squares, while Q′ has 22 square

faces on its surface. Therefore, 22 out of the 24 squares of P ′ will be the faces of Q′

when folded. Consider the 12× 1 subpolyomino of P ′. When folded, it has to form

the “walls” of the cross Q′, that is, the vertical faces of Q′, otherwise this strip can

form not more than eight faces of the cross (looping around one of the 3 × 1 × 1

subpolycubes). It is straightforward to see now, that in F8 the two yellow squares

prevent P ′ from folding into Q′. However, in F9 the two yellow squares can form

interior faces with a 60◦ interior fold. Therefore, F8 < F9.

Relation 1: We show that P3 folds into Q3 in F2, but does not fold into Q3 in F1.

|P3| = 46, and Q3 has 46 square faces on its surface. Hence, all squares of P3 are

faces of Q3. Consider the 3× 9 subpolyomino, P3×9, of P3. When folded with +90◦

only, there exist only two positions for this subpolyomino in Q3. In both positions

the center 3 × 3 piece covers Q3’s 3 × 3 face; the two positions differ only by a

rotation of 90◦. But then the two flaps of size one and two, respectively, adjacent to

P3×9 need to fold into the 1-cube hole, using 90◦ folds at the flap grid lines adjacent

to P3×9. But a 90◦ fold at the remaining grid line of the size two flap does not result
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in the outer square covering a separate face of Q3. This contradicts the assumption

that all squares of P3 are faces of Q3.

Relation 2: We show that P1 folds into Q1 in F4, but does not fold into Q1 in F1.

|P1| = 9, while Q1 has 6 square faces on its surface. Using +90◦ folds the two 1× 4

subpolyominoes of P1 fold to two rings of size four. Folding along both grid lines

adjacent to the connecting square with +90◦ those two rings overlap. This results

in an overlap of four faces, making it impossible to constitute a shape of 6 faces

with the 9-square shape P1. In F4 one grid line adjacent to the connecting square is

folded with 180◦, the other with +90◦. Folding all other grid lines with +90◦ results

in Q1.

Relation 3: We show that P2 folds into Q2 in F3, but does not fold into Q2 in F1.

|P2| = 11, while Q2 has 10 square faces on its surface. Hence, only one square of P2

can either overlap with another square or constitute an interior face of Q2. F1 does

not allow interior faces; hence, Lemma 1 shows that P2 does not fold into Q2 in F1.

Relation 4: We show that P1 folds into Q1 in F4 (see proof of Relation 2), but

does not fold into Q1 in F2. |P1| = 9, while Q1 has 6 square faces on its surface.

To cover Q1 at least one of the 1 × 4 subpolyominoes of P1 must be folded into

a ring of size four using either +90◦ folds only or −90◦ folds only; without loss of

generality we assume that the fold uses only +90◦ folds. If we fold the grid line of

the connecting square adjacent to this ring with −90◦, the connecting square does

not cover a face of Q1, thus we need to use a +90◦ fold. The same holds true for the

other grid line adjacent to the connecting square, and for the remaining grid lines.

Then the proof of Relation 2 shows that we cannot fold P1 into Q1 using +90◦ folds

only.

Relation 5: We show that P3 folds into Q3 in F2 (see proof of Relation 1), but

does not fold into Q3 in F4. |P3| = 46, and Q3 has 46 square faces on its surface.

Hence, all squares of P3 are faces of Q3. Again, there only exist two positions for

P3×9. The two flaps of size one and two adjacent to P3×9 again need to constitute

faces of the 1-cube hole. The flap grid lines adjacent to P3×9 need to be folded with

+90◦ folds, but then neither a +90◦ fold, nor a 180◦ fold at the remaining grid line

of the size two flap, result in the outer square covering a separate face of Q3.

Relation 6: We show that P2 folds into Q2 in F3 (see proof of Relation 3), but

does not fold into Q2 in F4. No interior faces are allowed in F4; hence, Lemma 1

shows that P2 does not fold into Q2 in F4.

Relation 7: We show that P1 folds into Q1 in F4 (see proof of Relation 2), but

does not fold into Q1 in F3. |P1| = 9, while Q1 has 6 square faces on its surface.

The proof of Relation 2 showed that using only +90◦ folds is insufficient to fold P1

into Q1. That is, we would have to use interior faces to fold P1 into Q1 in F3. As Q1

is a unit cube, we need two folds of +60◦, an infeasible grid fold in F3.



2nd Reading

November 13, 2018 16:14 110-IJCGA 1850004

206 O. Aichholzer et al.

Relation 8: We show that P3 folds into Q3 in F2 (see proof of Relation 1), but does

not fold into Q3 in F3. |P3| = 46, and Q3 has 46 square faces on its surface. Hence,

all squares of P3 are faces of Q3. In the proof of Relation 1 we showed that P3 does

not fold into Q3 in F1 = {+90◦; grid}. As F3 = {+90◦; interior faces; grid}, we

need to use interior faces to fold P3 into Q3. But any such interior face would be a

square of P3 that is not a face of Q3.

Relation 9: We show that P2 folds into Q2 in F3 (see proof of Relation 3), but

does not fold into Q2 in F2. No interior faces are allowed in F2; hence, Lemma 1

shows that P2 does not fold into Q2 in F2.

Relation 10: We show that P2 folds into Q2 in F5, but does not fold into Q2 in F2

(see proof of Relation 9). In the proof of Relation 3 we showed that P2 folds into Q2

in F3. As F3 = {+90◦; interior faces; grid} ⊂ F5 = {±90◦; interior faces; grid},
this holds true for F5.

Relation 11: We show that P3 folds into Q3 in F5, but does not fold into Q3 in F3

(see proof of Relation 8). In the proof of Relation 5 we showed that P3 folds into Q3

in F2. As F2 = {±90◦; grid} ⊂ F5 = {±90◦; interior faces; grid}, this holds true

for F5.

Relation 12: We show that P1 folds into Q1 in F7, but does not fold into Q1 in F3

(see proof of Relation 7). In the proof of Relation 7 we showed that P1 folds into Q1

in F4. As F4 = {+90◦, 180◦; grid} ⊂ F7 = {+90◦, 180◦; interior faces; grid}, this

holds true for F7.

Relation 13: We show that P2 folds into Q2 in F7, but does not fold into

Q2 in F4 (see proof of Relation 6). In the proof of Relation 6 we showed

that P2 folds into Q2 in F3. As F3 = {+90◦; interior faces; grid} ⊂ F7 =

{+90◦, 180◦; interior faces; grid}, this holds true for F7.

Relation 14: We show that P3 folds into Q3 in F6, but does not fold into Q3 in F4

(see proof of Relation 5). In the proof of Relation 5 we showed that P3 folds into Q3

in F2. As F2 = {±90◦; grid} ⊂ F6 = {±90◦, 180◦; grid}, this holds true for F6.

Relation 15: We show that P1 folds into Q1 in F6, but does not fold into Q1

in F1 (see proof of Relation 4). In the proof of Relation 2 we showed that P1 folds

into Q1 in F4. As F4 = {+90◦, 180◦; grid} ⊂ F6 = {±90◦, 180◦; grid}, this holds

true for F6.

Relation 16: We show that P2 folds into Q2 in F7, but does not fold into Q2 in

F6. No interior faces are allowed in F6; hence, Lemma 1 shows that P2 does not

fold into Q2 in F6. In the proof of Relation 9 we showed that P2 folds into Q2 in

F3. As F3 = {+90◦; interior faces; grid} ⊂ F7 = {+90◦, 180◦; interior faces; grid},
this holds true for F7.

Relation 17: We show that P3 folds into Q3 in F6, but does not fold into Q3 in F7.

|P3| = 46, and Q3 has 46 square faces on its surface. Hence, all squares of P3 are
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faces of Q3. In the proof of Relation 8 we showed that P3 does not fold into Q3

in F3 = {grid: + 90◦; interior faces}. As F7 = {grid: + 90◦, 180◦; interior faces},
we need to use 180◦ folds to fold P3 into Q3. But any such fold would cover a face

of Q3 twice, a contradiction to all squares of P3 being faces of Q3. In the proof of

Relation 8 we showed that P3 folds into Q3 in F2. As F2 = {±90◦; grid} ⊂ F6 =

{±90◦, 180◦; grid}, this holds true for F6.

Relation 18: We show that P3 folds into Q3 in F5, but does not fold into Q3 in F7

(see proof of Relation 17). In the proof of Relation 8 we showed that P3 folds into

Q3 in F2. As F2 = {±90◦; grid} ⊂ F5 = {±90◦; interior faces; grid}, this holds

true for F5.

Relation 19: We show that P1 folds into Q1 in F7 (see proof of Relation 12), but

does not fold into Q1 in F5. In the proof of Relation 8 we showed that P1 does not

fold into Q1 in F2 = {±90◦; grid}. As F5 = {±90◦; interior faces; grid} we need to

use interior faces. As Q1 is a unit cube, we need two folds of +60◦, an infeasible

grid fold in F5.

Relation 20: P1 folds into Q1 in F6 (see proof of Relation 15), but does not fold

into Q1 in F5 (see proof of Relation 19).

Relation 21: P2 folds into Q2 in F5 (see proof of Relation 10), but does not fold

into Q2 in F6 (see proof of Relation 16).

Relation 22: We show that P2 folds into Q2 in F8, but does not fold into

Q2 in F6 (see proof of Relation 16). In the proof of Relation 3 we showed

that P2 folds into Q2 in F3. As F3 = {+90◦; interior faces; grid} ⊂ F8 =

{±90◦, 180◦; interior faces; grid}, this holds true for F8.

Relation 23: We show that P1 folds into Q1 in F8, but does not fold into

Q1 in F5 (see proof of Relation 19). In the proof of Relation 2 we showed

that P1 does not fold into Q1 in F4. As F4 = {+90◦, 180◦; grid} ⊂ F8 =

{±90◦, 180◦; interior faces; grid}, this holds true for F8.

Relation 24: We show that P3 folds into Q3 in F8, but does not fold into Q3 in

F7 (see proof of Relation 17). In the proof of Relation 1 we showed that P3 folds

into Q3 in F2. As F2 = {±90◦; grid} ⊂ F8 = {±90◦, 180◦; interior faces; grid}, this

holds true for F8.

All but one of the polyominoes used in the proof of Theorem 1 (Figs. 7(a)–7(d))

are tree shapes, that is, polyominoes whose dual graph of unit squares is a tree. We

conjecture the following:

Conjecture 1. The hierarchy in Theorem 1 also holds for tree shapes.

Proposition 1. There exist tree shapes P that need both mountain and valley folds

to cover a unit cube C.
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(a) (b)

Fig. 8. (a) Shape P that needs both mountain and valley folds to cover a unit cube C. (b) The

mountain and valley folds are shown in red and blue, respectively (color online).

Proof. The shape P shown in Fig. 8(a) does not fold into a unit cube C with only

valley folds: the four unit squares in the left column (gray) fold to a ring of size

four, and the two flaps can only cover one of the two remaining cube faces. But

with both mountain and valley folds, P can be folded into C, by using a 180◦ fold

between the first column and the longer flap, see Fig. 8(b).

We used example (d) in Theorem 1 to show that some polyominoes require the

use of interior faces in order to fold to a given polycube. The following theorem

shows that Q2, with size 2, is a minimal example of a polycube such that folding it

with a tree shape may require interior faces.

Theorem 2. Let F = {any◦; interior faces; grid}. Any tree shape P that folds into

a unit cube with interior faces also folds into a unit cube without interior faces.

Proof. We use induction on the size of P . Therefore, consider a P that folds into

a unit cube with interior faces such that any smaller tree that folds into a unit cube

with interior faces also folds into a unit cube without interior faces. If P folds into

a unit cube with interior faces in multiple ways, fix one of them with as few interior

faces as possible; if the number of interior faces is 0, then the induction is complete.

In the rest of this proof, “the folding of P” refers to that folding.

The proof progresses as follows: first, we argue that we can fold away extraneous

branches of the folded tree shape P interior to the cube, leaving only topologically

necessary interior faces. Then, we show that the interior faces must be connected

to form long “interior paths”. Finally, by restricting the ways these interior paths

can turn and connect to the cube faces, we show by case analysis that the interior

faces can be refolded to lie on the cube faces.

Claim 1. No interior face of the folding of P is a leaf of the dual of P .

If the folding of P has some interior face T that is a leaf of the tree, then the

restriction of the folding of P to P\T also folds into a cube (possibly with interior

faces), so it folds into a cube without interior faces. But if we fold T onto its parent in

the tree and identify the two faces, we get exactly the restriction of the folding of P

to P\T , so we can use that folding to fold all of P into a cube without interior faces.
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Since no interior face is a leaf, every interior face is part of some path joining

two cube faces in the folding of P . Call such a path (including the two cube faces at

its ends) an “interior path”. When convenient, we may refer to the unfolded state

of such a path by the sequence of directions from each square to the next, using

N(orth) for positive y, S(outh) for negative y, W(est) for negative x, and E(ast) for

positive x; for instance, the path of the three squares at the grid positions (0, 0),

(0, 1), and (1, 1) could be written NE or WS.

Claim 2. Every interior path has length at least 4.

Any single square which joins to two cube edges is one of the cube faces. So

there are at least two interior faces in any such path, plus one face at each end, for

a total of at least 4.

Claim 3. Some interior path has at least one turn in the unfolded state.

Suppose to the contrary that every interior path has no turns in the unfolded

state; that is, that all such paths are 1× k rectangles in the unfolded state. We will

eliminate such paths one by one. After eliminating each path, we will have a folding

of P into a cube with possibly-intersecting interior faces, but after all interior paths

are eliminated, there can be no more interior faces that could intersect, and we will

have a proper folding of P (defined by fold angles at the edges) into a cube without

interior faces. This folding can always be done without interference between cube

face squares. The interior path splits the polyomino into two pieces, each of which

can be folded independently of each other just as they were in the original folding.

So we are left with two partial cubes, connected by the interior path. If we invert

every mountain and valley fold in the folding of one of them, we get a folding with

inverted orientation (that is, with the innermost layer outermost and vice versa).

Then we can nest the folding of one part inside the folding of the other part.

If we have an extended interior path that is a rectangle consisting of squares

T0, T1, T2, T3, . . . , Tk (where T0 and Tk are cube faces), note that all the edges

between squares on the path are parallel, and the edge between T0 and T1 is a cube

edge, so all of them are parallel to the same cube edge. Without loss of generality,

let that cube edge be vertical. We will leave every square in the component of P\T1
containing T0 in place, unfold the path so that it goes around the faces of the cube

other than the top and bottom (and, since it has at least 4 faces by Claim 2, it

covers all four such faces), and rotate the rest of the unfolding of P around the

vertical axis of the cube so that it still connects to Tk. The top and bottom faces

are still covered because they were covered in the folding of P , and every existing

cube face has either been left in place or rotated around the vertical axis of the

cube, both of which take the top face to the top face and the bottom face to the

bottom face.

After eliminating all such paths that way, we get a folding of P into a cube with

no interior faces, as desired.
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Claim 4. In every interior path, there is at least one interior square between each

cube face to which the path connects and the first square at which the path turns.

Suppose there is an interior path that turns at its first interior square T1. Let

the orientation of the cube edge to which T1 connects be x, let the orientation of

the edge on which T1 connects to the next square T2 of the path be y, and let the

orientation of the other edge of T2 be z. T2 has one vertex at a vertex v of the cube,

since it shares an edge of T1 adjacent (as an edge of T1) to the edge on which T1
connects to a cube face. Without loss of generality let the cube be axis-aligned and

let v be the vertex with the least value in every coordinate. Then any edge inside

the cube with an endpoint at v goes in a nonnegative direction in every coordinate.

In particular, y and z are two such directions, and they are perpendicular, so their

dot product is 0, so in every coordinate at least one of them is 0. Since there are

only three coordinates, one of them is nonzero in at most one coordinate, that is,

one of y and z is the orientation of a cube edge. If y is the orientation of a cube edge,

then T1 has sides of orientations x and y and is therefore a cube face, contradicting

the definition of T1. If z is the orientation of a cube edge and isn’t x, then y is

perpendicular to two cube edge orientations x and z and is therefore a cube edge

orientation. Finally, if z = x, then T1 and T2 are in the same place in the folding,

so if in the unfolded state we first fold T1 onto T2, we get a tree which folds into a

cube with interior faces and which therefore by induction folds into a cube without

interior faces.

Claim 5. If a square of an interior path is parallel to one of the cube faces, then

there are at least two interior squares between it and any cube face to which the path

connects.

Let T be an interior square parallel to a cube face, and suppose that exactly

one interior face connects an edge e of it to a cube edge e′. Then e′ would either

be a vertical translation of e by a distance strictly between 0 and 1 or a horizontal

translation of such by exactly 1, and in both cases the distance from e to e′ is not

exactly 1.

Claim 6. No interior path with exactly one turn connects to cube faces at edges of

the same orientation.

Suppose to the contrary there is an interior path with exactly one turn that

connects to edges of the same orientation. Let T be the square at which that path

turns. T divides the path into two 1× k rectangles whose intersection is T . In each

such rectangle, the two edges of length 1 are parallel, since in each square of the

rectangle, the two opposite edges are parallel. Since T connects to edges of the same

orientation, all four edges of length 1 in those rectangles are parallel; in particular,

two consecutive edges of T are parallel. But they are consecutive edges of the square,

so they are perpendicular, a contradiction.
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Claim 7. No interior path with exactly one turn connects to cube faces at edges of

different orientations.

Suppose to the contrary that such a path exists. Let T be the square at which

the path turns. Consider the orientations of the internal (folded) edges of that path:

the first one is parallel to one cube edge, and every folded edge before the turn is

parallel to it, and the last one is parallel to a differently oriented cube edge, and

every folded edge after the turn is parallel to it, so the two folded edges at the turn

are each parallel to one of the cube edges, so T is parallel to a cube face, without

loss of generality the top one. Since T is contained in the cube, it is a vertical

translation of the top face.

There are at least two interior faces between T and each end of the path R by

Claim 5. Then the interior path and the two cube faces to which it connects form

an L shape with side length 4 squares. In this case we could fold away every other

square of P (starting with the leaves) and ignore them; an L of side length 4 already

folds into a cube.

Claim 8. No interior path with exactly two turns connects to cube faces at edges

of different orientations.

Suppose to the contrary that there is an interior path with exactly two turns

that connects to edges of different orientations x and z, and let the orientations

of the folded edges in the path be x, y, and z. Then y is perpendicular to both x

and z (since the first turn square Ti has edges oriented x and y and the other Tj
has edges oriented y and z), so y is also an orientation of a cube edge. Then Ti is

interior to the cube and parallel to the xy cube faces and Tj is interior to the cube

and parallel to the yz cube faces, so they intersect, contradiction.

Claim 9. No interior path with exactly three turns connects to cube faces at edges

of the same orientation.

Suppose to the contrary that such a path exists. Let the orientations of the

folded edges be x, y, z, and x again. Then x and y are perpendicular, y and z are

perpendicular, and z and x are perpendicular, so the square with edges oriented y

and z is perpendicular to one cube edge (and hence parallel to a cube face) and

contained inside the cube, so it is a translation of a cube face, that is, y and z are

the other two orientations of cube edges. Then the square at which the path first

turns has edges x and y, so it is a translation of the xy cube face, and the square at

which the path turns second has edges y and z, so it is a translation of the yz cube

face. Both of those squares are inside the cube, so they intersect, a contradiction.

Claim 10. No interior path with exactly three turns connects to cube faces of dif-

ferent orientations.

Suppose to the contrary that such a path exists. Let the orientations of the

folded edges be x, y, z, and w. Then x and y are perpendicular, y and z are
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perpendicular, z and w are perpendicular, and w and x are perpendicular (since

they are two distinct cube edge orientations), so each of x and z is perpendicular to

each of y and w. But we’re working in 3 dimensions, so the span of x and z and the

span of y and w cannot both be two-dimensional, that is, either x = z or y = w.

Without loss of generality y = w, and the orientations of the folded edges of the

path are x, y, z, and y. By Claim 5, there are at least 4 squares in a line up to the

square spanned by x and y, and by Claim 4, there are at least three squares in a

line starting from the last square spanned by z and y. That is, the unfolded state

contains, after folding away any extra squares in those lines, either NNNENWW or

NNNENEE or NNNESEE or NNNESWW, up to rotation and reflection. One fold

takes the middle two to NNNEEE, which folds into a cube; one fold takes the other

two to a line of four with one square on either side, which folds into a cube.

Claim 11. No interior path has an even number of turns that is greater than or

equal to 4.

Suppose to the contrary that such a path exists. By Claim 4, there are at least

three squares in a line up to and including the first square at which there is a turn

and three squares in a line from the last square at which there is a turn. Also, there

are at least two squares on the path between those two lines of length 3, since there

are at least two more squares at which the path turns. Let the lines of length 3

be oriented east-west in the unfolded state. If they are separated by at least two

spaces north-south, then we can fold over any north-south folds (between squares

adjacent east or west) to get a north-south line of length 4 with two lines extending

by two to the east or west; by folding one of those over if necessary, we get a line of

length 4 with a square on either side, which folds into a cube. If there are two lines

of length 3 that cover at least 5 spaces east-west, then by folding east-west folds in

the middle we get EENEE, which folds into a cube. Otherwise, we have two lines of

length 3 separated by at most one space north-south and covering at most 4 spaces

east-west. By folding any east-west folds north of the north line or south of the

south line, we get, up to rotation or reflection, either EESWSEE or EESWSWW

or EESWWSEE(E). The first two fold into WSWSW, which folds into a cube; the

last folds into WSWWS, which folds into a cube.

Claim 12. No interior path has an odd number of turns that is greater than or

equal to 5.

Suppose to the contrary that such a path exists. First, if there are any squares

in the interior of the path at which turns don’t occur, fold them over. Without loss

of generality, let the interior path start at (0, 0) and go EES to (1, 0), (2, 0), (2,−1).

If the path ever extends two spaces farther E in the unfolded state, folding over all

north-south folds past that EES that gives at least EESEE, which folds into a cube.

If the path ever again extends farther W than it started in the unfolded state, then

folding over all north-south folds past that EES gives at least EESWWW, which

folds into EESEE, which folds into a cube. So, if the unfolded state ever extends
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farther N than 1, it does so via the spaces (3,−1) and (3, 0). Also, if the unfolded

state extends as far N as 2, then all three spaces (3,−1), (3, 0), (3, 1) are used and in

a straight line, so by folding all east-west folds after (3,−1) and all north-south folds

before it, we get EEENNN, which folds into a cube. If the unfolded state extends

farther N than 0, then, since the unfolded state ends with a N-S line of three squares

(since there are an odd number of turns), can’t go back below N = 0 once it is gone

above it, and doesn’t have room for a N-S line of length three ending anywhere but

(3, 1), the unfolded state ends at (3, 1). Since the path has length at least 9, (2,−1)

doesn’t connect directly to (3,−1), so all four spaces (3,−2), (3,−1), (3, 0), and

(3, 1) are used and in a straight line, and by folding all east-west folds after (3,−1)

and all north-south folds before it, we get EEENNN, which folds into a cube. If the

path extends both as far E as 3 and as far S as −3, then by folding anyway anything

W of 2 by north-south folds, we get (E)ESSSE, which folds into a cube. If the path

extends as far E as 3, then it fits in a 3× 4 bounding box and has at least 5 turns,

and the only two remaining paths are EESWWSEEENN and EESWSEENN. The

first can be folded into the second, which can be folded into EESSENN, which can

be folded into EESSES, which can be folded into ESSES, which folds into a cube.

In the only case left, the unfolded state is only three squares wide east-west. If any

of the other cases apply starting from the other end of the path, we also fold into

a cube; otherwise, the unfolded state fits in a 3× 3 square, but it is at least 9 long

and starts and ends with perpendicular paths of length 3, which don’t fit in a 3× 3

square, contradiction. Hence any such path can be folded into a cube.

Claim 13. No interior path with exactly two turns connects to cube faces at edges

of the same orientation.

If there is such a path R, say it connects to cube faces at edges of the same

orientation x. Let the orientations of the folded edges be x, y, and x, let Ti and Tj
be the squares at which the turns occur (whose edges are oriented x and y), and

let T0 and Tk be the cube faces at the ends of the paths. Then 2 ≤ i < j ≤ k − 2

by Claim 4. Without loss of generality, let the first turn in the unfolded state be a

right turn.

If the second turn is a left turn, then fold away everything but the path, and

fold away the portion of the path between Ti and Tj to get a path of length 6 that

goes NNENN, which folds into a cube.

If both turns are right turns and either i > 3 or j ≤ k − 3, then we can fold

away the portion of the path between Ti and Tj and fold the other edge adjacent

to either Ti or Tj to get a path of length 6 that goes NNENN, which folds into a

cube.

If both turns are right turns and j− i ≥ 3, then by folding everything else away

and folding the edge between Ti and Ti − 1 we get a path that goes SEEES, which

folds into a cube.

If both turns are right turns, j − i = 1, and either end of the path (without loss

of generality the Tk end of the path) connects to more than one square (besides T0
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or Tk), then the path contains either N, N, E, S*, S, S or N, N*, E, S, S, E, and

making 180◦ folds over the starred edges gives a shape that folds into a cube.

If both turns are right turns, j − i = 1, and neither end of the path connects

to more than one square in the folded state, then there are more squares in the

unfolded state than the six squares of the path T0 = (0, 0), T1 = (0, 1), T2 = (0, 2),

T3 = (1, 2), T4 = (1, 1), T5 = (1, 0), because those only cover 2 cube faces. By the

previous paragraph, the rest of the unfolding doesn’t connect at T0 or T5, and by

Claim 4, nothing connects at T1 or T4. Suppose some path R leading to another

cube face connects to (0, 2). If the next square on R is (0, 3), then the path T5,

T4, T3, T2, R is an interior path with at least two turns and its first two turns in

different directions, but we’ve already eliminated all such cases. Otherwise, the next

square of R is (−1, 2). If the following square is (−1, 3), then the path T5, T4, T3,

T2, R is an interior path with at least two turns and its first two turns in different

directions, but we’ve already eliminated all such cases. If the following square is

(−2,−2), then the path T5, T4, T3, T2, R is an interior path with at least one turn

and at least three spaces in a line after its first turn, but we’ve already eliminated

all such cases. So the following square is (−1, 1). That accounts for both turns on

the path, so the next square is (−1, 0). If that is not a cube face, then the path T5,

T4, T3, T2, R has two right turns and either i > 3 or j ≤ k−3, an already-eliminated

case. Similarly, if there is more than one cube face there, then the path T0, T1, T2,

R is a path with two right turns, j − i = 1, and an end of the path connecting to

more than one square, an excluded case. So we’ve only accounted for three cube

faces and need at least three more, but there is nowhere left that a path to a cube

face can attach, contradiction.

If both turns are right turns, j−i = 2, and both ends of the path connect to more

than one square (besides T0 or Tk): in the unfolded state, T0 and Tk have exactly

one square between them, and that square isn’t the extra square for both ends of

the path because the unfolded state is a tree, so some end of the path (without loss

of generality the Tk end of the path) connects to a different other square, that is,

the path contains either N, N, E, E*, S*, S, S or N, N*, E*, E, S, S, E, and making

180◦ folds over the starred edges gives a shape that folds into a cube.

If both turns are right turns, j− i = 2, and one end of the path (without loss of

generality the Tk end) connects to no cube faces except its end (Tk) in the folded

state, then nothing else connects to the interior of the path, because we’ve already

eliminated all cases for interior paths except this one and straight interior paths,

but there is nowhere we can connect an interior path to this one without creating at

least one non-straight interior path. We will refold the squares of the interior path

to leave T0 fixed and nevertheless cover the cube face that Tk covered; this doesn’t

affect any other cube faces. In fact, starting from T0, a path N, N, E, E, S, S along

the cube covers four of its faces, and folding the first E and the first S 180◦ to get a

path N, N, W, N covers the remaining two. So we can cover the whole cube without

that interior path, as desired.
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4. Polyominoes that Fold into a Cube

In this section we characterize all polyominoes that can be folded into a unit cube

and all tree-shaped polyominoes that are a subset of a 2 × n or 3 × n strip and

can be folded into a unit cube using arbitrary grid folds. In Sec. 4.1, we present

exhaustive results for all polyominoes of constant size obtained by computer search.

Theorem 3. Consider a polyomino P of size |S| = n and a unit cube C under a

folding model F = {any◦; grid; diagonal; half-grid}, such that each face of C has to

be covered by a full unit square of P . Then there is a polyomino of size n = 9 that

cannot be folded into C, while all polyominoes with n ≥ 10 can be folded.

Proof. For the lower bound see Fig. 5. The polyomino in Fig. 5(a) cannot be folded

into a unit cube under our model. Note that if we allow half-grid folds without

requiring faces of C to be covered by full unit squares of P , we can turn this shape

P into a unit cube; see Fig. 5(b).

For the upper bound n ≥ 10, we start by identifying several target polyominoes,

examples of which are shown in Figs. 9(a)–9(c). Each target polyomino can be

folded into a cube using only grid folds. We denote them by listing the numbers

of squares in each column, using + or − to signify the cases where the columns

may be attached in arbitrary arrangements or a specific arrangement is required,

respectively. The target polyominoes are:

(a) A 1+4+1 polyomino, composed of one contiguous column of four unit squares,

with one more unit square on either side, at an arbitrary height.

x
x x

(a) (b) (c) (d) Connectivity transformation

(e) Number transformation (f) Corner transformation (g) Width/height transformation

Fig. 9. Proof details for Theorem 3. The mountain and valley folds are shown in red and blue,
respectively. Unit squares marked with “x” can be located at an arbitrary height and light gray

squares fold away. For the two adjacent corner transformations in the left of (f), fold away the
upper shaded corner before folding away the lower one (color online).
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(b) A 2−2−2 polyomino, composed of three (vertical) pairs attached in the specific

manner shown.

(c) A 2− 3 + 1 polyomino, composed of a (vertical) pair and triple attached in the

specific manner shown, with one more unit square at an arbitrary height.

We next describe some transformations that can be used to convert any poly-

omino of sufficient size to one of the target polyominoes. See Figs. 9(d)–9(g) for

examples of the following. If ni is the maximum number of unit squares in any

column (say, in i), we can apply a connectivity transformation (d) by using (hor-

izontal) half-grid folds to convert P into a polyomino P ′ in which these ni unit

squares form a contiguous set, while leaving at least one unit square in each previ-

ously occupied column. A number transformation (e) lets us fold away extra unit

squares for n > 10. Corner transformations (f) fold away unnecessary unit squares

(or half-squares) in target shapes by using diagonal folds when turning them into a

unit cube. Finally, width and height transformations (g) fold over whole columns or

rows of P onto each other, producing a connected polyomino with a smaller total

number of columns or rows.

We consider a bounding box of P of size X × Y , with X ≤ Y . The unit squares

are arranged in columns and rows, indexed 1, . . . , X and 1, . . . , Y , with ni unit

squares P in column i, and mj unit squares in row j.

Now consider a case distinction over X; see Figs. 10(h)–11(s). For X = 1,

the claim is obvious, as we can reduce P to a 1 + 4 + 1 target; see, for example,

Fig. 10(h). For X = 2, note that Y ≥ 5 and assume that n1 ≥ n2. If n1 ≥ 8,

(h) (i)

(j) (k)

Fig. 10. Proof details for Theorem 3. The mountain and valley folds are shown in red and blue,

respectively. Regions shaded in light gray are folded away (color online).
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(l) (m) (n)

(o) (p) (q)

(r) (s)

Fig. 11. Proof details for Theorem 3. The mountain and valley folds are shown in red and blue,

respectively. Regions shaded in light gray are folded away and the hatched region denote holes
(color online).

a width transformation yields the case X = 1, so assume n1 ≤ 7, and therefore

n2 ≥ 3. By a number transformation, we can assume n2 ≤ 5. If P is a 2 × 5

polyomino, we can make use of a 1 + 4 + 1 polyomino with corner transformations;

see Fig. 10(i). If n1 > n2, we have n1 ≥ 6. Because P is connected, any two units

squares in column 1 must be connected via column 2, requiring at least three unit

squares; because n2 ≤ 4, we conclude that column 1 contains at most two connected

components of unit squares. Thus, at most one connectivity transformation makes

column 1 connected, with n′2 ∈ {n2 − 1, n2} unit squares in column 2. Possibly

using height transformation, we get a connected polyomino P ′′ with vertical size

six, six unit squares in column 1, and n′′2 ∈ {1, 2, 3, 4} unit squares in column 2.

For n′′2 ∈ {1, 2, 3}, there is a transformation to target shape 1 + 4 + 1 even if the

squares in column 2 form a single connected component; for example see Fig. 10(j).

For n′′2 = 4, a similar transformation exists; see, for example, Fig. 10(k). This leaves

n1 = 5, and thus n2 = 5, without P being a 2×5 polyomino. This maps to a 1+4+1

target shape, as shown for example in Fig. 11(l) by folding a unit square from
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column 2 that extends beyond the vertical range of the unit squares in column 1

over to column 0.

For X = 3 and n2 ≥ 4, we can use connectivity, height and width transforma-

tions to obtain a new polyomino P ′ that has height four, a connected set of n′2 = 4

unit squares in column 2 and 1 ≤ n′1 ≤ 4, as well as 1 ≤ n′3 ≤ 4 unit squares in

columns 1 and 3. Note that at least one square must remain in each of column 1

and column 3 throughout these transformations. This easily converts to a 1 + 4 + 1

shape, possibly with corner transformations; as in Fig. 11(m) for example. There-

fore, assume n2 ≤ 3 and (without loss of generality) n1 ≥ n3, implying n1 ≥ 4. If

n1 ≥ 5 and column 2 is connected, then P contains a 2 − 3 + 1 target shape, see

Fig. 11(n) for an example; if column 2 is disconnected, we can use a vertical fold to

flip one unit square from column 3 to column 0, obtaining a 1 + 4 + 1 target shape,

similar to Fig. 11(o). If n1 = 4, n2 = 1, and n3 = 5 then a diagonal fold of the

square in column 2, along with a corner transformation maps to a 1 + 4 + 1 target

shape. As a consequence, we are left with n1 = 4, 2 ≤ n2 ≤ 3, 3 ≤ n3 ≤ 4, where

n2 + n3 = 6. If n2 = 2, the unit squares in columns 1 and 3 must be connected.

For this it is straightforward to check that we can convert P into a 2− 2− 2 target

polyomino; see Fig. 11(p) for example. Therefore, consider n2 = 3, n3 = 3. This

implies that column 1 contains at most two connected sets of unit squares. If there

are two, then the unit squares in column 2 must be connected, implying that we

can convert P into a 2 − 3 + 1 target shape; as in Fig. 11(q) for example. Thus,

the four unit squares in column 1 must be connected. If the three unit squares in

column 2 are connected, we get a 2−3 + 1 target shape; see for example Fig. 11(q).

If the unit squares in column 2 are disconnected, but connected by the three unit

squares in column 3, we convert this to a 2 − 3 + 1 target shape; see Fig. 11(r).

This leaves the scenario in which there is a single unit square in column 1 whose

removal disconnects the shape; for this we can flip one unit square from column 3 to

column 0 in order to create a 1 + 4 + 1 target shape; see Fig. 11(s) for an example.

For X ≥ 4, we proceed along similar lines. If there is a row or column that

contains four unit squares, we can create a 1 + 4 + 1; otherwise, a row or column

with three unit squares allows generating a 2 − 3 + 1. If there is no such row or

column, we immediately get a 2− 2− 2.

In order to classify which tree shapes P fold to a unit cube, we define two

infinite families of polyominoes. First, the family given by a 1 × n strip, with any

number of added tabs consisting of squares adjacent to the same side of the strip

and potentially including their left and/or right neighbors (see Fig. 14). The second

family consists of a 1 × n strip with a single tab of height 2, also potentially with

their left and/or right neighbors (Fig. 15).

Theorem 4. Given a tree shape P, a unit cube C and F = {any◦; grid}.

(a) If P is a subset of a 2×n strip, then only the infinite family defined by Fig. 14

cannot fold into C.
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Fig. 12. A vertical edge in a subset of a 2× n strip with possible adjacent vertices for subtrees.

(b) If P is a subset of a 3×n strip, then only the infinite family defined by Fig. 15

cannot fold into C.

Proof. For the subset of a 2×n strip consider one vertical edge, as shown in Fig. 12,

and the possible subtrees attached at α, β, γ and δ. One such vertical edge has to

exist, otherwise the strip is a 1×n strip and never folds to a cube. We consider the

length of subtrees attached at α, β, γ and δ when folded to the same row as this

“docking” unit square to the vertical edge. With slight abuse of notation we refer

to these lengths by α, β, γ and δ again.

The first observation is that, if (α ≥ 2 and β ≥ 2) or (γ ≥ 2 and δ ≥ 2), then

P folds to a cube. In this case we can fold all other squares away to end up with the

shape in Fig. 13(a). Not included in this categorization are the four shapes shown

in Figs. 13(b)–13(e). Of those only (d) folds into a cube.

Thus, if we characterize more precisely which cases yield the shapes from

Figs. 13(a) and 13(d), we obtain a cube for:

{(α ≥ 2 or δ ≥ 3) and (β ≥ 2 or γ ≥ 3)} or

{(α ≥ 3 or δ ≥ 2) and (β ≥ 3 or γ ≥ 2)} or

{(α ≥ 2 and γ ≥ 3) or (α ≥ 3 and γ ≥ 2)} or

{(β ≥ 2 and δ ≥ 3) or (β ≥ 3 and δ ≥ 2)} or

{(α ≥ 1 and γ ≥ 1 and β ≥ 2 and δ ≥ 2)} or

{(α ≥ 2 and γ ≥ 2 and β ≥ 1 and δ ≥ 1)}.

Figure 14 shows an example of a 2×n polyomino that does not satisfy the above

conditions and thus does not fold to a unit cube.

(a) (b) (c) (d) (e)

Fig. 13. In F = {any◦; grid} only the shapes in (a) and (d) folds into a unit cube C, the shapes

in (b), (c) and (e) do not fold into C.

Fig. 14. An example polyomino from an infinite family that cannot fold into a unit cube.
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Fig. 15. Infinite family that cannot fold into a unit cube, with at least a height 2 red subset

(others are optional) (color online).

For the subset of a 3×n strip, we denote the rows of the height 3 strip by row 1,

row 2 and row 3. In case we have more than three unit squares in two different

rows, we can fold over squares to obtain the shape from Fig. 13(a), which folds

into a unit cube. Otherwise, only one row spans the length of the strip. If there are

vertical edges adjacent to a 1 × n strip to two different sides (above and below),

that is, the 1 × n strip is located in row 2, this folds to a cube. Consequently, if

we have height three and cannot fold the shape into a unit cube, a long 1× n strip

cannot be located in the center row, row 2, of the shape. Without loss of generality,

let the 1 × n strip be located in the lowest row, row 1. As we have height three,

there is at least a height two part which is a subset of the red part in Fig. 15

connected to the strip. That is, there are unit squares in row 2 and row 3, occupying

a connected subset of the red part in Fig. 15. Let these unit squares be denoted

by Pred. If there exists another vertical edge of length at least one, P1 that is only

adjacent to the 1 × n strip (but not directly to Pred) we can fold over Pred and

obtain a case from above which can easily be folded to a unit cube. Consequently,

only a single vertical subset of length two can be attached, as shown in red in

Fig. 15.

4.1. Enumeration of cube-foldable polyominoes

In this section, we present results on folding polyominoes of constant size into a cube.

We consider polyominoes of up to 14 unit squares. Our results have been obtained

by exhaustive computer search. The second column of Table 1 shows the number

of different free polynominoes with a given number of squares. Here, “free” means

that elements which can be transformed into each other by translation, rotation

and/or reflection are counted only once. For polyominoes whose dual (c.f. Sec. 2) is

not a tree, that is, their connecting graph contains cycles, we considered all possible

dual trees. Thus, we first generated all such dual trees for polyominoes of size up

to 14. The third column of Table 1 shows their number, compared to the number

of different free polyominoes. While the number of different free polyominoes is

currently known for shapes of size up to 28 (http://oeis.org/A000105), the num-

ber of different dual trees was known only for up to 10 elements (http://oeis.org/

A056841).

We checked for each of the generated dual trees of a polyomino (of size six

or more) whether it can be folded into a unit cube. We did this in three dif-

ferent steps. In the first step, we only allowed ±90◦ folds. Column 4 of Table 1

shows how many (dual trees of) polyominoes can be folded to a cube with this
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Table 1. Different ways of folding small polyominoes into a cube.

n Free polyominoes Dual trees Foldable Not

with ±90◦ and ±180◦ and diagonal

2 1 1
3 2 2

4 5 5
5 12 15

6 35 54 11 0 0 43

7 108 212 90 24 39 59
8 369 908 571 175 126 36

9 1285 4011 3071 697 233 10

10 4655 18260 15645 2230 385 0
11 17073 84320 77029 6673 618 0

12 63600 394462 374066 19337 1059 0

13 238591 1860872 1803568 55477 1827 0
14 901971 8843896 8682390 158208 3298 0

restriction. It is interesting to observe that while for n = 6 only 11 polyominoes

can be folded to a cube, for n = 14 over 98% of all shapes can be folded to a

cube.

In the second step we tried ±90◦ and ±180◦ folds for the remaining dual trees.

Table 1 gives in column 5 how many additional cube foldings can be obtained this

way. For the dual trees for which this step found a folding, we never needed to

use more than two ±180◦ folds. For n = 11 and n = 12 there are each only one

example which needs two ±180◦ folds, and we found no such examples for n ≥ 13:

for those values of n all foldable examples could be folded with just one ±180◦

fold.

In the last step we allowed also diagonal folds for the remaining dual trees.

Column 6 of Table 1 shows how many additional dual trees can be folded in this case,

and the last column gives the number of remaining (non-foldable) dual trees. The

most interesting result here is that for n ≥ 10 all polyominoes, regardless of which

dual tree we select for them, can be folded in this way. This is similar to Theorem 3,

except that here we do not allow half-grid folds, but instead allow covering a cube

face with triangles from diagonal folds. Moreover, all such foldings need at most

one diagonal fold, with the exception of the 7× 1 strip, the only example we found

that needs two diagonal folds.

Figures 16 and 17 show all polyominoes of size n ≥ 6 for which dual trees exist

(for n = 6 for any existing dual tree), such that they cannot be folded to the unit

cube using 90◦, 180◦, and diagonal folds. There are 24 such polyominoes with a

total of 43 different dual trees for n = 6, 12 polyominoes with 59 dual trees for

n = 7, 3 polyominoes with 36 dual trees for n = 8, and one polyomino with 10

dual trees for n = 9. Note, however, that for many of them there are cuts (i.e., dual

trees) such that they can be folded to the cube. For example, the 3× 3 square has

18 dual trees that can fold to a cube (Fig. 18).
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n = 6

Fig. 16. Polyominoes of size 6 that cannot be folded to a cube (for any dual tree).

n = 7

n = 8 n = 9

Fig. 17. Polyominoes of size 7 to 9 that have dual trees which cannot be folded to a cube.
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Fig. 18. Puzzleb: which cuttings of a 3× 3 square fold to a cube?

5. Dynamic Programming Algorithm for Trees

Theorem 5. Let P be a tree shape, Q be a polycube with O(1) cubes, no four squares

meeting at an edge, and F = {±90◦; grid}. Then it is possible in linear time (in

the size of P ) to determine whether P can fold to Q in folding model F .

Proof. We choose an arbitrary root of P . For each square s of P define the subtree

of s to be the tree shape consisting of all squares whose shortest path in P to the root

passes through s. For a square s of P , define a placement of s to be an identification

of s with a surface square of Q together with the subset of the squares of Q covered

by squares in the subtree of s. We use a dynamic program that computes, for each

square s of P , and each placement of s, whether there is a folding of the subtree

of s that places s in the correct position and correctly covers the specified subset.

Each square has O(1) placements, and we can test whether a placement has a valid

folding in constant time given the same information for the children of s. Therefore,

the algorithm takes linear time.

We have been unable to extend this result to folding models that allow 180◦

folds, nor to folds with interior faces, nor to polycubes for which four or more

squares meet at an edge. The difficulty is that the dynamic program constructs a

mapping from the polyomino to the polycube surface (topologically, an immersion)

bSolution: The top row needs two 180◦ folds, and the second and third row need one 180◦ fold.
The last two rows cannot be folded, even with diagonal folds. Note, however, that some of these

cuttings can be folded if we allow half-grid folds, cf. Fig. 5.
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but what we actually want to construct is a three-dimensional embedding of the

polyomino without self-intersections, and in general testing whether an immersion

can be lifted to a three-dimensional embedding is NP-complete.10 For 90◦ folds, a

three-dimensional lifting always exists, as can be seen by induction on the number of

squares in the tree shape: given a folding of all but one square of the tree shape, there

can be nothing blocking the addition of the one remaining square to its neighbor

in the tree shape. However, in the presence of +180◦ folds, the addition of a square

to an edge of a tree shape can be blocked by a +180◦ fold surrounding that edge.

It is tempting to attempt to extend our dynamic program to a fixed-parameter

algorithm for non-trees (parameterized by feedback vertex number in the dual graph

of the polyomino), by finding an approximate minimum feedback vertex set, trying

all placements of the squares in this set, and using dynamic programming on the

remaining tree components of the graph. However, the problem of parts of the fold

blocking other parts of the fold becomes even more severe in this case, even for

90◦ folds. Additionally, we must avoid knots and twists in the three-dimensional

embedding. These issues make it difficult to extend the dynamic program to the

non-tree case.

6. Triangular Grid

In this section we discuss folding polyiamonds into polytetrahedra. A polyiamond is

a 2D polygon that is a connected union of a collection of equilateral triangles on an

equilateral triangular lattice. That is, polyiamonds are the analog to polyominoes

with equilateral triangles instead of unit squares. We use the same notation as with

polyominoes, so the number of triangles comprising a polyiamond is called the size

of the polyiamond, and we say a polyiamond is a tree-polyiamond if its dual graph

is a tree. A polytetrahedron extends the notion of a polycube, simply replacing unit

cubes with regular tetrahedra. (Note, however, that the shapes of polytetrahedra

are limited by the fact that regular tetrahedra do not tile space.)

We begin by noting that there are exactly 6 polyiamonds that are tree shapes

but do not fold into a tetrahedron.

Lemma 2. In the folding model F = {any◦; ∆grid}, a tree-polyiamond folds into

a tetrahedron if and only if it is not one of the following shapes:

Proof. The tetrahedron has two nets: one whose dual has a vertex of degree 3,

and one whose dual is a path of length 4 and whose triangles do not all share a

vertex. If a polyiamond contains either of the two nets, those four triangles may be

folded into a tetrahedron with all of the other triangles of the polyiamond folded

flat against the faces of the tetrahedron.
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180◦

180◦

Fig. 19. A polyomino with 9 squares and a hole that folds into a unit cube. Mountain (red) and

valley folds (blue) are indicated, where two of the valley folds are 180◦ folds (color online).

Therefore, we need to show that the above polyiamonds are the only polyia-

monds that do not contain a net of a tetrahedron, and that none of the six can

be folded into a tetrahedron in some other way. If the dual tree of the polyiamond

contains a vertex of degree 3, the polyiamond contains a net of the tetrahedron

and can therefore be folded into a tetrahedron. Therefore, it is sufficient to consider

polyiamonds whose dual trees are paths. If we examine a polyiamond whose dual is

a path that does not contain the second tetrahedral net, either the polyiamond con-

tains fewer than 4 triangles, or each of its triangles share a single vertex. The only

possibilities are the six mentioned above. None can cover a tetrahedron, because

they cannot reach the tetrahedron face that is opposite the shared vertex.

7. Conclusion

Various open problems remain.

First, we gave an example of a tree shape P that does fold into a polycube Q

for F = {any◦; interior faces; grid}, but not in weaker models. In particular, P has

no folding into Q that avoids using interior faces. Q consists of 5 unit cubes — is it

minimal?

Second, we characterized tree shapes that are a subset of a 3× n strip and fold

into a unit cube in the F = {any◦; grid} model. Can we characterize polyominoes

with holes (possibly of area zero) that fold into a unit cube, such as the original

motivating puzzles in Fig. 1, or our new puzzle in Fig. 19? What about polyominoes

that are not a subset of a 3× n strip?

Third, if a tree shape folds into a unit cube, can the folding be performed while

keeping the faces rigid (continuous blooming7)?
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