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Abstract. We consider dynamic loading and unloading problems for
heavy geometric objects. The challenge is to maintain balanced configu-
rations at all times: minimize the maximal motion of the overall center
of gravity. While this problem has been studied from an algorithmic
point of view, previous work only focuses on balancing the final center
of gravity; we give a variety of results for computing balanced loading
and unloading schemes that minimize the maximal motion of the center
of gravity during the entire process.

In particular, we consider the one-dimensional case and distinguish
between loading and unloading. In the unloading variant, the positions
of the intervals are given, and we search for an optimal unloading order
of the intervals. We prove that the unloading variant is NP-complete and
give a 2.7-approximation algorithm. In the loading variant, we have to
compute both the positions of the intervals and their loading order. We
give optimal approaches for several variants that model different loading
scenarios that may arise, e.g., in the loading of a transport ship with
containers.

1 Introduction

Packing a set of objects is a classic challenge that has been studied extensively,
from a variety of perspectives. The basic question is: how can the objects be
arranged to fit into a container? Packing problems are important for a large
spectrum of practical applications, such as loading items into a storage space, or
containers onto a ship. They are also closely related to problems of scheduling and
sequencing, in which issues of limited space are amplified by including temporal
considerations.

Due to space constraints, several technical details are omitted from this extended
abstract. A full version with all proofs can be found at [7].
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Packing and scheduling are closely intertwined in loading and unloading prob-
lems, where the challenge is not just to compute an acceptable final configura-
tion, but also the process of dynamically building this configuration, such that
intermediate states are both achievable and stable. This is highly relavant in the
scenario of loading and unloading container ships, for which maintaining balance
throughout the process is crucial (Fig. 1).

Balancedness of packing also plays an important role for other forms of ship-
ping: Mongeau and Bes [14] showed that displacing the center of gravity by
less than 75 cm in a long-range aircraft may cause, over a 10,000 km flight, an
additional consumption of 4,000 kg of fuel.

Fig. 1. Loading and unloading container ships.

In this paper, we consider algorithmic problems of balanced loading and
unloading. For unloading, this means planning an optimal sequence for removing
a given set of objects, one at a time; for loading, this requires planning both
position and order of the objects.
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The practical constraints of loading and unloading motivate a spectrum of
relevant scenarios. As ships are symmetric around their main axis, we focus on
one-dimensional settings, in which the objects correspond to intervals. Contain-
ers may be of uniform size, but stackable up to a certain limited height; because
sliding objects on a moving ship are major safety hazards, stability considera-
tions may prohibit gaps between containers. On the other hand, containers of
extremely different size pose particularly problematic scenarios, which is why we
also provide results for sets of containers whose sizes are exponentially growing.

1.1 Our Contributions

Our results are as follows; throughout the paper, items are the objects that need
to be loaded (also sometimes called placed) or unloaded, while container refers
to the space that accomodates them. Furthermore, we assume all objects to have
unit density, i.e., their weights correspond to their lengths. In most cases, items
correspond to geometric intervals.

– For unloading, we show that it is NP-complete to compute an optimal
sequence. More formally, given a set of placed intervals {I1, . . . , In}, it is
NP-complete to compute an order 〈Iπ(1), . . . , Iπ(n)〉, in which intervals are
removed one at a time, such that the maximal deviation of the gravity’s
center is minimized.

– We provide a corresponding polynomial-time 2.7-approximation algorithm. In
particular, we give an algorithm that computes an order of the input intervals
such that removing the intervals in that order results in a maximal deviation
which is no larger than 2.7 times the maximal deviation induced by an optimal
order.

– For loading, we give a polynomial-time algorithm for the setting in which
gaps are not allowed. In particular, given a set of lengths values �1, . . . , �n ∈
R>0, we require a sequence 〈Iπ(1), . . . , Iπ(n)〉 of pairwise disjoint intervals
with |Iπ(i)| = �π(i) for i = 1, . . . , n such that the following holds: Placing the
interval Iπ(i) in the i-th step results in an n-stepped loading process such that
the union of the loaded intervals is connected for all points in time during
the loading process. Among these connected placements, we compute one for
which the maximal deviation of the center of gravity is minimized.

– We give a polynomial-time algorithm for the case of stackable unit intervals.
More formally, given an input integer μ ≥ 1, in the context of the previous
variant, we relax the requirement that the union of the placed intervals has to
be connected and additionally allow that the placed intervals may be stacked
up to a height of μ in a stable manner, defined as follows. We say that layer
0 is completely covered. An interval I can be placed, i.e., covered, in layer
k ≥ 1 if the interval I is covered in all layers 0, . . . , k − 1 and if I does not
overlap with another interval already placed in layer k.

– We give a polynomial-time algorithm for the case of exponentially growing
lengths. More formally, in the context of the previous variant, we require that
all intervals are placed in layer 1 and assume that the lengths of the input
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intervals’ lengths are exponentially increasing, i.e., there is an x ≥ 2 such
that x · �i = �i+1 holds for all i ∈ {1, . . . , n − 1}.

1.2 Related Work

Previous work on cargo loading covers a wide range of specific aspects, con-
straints and objectives. The general Cargo Loading Problem (CLP) asks for
an optimal packing of (possibly heterogeneous) rectangular boxes into a given
bin, equivalent to the Cutting Stock Problem [10]. Most of the proposed
methods are heuristics based on (mixed) integer programming and have been
studied both for heterogeneous or homogeneous items. Bischoff and Marriott [2]
show that the performances of some heuristics may depend on the kind of cargo.

Amiouny et al. [1] consider the problem of packing a set of one-dimensional
boxes of different weight and different length into a flat bin (so they are not
allowed to stack these boxes), in such a way that after placing the last box, the
center of gravity is as close as possible to a fixed target point. They prove strong
NP-completeness by a reduction from 3-Partition and give a heuristic with a
guaranteed accuracy within �max/2 of a given target point, where �max is the
largest box, w.r.t. length. A similar heuristic is given by Mathur [13].

Gehring et al. [9] consider the general CLP, for which (rectangular) items
may be stacked, and place them in any possible position. They construct non-
intersecting walls, i.e. packings made from similar items for slices of the original
container, to generate the overall packing. They also show that this achieves a
good final balancing of the loaded items. Mongeau and Bes [14] consider a simi-
lar variant for which the objective is to maximize the loaded weight. In addition,
there may be other parameters, e.g., each item may have a different priority [22]. A
mixed integer programming approach on this variant is given by Vancroonenburg
et al. [23]. Limbourg et al. [11] consider the CLP based on the moment of inertia.
Gehring and Bortfeldt [8] give a genetic algorithm for stable packings. Fasano [6]
considers packing problems of three-dimensional tetris-like items in combination
with balancing constraints. His work is done within the context of the Automated
Transfer Vehicle, which was the European Space Agency’s transportation system
supporting the International Space Station (ISS).

Another variant is to consider multiple drops, for which loaded items have
to be available at each drop-off point in such a way that a rearrangement of
the other items is not required; see e.g. [3,4,12]. Davies and Bischoff [5] propose
an approach that produces a high space utilization for even weight distribu-
tion. These scenarios often occur in container loading for trucks, for which the
objective is to achieve an even weight distribution between the axles. For a
state-of-the-art survey of vehicle routing with different loading constraints and
a spectrum of scenarios, see Pollaris et al. [19].

In the context of distributing cargo by sea, two different kind of ships are
distinguished: Ro-Ro and Lo-Lo ships. Ro-Ro (for roll on–roll off) ships carry
wheeled cargo, such as cars and trucks, which are driven on and off the ship. Some
approaches and problem variants such as multiple drops, additional loading, and
optional cargo as well as routing and scheduling considering Ro-Ro ships are



452 S. P. Fekete et al.

considered by Øvstebø et al. [15,16]. On the other hand, Lo-Lo (load on–load
off) ships are cargo ships that are loaded and unloaded by cranes, so any feasible
position can be directly reached from above.

While all this work is related to our problem, it differs by not requiring the
center of gravity to be under control for each step of the loading or unload-
ing process. A problem in which such a constraint is required and permanently
checked is Compact Vector Summation (CVS), which asks for permutation
to sum a number of k-dimensional vectors in a way that keeps each partial sum
within a bounded k-dimensional ball. See Sevastianov [20,21] for a summary
of results in CVS and its application in job scheduling. A different (and some-
what less serious) angle is considered by Paterson and Zwick [18] and Paterson
et al. [17], who consider maximizing the reach beyond the edge of a table by stack-
ing n identical, homogeneous, frictionless bricks of length 1 without toppling over,
corresponding to keeping the center of gravity of subarrangements supported.

2 Preliminaries

An item is a unit interval I := [m− 1
2 ,m+ 1

2 ] with midpoint m. A set {I1, . . . , In}
of n items with midpoints m1, . . . ,mn is valid if mi = mj or |mi − mj | ≥ 1
holds for all i, j = 1, . . . , n. The center of gravity C (I1, . . . , In) of a valid set
{I1, . . . , In} of items is defined as 1

n

∑n
i=1 mi.

For given a valid set {I1, . . . , In} of items we seek orderings in which each
item Ij is removed or placed such that the maximal deviation for all points in
time j = 1, . . . , n is minimized. More formally, for j = 1, . . . , n and a permutation
π : j �→ πj , let Cj := C

(
Iπj

, . . . , Iπn

)
.

The Unloading Problem (Unload) seeks to minimize the maximal devi-
ation during an unloading process of I1, . . . , In. In particular, given an input set
{I1, . . . , In} of items, we seek a permutation π such that maxi,j=1,...,n |Ci − Cj |
is minimized.

In the Loading Problem (Load) we relax the constraint that the positions
of the considered items are part of the input. In particular, we seek an ordering
and a set of midpoints for the containers such that the containers are disjoint and
the maximal deviation for all points in time of the loading process is minimized;
see Sect. 4 for a formal definition.

3 Unloading

We show that the problem Unload is NP-complete and give a polynomial-
time 2.7-approximation algorithm for Unload. We first show that there
is a polynomial- time reduction from the discrete version of Unload, the
Discrete Unloading Problem (dUnload), to Unload; this leads to a proof
that Unload is NP-complete, followed by a 2.7-approximation algorithm for
Unload.

In the Discrete Unloading Problem (dUnload), we do not consider a
set of items, i.e., unit intervals, but a discrete set X := {x1, . . . , xn} of points.
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The center of gravity C (X) of X is defined as 1
n

∑n
i=1 xi. For j = 1, . . . , n and a

permutation π : j �→ πj , let Cj = C
(
xπj

, . . . , xπn

)
. Again, we seek a permutation

such that maxi,j=1,...,n |Ci − Cj | is minimized.

Corollary 1. Unload and dUnload are polynomial-time equivalent.

3.1 NP-Completeness of the Discrete Case

We can establish NP-completeness of the discrete problem dUnload.

Theorem 1. dUnload is NP-complete.

The proof is based on a reduction of 3-Partition and omitted for lack of
space; see the full version of this paper [7]. Because of the polynomial-time
equivalance of dUnload and Unload, we conclude the following.

Corollary 2. Unload is NP-complete.

3.2 Lower Bounds and an Approximation Algorithm

When unloading a set of items, their positions are fixed, so (after reversing time)
unloading is equivalent to a loading problem with predetermined positions. For
easier and uniform notation throughout the paper, we use this latter description.

In order to develop and prove an approximation algorithm for dUnload, we
begin by examining lower bounds on the span, R − L, of a minimal interval,
[L,R], containing the centers of gravity at all stages in an optimal solution.

Without loss of generality, we assume that the input points xi sum to 0 (i.e.,∑
i xi = 0), so that the center of gravity, Cn, of all n input points is at the

origin. We let R = maxi Ci and L = mini Ci. Our first simple lemma leads to a
first (fairly weak) bound on the span.

Lemma 1. Let (x1, x2, x3, . . .) be any sequence of real numbers, with
∑

i xi = 0.
Let Cj = (

∑j
i=1 xi)/j be the center of gravity of the first j numbers, and let

R = maxi Ci and L = mini Ci. Then, |R − L| ≥ |xi|
i , for all i = 1, 2, . . ..

Due to space constraints, the proof of Lemma 1 is omitted; it can be found
in the full version of this paper [7].

Corollary 3. For any valid solution to dUnload, the minimal interval [L,R]
containing the center of gravity at every stage must have length |R − L| ≥ |ui|

i
where ui is the input point with the i-th smallest magnitude.

We note that the naive lower bound given by Corollary 3 can be far from tight:
Consider the sequence 1, 2, 3, 4, 5, 6, 7,−7,−7,−7,−7. In the optimal order, the
first −7 is placed fourth, after 2, 1, 3. The optimal third and fourth centers,
{2,−1

4} are the largest magnitude positive and negative centers seen, and show
a span 2.25 times greater than the naive bound of 1. By placing the first −7
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in the third position, R ≥ 3
2 , and L ≤ − 4

3 . By placing it fifth, R ≥ 5
2 . Our

observation was that failing to place our first −7 if the cumulative sum is > 7
would needlessly increase the span.

This generalizes to the sequence (x1 = 1, x2 = 2, . . . , xk−1 = k − 1, xk =
−k, xk+1 = −(k + 1), . . . , xN ), with an appropriate xN to make

∑
xi = 0. If we

place positive weights in increasing order until cl ≥ k
l , placing −k instead of a

positive at position l would decrease the center of gravity well below k
l . The first

negative should be placed when minl
l2−l
2 ≥ k, which is when l ≈ √

2k. In this

example, our optimal center of gravity span is at least k
l ≈

√
k
2 , not the 1 from

the naive bound of Corollary 3.
We now describe our heuristic, H, which leads to a provable approximation

algorithm. It is convenient to relabel and reindex the input points as follows. Let
(P1, P2, . . .) denote the positive input points, ordered (and indexed) by increasing
value. Similarly, let (N1, N2, . . .) denote the negative input points, orders (and
indexed) by increasing magnitude |Ni| (i.e., ordered by decreasing value).

The heuristic H orders the input points as follows. The first point is simply
the one closest to the origin (i.e., of smallest absolute value). Then, at each
step of the algorithm, we select the next point in the order by examining three
numbers: the partial sum, S, of all points placed in the sequence so far, the
smallest magnitude point, α, not yet placed that has the same sign as S, and
the smallest magnitude point, β, not yet placed that has the opposite sign of S.
If S + α + β is of the same sign as S, then we place β next in the sequence;
otherwise, if S + α + β has the opposite sign as S, then we place α next in the
sequence. The intuition is that we seek to avoid the partial sum from drifting in
one direction; we switch to the opposite sign sequence of input points in order to
control the drift, when it becomes expedient to do so, measured by comparing
the sign of S with the sign of S+α+β, where α and β are the smallest magnitude
points available in each of the two directions. We call the resulting ordering the
H-permutation. The H-permutation puts the j-th largest positive point, Pj , in
position π+

j in the order, and puts the j-th largest in magnitude negative point,
Nj , in position π−

j in the order, where

π+
j = j +max

k
{k :

k∑

i=1

|Ni| ≤
j∑

l=1

Pl} and π−
j = j +max

k
{k :

k∑

i=1

Pi <

j∑

l=1

|Nl|}.

We obtain an improved lower bound based on our heuristic, H, which orders
the input points according to the H-permutation.

Lemma 2. A lower bound on the optimal span of dUnload is given by |R −
L| ≥ Pi

π+
i

and |R − L| ≥ |Ni|
π−
i

.

To prove the lemma, we begin with a claim.

Claim. For any input set to the discrete unloading problem, where si are all
terms with the same sign sorted by magnitude, a permutation π that minimizes
the maximum value of the ratio |si|

πi
must satisfy πk < πi, for all k < i.
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Proof. By contradiction, assume that the minimizing permutation π has the
maximum value of the ratio |si|

πi
occur at an i for which there exists a k < i for

which πi ≤ πk, which means that πi < πk (because πi cannot equal πk for a
permutation π, and k �= i).

Because the terms si are indexed in order sorted by magnitude, |sk| ≤ |si|.
Exchanging the order of si and sk in the permutation would lead to two new
ratios in our sequence: |si|

πk
and |sk|

πi
. Because πk > πi, we get |si|

πk
< |si|

πi
. Because

|sk| ≤ |si|, we get |sk|
πi

≤ |si|
πi

. Because these new ratios are smaller than |si|
πi

, we
get a contradiction to the fact that π minimizes the maximum ratio.

The following claim is an immediate consequence of Lemma 1.

Claim. For the i maximizing Pi

π+
i

, any ordering placing this element earlier than

π+
i in the sequence has a span |R − L| > Pi

π+
i

. Similarly, for the i maximizing
|Ni|
π+
i

, any ordering placing this element earlier than π−
i in the sequence has a

span |R − L| > |Ni|
π−
i

.

On the other hand, the following holds.

Claim. For the i maximizing Pi

π+
i

, any ordering placing this element later than

π+
i in the sequence has a span |R − L| > Pi

π+
i

. A similar statement holds for |Ni|
π−
i

.

Proof. The proof is by contradiction. The index into the H permutation maxi-
mizing the ratio |xk|

k is i. We assume (wlog) xi = PJ > 0, and we let K = i − J .
If PJ is not placed in position i, we suppose another element, x, can be placed

in its stead and results in a span that is less than PJ

i .
When placing any positive x > PJ in the initial i position, the lowest possible

observed span from Lemma 1 is at least x
i > PJ

i , which would contradict our
assumption. Similarly, all positive points placed before or at position i must be
less than or equal to PJ .

All permutations of these J − 1 positive elements and the first K + 1
negative elements have a large negative center of gravity at position i. From
K = maxk{k :

∑k
i=1 |Ni| ≤ ∑J

l=1 Pl}, we get
∑K+1

i=1 |Ni| ≥ ∑J
l=1 Pl, and hence

∑K+1
i=1 Ni +

∑J
l=1 Pl ≤ 0, implying

∑K+1
i=1 Ni +

∑J−1
l=1 Pl ≤ −PJ . Therefore, the

maximizing value satisfies

|c∗| =
|∑K+1

i=1 Ni +
∑J−1

l=1 Pl|
i

≥ PJ

i

Because the center of gravity is at a location greater than the H-bound, and
R ≥ 0 ≥ L, this span is also greater than the H-bound and we can neither place
an element greater than PJ nor one less than PJ in place of PJ while lowering
the span beneath the H-bound.

Theorem 2. The H-permutation minimizes the maximum (over i) value of the
ratio |xi|

πi
, and thus yields a lower bound on |R − L|.
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For the worst-case ratio, we get the following.

Theorem 3. The H heuristic yields an ordering having span R−L at most 2.7
times larger than the H-lower bound.

Due to space constraints, the proof of Theorem3 is omitted; it can be found
in the full version of this paper [7].

Corollary 4. There is a polynomial-time 2.7-approximation algorithm for
Unload.

4 Loading

We proceed to loading problems, which requires a wider range of definitions: The
positions of the objects are part of the optimization and for some loading vari-
ants, the items may have different lengths. Consider the following more general
definitions:

An item is given by a real number �. By assigning a position m ∈ R to an
item, we obtain an interval I with length � and midpoint m. For n ≥ 1, we
consider a set {�1, . . . , �n} of n items and assume �1 ≥ · · · ≥ �n. Furthermore,
{�1, . . . , �n} is uniform if � := �1 = ... = �n.

A state is a set {(I1, h1), . . . , (In, hn)} of pairs, each one consisting of an
interval Ij and an integer hj ≥ 1, the layer in which Ij lies. A state satisfies the
following: (1) Two different intervals that lie in the same layer do not overlap
and (2) for j = 2, . . . , n, an interval in layer j is a subset of the union of the
intervals in layer j − 1.

A state {(I1, h1), . . . , (In, hn)} is plane if all intervals lie in the first layer.
To simplify the following notations, we denote for j = {1, . . . , n} the

midpoint of the interval Ij by mj . The center of gravity C (s) of a state
s = {(I1, h1), . . . , (In, hn)} is defined as 1

M

∑n
j=1 �jmj , where M is defined as

∑n
j=1 �j .
A placement p of an n-system S is a sequence 〈I1, . . . , In〉 such that {(I1, h1),

. . . , (Ij , hj)} is a state, the j-th state sj , for each j = 1, . . . , n. The 0-th state s0
is defined as ∅ and its center of gravity C (s0) is defined as 0.

Definition 1. The loading problem (Load) is defined as follows: Given a
set of n items, we are searching for a placement p such that the n + 1 centers of
gravity of the n+1 states of p lie close to 0. In particular, the deviation Δ(p) of
a placement p is defined as maxj=0,...,n |C (sj) |. We seek a placement of S with
minimal deviation among all possible placements for S.

We say that stacking is not allowed if we require that all intervals are placed
in layer 1. Otherwise, we say that stacking is allowed. For a given integer μ ≥ 1
we say that μ is the maximal stackable height if we require that all used layers
are no larger than μ.

Note that in the loading case, minimizing the deviation is equivalent to mini-
mizing the diameter, i.e., minimizing the maximal distance between the smallest
and largest extent of the centers.



Don’t Rock the Boat 457

4.1 Optimally Loading of Unit Items with Stacking

Now we consider the case of unit items for which stacking is allowed. We give
an algorithm that optimally loads a set of unit items with stacking.

Theorem 4. There is a polynomial-time algorithm for loading a set of unit
items so that the deviation of the center of gravity is in [0, 1

1+μ ], where μ is the
maximum stackable height.

Proof. Let mi be the midpoint of item �i. Because we are allowed to stack items
up to height μ, the strategy is the following: set m1 = m2 = · · · = mμ = 1

1+μ ,
i.e., the first μ items are placed at the very same position. Call these first μ items
the starting stack S0. Subsequently, we place the following items on alternating
sides of S0, i.e., the item �μ+1 is placed as close as possible on the left side of
S0, �μ+2 is placed as close as possible on the right side, �μ+3 is placed on top of
�μ+1 (if we did not already reach the maximum stackable height of μ), or next
to �μ+1 (if �μ+1 is on the μ-th layer), etc.

After each placement of �i, 1 ≤ i ≤ μ, we have C (�i) = 1
1+μ . After two

more placed items, the center of gravity is again at 1
1+μ , because these items

neutralize each other. Thus, the critical part is a placement on the left side of
S0. We proceed to show that after placing an item on the left side, the center of
gravity is at position at least 0.

The midpoint mμ+1 of the item �μ+1 is −μ
1+μ , thus C (�μ+1) = μ

1+μ − μ
1+μ = 0.

Now assume that we have already placed c = (2k+1) ·μ+ζ items, where ζ < 2μ
and odd, i.e., we have already placed the starting stack S0 and k additional
stacks of height μ on each side of S0. Let z := (2k + 1) · μ. Then the center of
gravity is at position C (c), where

C (c) =
z · 1

1+μ +
z+ζ∑

i=z+1

mi

z + ζ
=

(z + ζ − 1) · 1
1+μ + −kμ−k−μ

1+μ

z + ζ
=

kμ + ζ − 1 − k

(1 + μ) · (z + ζ)

=
k(μ − 1) + ζ − 1
(1 + μ) · (z + ζ)

≥ ζ − 1
(1 + μ) · (z + ζ)

≥ 0
(1 + μ) · (z + ζ)

≥ 0.

In the following we show that there is no strategy that can guarantee a
smaller deviation of the center of gravity than the strategy described in the last
theorem.

Theorem 5. The strategy given in Theorem4 is optimal for n > μ, i.e., there
is no strategy such that the center of gravity deviates in [0, 1

1+μ ).

Proof. Because n > μ, we must use at least two stacks. Now assume that we
first place k items on one stack S0, before we start another one. Without loss of
generality, we place this first k items at position 1

1+μ − ε. We proceed to show
that for any ε > 0, we need k to be at least μ+1, to get the new center of gravity
to position > −ε and therefore a smaller deviation as the strategy in Theorem4.
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If we place the item �k+1 on the right side of S0, the new center of gravity
gets to a position larger than 1

1+μ − ε, a contradiction. Thus, it must be placed
on the left of S0. The position of this item has to be − μ

1+μ − ε. This yields the
new center of gravity of (k · ( 1

1+μ − ε) − μ
1+μ − ε)/k + 1. This center of gravity

must be located to the right of −ε. Thus, we have

k · (
1

1 + μ
− ε) − μ

1 + μ
− ε + (k + 1) · ε > 0 ⇔ k − μ > 0 ⇔ k > μ

Because we cannot stack μ + 1 items, we cannot have any strategy achieving a
deviation of [0, 1

1+μ −ε]. We conclude that our strategy given in Theorem4 must
be optimal.

Corollary 5. With the given strategy for a uniform system where each item has
length �, the center of gravity deviates in [0, �

1+μ ], which is optimal.

4.2 Optimally Loading Without Stacking but With Minimal Space

Assume that the height of the ship to be loaded does not allow stacking items.
This makes it necessary to ensure that the space consumption of the packing
is minimal. We restrict ourselves to plane placements such that each state is
connected. For simplicity, we assume w.l.o.g. that �1 ≥ · · · ≥ �n holds. First we
argue that Δ(p) ≥ �2

4 holds for an arbitrary connected plane placement p of S.
Subsequently we give an algorithm that realizes this lower bound.

A fundamental key for this subcase is that the center of gravity of a connected
plane state is the midpoint of the induced overall interval.

Observation 1. Let s be a plane state such that the union of the corresponding
intervals is an interval [a, b] ⊂ R. Then C (s) = a+b

2 .

Lemma 3. For each plane placement p of S, we have Δ(p) ≥ �2
4 .

Proof. Let p be an arbitrary plane placement of S = 〈(I1, 1), . . . , (In, 1)〉, let
〈s0, s1, . . . , sn〉 be the sequence of states that are induced by p, and let i, j ∈
{1, . . . , n} be such that Ii = |�1| and Ij = |�1| hold. Observation 1 implies that
|C (si−1) − C (si) | = �1

4 ≥ �2
4 and |C (sj−1) − C (sj) | = �2

4 . Let mi and mj be
the midpoints of Ii and Ij . As the intervals Ii and Ij do not overlap, we conclude
that |mi| ≥ �2

2 or |mj | ≥ �2
2 holds. W.l.o.g. assume that |mi| ≥ �2

2 holds. This
implies that |C (si−1) | ≥ �2

4 or |C (si) | ≥ �2
4 holds. In both cases, we obtain

Δ(p) ≥ �2
4 , concluding the proof.

Lemma 4. We can compute a placement p of S such that Δ(p) ≤ �2
4 .

Proof. The main idea is as follows. We remember �1 ≥ · · · ≥ �n and place the
items in that order. In particular, we choose the positions of the items such that
C (s1) := − �2

4 and C (s2) := �2
4 . The remaining intervals are placed alternating,

adjacent to the left and to the right side of the previously placed intervals.



Don’t Rock the Boat 459

In order to show that C (si) ∈ [− �2
4 , �2

4 ] holds for all i ∈ {0, . . . , n}, we
prove by induction that C (si) ∈ [C (si−2) , C (si−1)] holds for all odd i ≥ 3
and C (si) ∈ [C (si−1) , C (si−2)] for all even i ≥ 4. As Observation 1 implies
C (s1) = − �2

4 and C (s2) = �2
4 , this concludes the proof.

Let i ≥ 3 be odd. We have |C (si−2)−C (si−1) | = �i−1
2 . This is lower bounded

by �i
2 because �i ≤ �i−1. Furthermore, we know that |C (si−1) − C (si) | = �i

2 .
This implies C (si) ∈ [C (si−2) , C (si−1)]. The argument for the case of even
i ≥ 4 is analogous.

The combination of Lemmas 3 and 4 implies that our approach for connected
placements is optimal.

Corollary 6. Given an arbitrary system, there is a polynomial-time algorithm
for optimally loading a general set of items without stacking and under the con-
straint of minimal space consumption for all intermediate stages.

4.3 Optimally Loading Exponentially Growing Items

Similar to the previous section, we consider plane placements. Now we consider
the case in which the items have exponentially rising lengths. This case highlights
the challenges of uneven lengths, in particular when the sizes are growing very
rapidly; without special care, this can easily lead to strong deviation during the
loading process. We show how the deviation can be minimized.

Theorem 6. There is a polynomial-time algorithm for optimally loading a set
of items with lengths growing exponentially by a factor x ≥ 2 in increasing order
w.r.t. to their lengths.

Details can be found in the full version of this paper [7].

5 Conclusion

We have introduced a new family of problems that aim for balancing objects
w.r.t. their center of gravity during loading and unloading these objects, and
have provided hardness results and optimal or constant-factor approximation
algorithms.

There are various related challenges. These include sequencing problems with
multiple loading and unloading stops (which arise in vehicle routing or tour plan-
ning for container ships); variants in which items can be shifted in a continuous
fashion; batch scenarios in which multiple items are loaded or unloaded at once
(making it possible to maintain better balance, but also increasing the space of
possible choices); and higher-dimensional variants, possibly with inhomogeneous
space constraints. All these are left for future work.
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