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Abstract
We present a number of breakthroughs for coordinated motion planning, in which the objective is
to reconfigure a swarm of labeled convex objects by a combination of parallel, continuous, collision-
free translations into a given target arrangement. Problems of this type can be traced back to
the classic work of Schwartz and Sharir (1983), who gave a method for deciding the existence of
a coordinated motion for a set of disks between obstacles; their approach is polynomial in the
complexity of the obstacles, but exponential in the number of disks. Despite a broad range of
other non-trivial results for multi-object motion planning, previous work has largely focused on
sequential schedules, in which one robot moves at a time, with objectives such as the number
of moves; attempts to minimize the overall makespan of a coordinated parallel motion schedule
(with many robots moving simultaneously) have defied all attempts at establishing the complexity
in the absence of obstacles, as well as the existence of efficient approximation methods.

We resolve these open problems by developing a framework that provides constant-factor
approximation algorithms for minimizing the execution time of a coordinated, parallel motion
plan for a swarm of robots in the absence of obstacles, provided their arrangement entails some
amount of separability. In fact, our algorithm achieves constant stretch factor : If all robots
want to move at most d units from their respective starting positions, then the total duration of
the overall schedule (and hence the distance traveled by each robot) is O(d). Various extensions
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include unlabeled robots and different classes of robots. We also resolve the complexity of finding
a reconfiguration plan with minimal execution time by proving that this is NP-hard, even for a
grid arrangement without any stationary obstacles. On the other hand, we show that for densely
packed disks that cannot be well separated, a stretch factor Ω(N1/4) may be required. On the
positive side, we establish a stretch factor of O(N1/2) even in this case. The intricate difficulties
of computing precise optimal solutions are demonstrated by the seemingly simple case of just
two disks, which is shown to be excruciatingly difficult to solve to optimality.
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of computation → Problems, reductions and completeness, Computer systems organization →
Robotic control

Keywords and phrases Robot swarms, coordinated motion planning, parallel motion, makespan,
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1 Introduction

Since the beginning of computational geometry, robot motion planning has been at the focus
of algorithmic research. Planning the relocation of a geometric object among geometric
obstacles leads to intricate scientific challenges, requiring the combination of deep geometric
and mathematical insights with algorithmic techniques. With the broad and ongoing
progress in robotics, the increasing importance of intelligent global planning with performance
guarantees requires more sophisticated algorithmic reasoning, in particular when it comes to
the higher-level task of coordinating the motion of many robots.

From the early days, multi-robot coordination has received attention from the algorithmic
side. Even in the groundbreaking work by Schwartz and Sharir [20] from the 1980s, one of the
challenges was coordinating the motion of several disk-shaped objects among obstacles. Their
algorithms run in time polynomial in the complexity of the obstacles, but exponential in the
number of disks. This illustrates the significant challenge of coordinating many individual
robots. In addition, a growing number of applications focus primarily on robot interaction
in the absence of obstacles, such as air traffic control or swarm robotics, where the goal is
overall efficiency, rather than individual navigation.

With the challenges of multi-robot coordination being well known, there is still a huge
demand for positive results with provable performance guarantees. In this paper, we provide
significant progress in this direction, with a broad spectrum of results.

1.1 Our results
For the problem of minimizing the total time for reconfiguring a system of labeled circular
robots in a grid environment, we show that it is strongly NP-complete to compute an
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optimal solution; see Theorem 1.
We give an O(1)-approximation for the long-standing open problems of parallel motion-
planning with minimum makespan in a grid setting. This result is based on establishing
an absolute performance guarantee: We prove that for any labeled arrangement of robots,
there is always an overall schedule that gets each robot to its target destination with
bounded stretch, i.e., within a constant factor of the largest individual distance. See
Theorem 3 for the base case of grid-based configurations, which is extended later on.
For our approach, we make use of a technique to separate planar (cyclic) flows into
so-called subflows whose thickness can be controlled by the number of subflows, see
Definition 7 and Lemma 8. This is of independent interest for the area of packet routing
with bounded memory: Our Theorem 4 implies that O(D) steps are sufficient to route
any permutation of dilation D on the grid, even with a buffer size of 1, resolving an open
question by Scheideler [19] dating back to 1998.
We extend our approach to establish constant stretch for the generalization of colored
robot classes, for which unlabeled robots are another special case; see Theorem 13.
We extend our results to the scenario with continuous motion and arbitrary coordinates,
provided the distance between a robot’s start and target positions is at least one diameter;
see Theorem 15. This implies that efficient multi-robot coordination is always possible
under relatively mild separability conditions; this includes non-convex robots.
For the continuous case of N unit disks and weaker separability, we establish a lower bound
of Ω(N1/4) and an upper bound of O(

√
N) on the achievable stretch, see Theorem 14

and Theorem 15.

We also highlight the geometric difficulty of computing optimal trajectories even in
seemingly simple cases; due to limited space, this can be found in the full version of the
paper [6].

1.2 Related work
Multi-object motion planning problems have received a tremendous amount of attention
from a wide spectrum of areas. Due to limited space, we focus on algorithmic work with
an emphasis on geometry; see the full version of the paper [6] for a more comprehensive
overview.

In the presence of obstacles, Aronov et al. [3] demonstrate that for up to three robots, a
path can be constructed efficiently, if one exists. Ramanathan and Alagar [17] and Schwartz
and Sharir [20] consider the case of several disk-shaped objects between polygonal obstacles.
Both give algorithms for deciding reachability of a given target configuration. The algorithms
run in time polynomial in the complexity of the obstacles, but exponential in the number of
disks. Hopcroft et al. [11] and Hopcroft and Wilfong [12] prove that it is PSPACE-complete
to decide reachability of a given target configuration, even when restricted to rectangular
objects in a rectangular region. This was later strengthened by Hearn and Demaine [9, 10]
to rectangles of size 1× 2 and 2× 1. Moreover, this problem is similar to the well-known
Rush-Hour Problem, which was shown to be PSPACE-complete by Flake and Baum [8]. For
moving disks, Spirakis and Yap [24] prove strong NP-hardness of the same problem for disks
of varying size. Bereg et al. [5] and Abellanas et al. [1] consider minimizing the number of
moves of a set of disks into a target arrangement without obstacles. These bounds were later
improved by Dumitrescu and Jiang [7], who prove that the problem remains NP-hard for
congruent disks even when the motion is restricted to sliding. Yu [27] provides an expected
constant-factor approximation for the optimal makespan in the grid case.

SoCG 2018
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On the practical side, there is a wide range of approaches for solving multi-object motion
planning problems, both optimally and heuristically; for instances of limited size, SAT solvers
and IP-based methods are used for discretized versions, while for larger instances, previous
work resorts to heuristic solutions. Refer to the full version of the paper [6] for an overview.

In both discrete and geometric variants of the problem, the objects can be labeled, colored
or unlabeled. In the colored case, the objects are partitioned into k groups and each target
position can only be covered by an object with the right color. This case was recently
considered by Solovey and Halperin [21], who present and evaluate a practical sampling-
based algorithm. In the unlabeled case, the objects are indistinguishable and each target
position can be covered by any object. This scenario was first considered by Kloder and
Hutchinson [13], who presented a practical sampling-based algorithm. Turpin et al. [25]
prove that it is possible to find a solution in polynomial time, if one exists. This solution is
optimal with respect to the longest distance traveled by any one robot. However, their results
only hold for disk-shaped robots under additional restrictive assumptions on the free space.
For unit disks and simple polygons, Adler et al. [2] provide a polynomial-time algorithm
under the additional assumption that the start and target positions have some minimal
distance from each other. Under similar separability assumptions, Solovey et al. [22] provide
a polynomial-time algorithm that produces a set of paths that is no longer than OPT + 4N ,
where N is the number of robots. However, they do not consider the makespan, but only the
total path length. On the negative side, Solovey and Halperin [23] prove that the unlabeled
multiple-object motion planning problem is PSPACE-hard, even when restricted to unit
square objects in a polygonal environment.

The problem of finding constructive algorithmic solutions for the problem of coordinated,
parallel motion planning in the absence of obstacles (with the objective of minimizing the
makespan of the overall schedule) was explicitly posed as a long-standing open problem
by Overmars [16] at the 2006 Dagstuhl meeting on Robot Navigation, but can be traced
back much further. It is also related to open problems from the field of routing, where it is
well-known that for any given family of simple paths one can find a way to route packets
along the paths such that the total number of steps required is O(C + D), where C is
the congestion and D is the dilation of the given family of paths. However, algorithms
in this context typically require that each node can store a constant number of packets.
Scheideler [19] raises the question whether routing in O(C + D) steps is still possible if only
one packet can be stored at each node. We answer a variant of this question in the case
of Grid Permutation Routing. By our Theorem 4, O(D) steps are sufficient to route any
permutation of dilation D on the grid, even with a buffer size of 1.

On the other hand, on grid graphs, the problem resembles the generalization of the
15-puzzle, for which Wilson [26] and Kornhauser et al. [14] give an efficient algorithm that
decides reachability of a target configuration and provide both lower and upper bounds on
the number of moves required. Ratner and Warmuth [18] prove finding a shortest solution
for this puzzle remains NP-hard.

During the review period of our work, Yu [28] has independently proposed a similar
approach that also achieves a constant-factor approximation in the case of a rectangular grid.

2 Preliminaries

In the grid setting of Section 3 we consider an n1 × n2-grid G = (V, E), which is dual to
an n1 × n2-rectangle P in which the considered robots are arranged. A configuration of P

is a mapping C : V → {1, . . . , N,⊥}, which is injective w.r.t. the labels {1, . . . , N} of the
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N ≤ |P | robots to be moved, where ⊥ denotes the empty square. The inverse image of a
robot’s label ` is C−1(`). In the following, we consider a start configuration Cs and target
configuration Ct; for i ∈ {1, . . . , N}, we call C−1

s (i) and C−1
t (i) the start and target position

of the robot i. Given the (minimum) Manhattan distance between each robot’s start/target
positions for each robot, we denote by d the maximum such distance over all robots.

A configuration C1 : V → {1, . . . , N,⊥} can be transformed within one single trans-
formation step into another configuration C2 : V → {1, . . . , N,⊥}, denoted C1 → C2, if
C−1

1 (`) = C−1
2 (`) or (C−1

1 (`), C−1
2 (`)) ∈ E holds for all ` ∈ {1, . . . , N}, i.e., if each robot

does not move or moves to one of the at most four adjacent squares. Furthermore, two
robots cannot exchange their squares in one transformation step, i.e., for all occupied squares
v 6= w ∈ V , we require that C2(v) = C1(w) implies C2(w) 6= C1(v). For M ∈ N, a schedule is
a sequence C1 → · · · → CM of transformations. The number of steps in a schedule is called
its makespan. Given a start configuration Cs and a target configuration Ct, the optimal
makespan is the minimum number of steps in a schedule starting with Cs and ending with
Ct. Let n > 1. Note that for the 2 × 2-, 1 × n- and n × 1-rectangles, there are pairs of
start and target configurations where no such sequence exists. For all other rectangles, such
configurations do not exist; we provide an O(1)-approximation of the makespan in Section 3.

For the continuous setting of Section 5, we consider N robots R := {1, . . . , N} ⊆ N. The
Euclidean distance between two points p, q ∈ R2 is |pq| := ||p − q||2. Every robot r has a
start and target position sr, tr ∈ R2 with |sisj |, |titj | ≥ 2 for all i 6= j. In the following,
d := maxr∈R |srtr| is the maximum distance a robot has to cover. A trajectory of a robot
r is a curve mr : [0, Tr]→ R2, where Tr ∈ R+ denotes the travel time of r. This curve mr

does not have to be totally differentiable, but must be totally left- and right-differentiable.
Intuitively, at any point in time, a robot has a unique past and future direction that are
not necessarily identical. This allows the robot to make sharp turns, but does not allow
jumps. We bound the speed of the robot by 1, i.e., for each point in time, both left and right
derivative of mr have Euclidean length at most 1. Let mi : [0, Ti]→ R2 and mj : [0, Tj ]→ R2

be two trajectories; w.l.o.g., all travel times are equal to the maximum travel time Tmax by
extending mr with mr(t) = mr(Tr) for all Tr < t ≤ Tmax. The trajectories mi and mj are
compatible if the corresponding robots do not intersect at any time, i.e., if |mi(t)mj(t)| ≥ 2
holds for all t ∈ [0, Ti]. A trajectory set of R is a set of compatible trajectories {m1, . . . , mN},
one for each robot. The (continuous) makespan of a trajectory set {m1, . . . , mN} is defined as
maxr∈R Tr. A trajectory set {m1, . . . , mN} realizes a pair of start and target configurations
S := ({s1, . . . , sN}, {t1, . . . , tN}) if mr(0) = sr and mr(Tr) = tr hold for all r ∈ R. We are
searching for a trajectory set {m1, . . . , mN} realizing S with minimal makespan.

3 Labeled grid permutation

Let n1 ≥ n2 ≥ 2, n1 ≥ 3 and let P be an n1 × n2-rectangle. In this section, we show that
computing the optimal makespan of arbitrarily chosen start and target configurations Cs

and Ct of k robots in P is strongly NP-complete. This is followed by a O(1)-approximation
for the makespan.

I Theorem 1. The minimum makespan parallel motion planning problem on a grid is
strongly NP-hard.

We prove hardness using a reduction from Monotone 3-Sat. Intuitively speaking, given
a formula, we construct a parallel motion planning instance with a variable robot for each
variable in the formula. To encode a truth assignment, each variable robot is forced to move

SoCG 2018
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variables

checkers

side steps

clauses

aux.

aux.

Figure 1 A sketch of the parallel motion planning instance resulting from the reduction.

on one of two paths. This is done by employing two groups of auxiliary robots that have
to move towards their goal in a straight line in order to realize the given makespan. These
auxiliary robots form moving obstacles whose position is known at any point in time.

The variable robots cross paths with checker robots, one for each literal of the formula,
forcing the checker to wait for one time step if the assignment does not satisfy the literal.
The checker robots then cross paths with clause robots; each clause robot has to move to its
goal without delay and can only do so if at least one of the checkers did not wait. In order
to ensure that the checkers meet with the clauses at the right time, further auxiliary robots
force the checkers to perform a sequence of side steps in the beginning. Figure 1 gives a
rough overview of the construction; full details of the proof are given in the full version of
the paper [6].

In the proof of NP-completeness, we use a pair of start and target configurations in
which the corresponding grids are not fully occupied. However, for our constant-factor
approximation, we assume in Theorem 3 that the grid is fully occupied. This assumption is
without loss of generality; our approximation algorithm works for any grid population, see
Theorem 4.

Our constant-factor approximation is based on an algorithm that computes a schedule
with a makespan upper-bounded by O(n1 + n2) described by Lemma 2. Based on Lemma 2,
we give a constant factor approximation of the makespan, see Theorem 3. Finally, we
embed the algorithm of Theorem 3 into a more general approach to ensure simultaneously a
polynomial running time w.r.t. the number N of input robots and a constant approximation
factor, see Theorem 4.

I Lemma 2. For a pair of start and target configurations Cs and Ct of an n1×n2-rectangle,
we can compute in polynomial time w.r.t. n1 and n2 a sequence of O(n1 + n2) steps trans-
forming Cs into Ct.

The high-level idea of the algorithm of Lemma 2 is the following. We apply a sorting
algorithm called RotateSort [15] that computes a corresponding permutation of an n1×n2
(orthogonal) grid within O(n1 + n2) parallel steps. Each parallel step is made up of a set
of pairwise disjoint swaps, each of which causes two neighbouring robots to exchange their
positions. Because in our model direct swaps are not allowed, we simulate one parallel step
by a sequence of O(1) transformation steps. This still results in a sequence of O(n1 + n2)
transformation steps. A detailed description of the algorithm used in the proof of Lemma 2
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is given in the full version of the paper [6]. An alternative to our Lemma 2 was recently
proposed by Yu [27], who uses a routine called SplitAndGroup for achieving a makespan
that is linear in the diameter of the rectangular environment.

Based on the algorithm of Lemma 2, we can give a constant-factor approximation
algorithm.

I Theorem 3. There is an algorithm with running time O(dn1n2) that, given an arbitrary
pair of start and target configurations of an n1 × n2-rectangle with maximum distance d

between any start and target position, computes a schedule of makespan O(d), i.e., an
approximation algorithm with constant stretch.

For the algorithm of Theorem 3, Lemma 2 is repeatedly applied to rectangles of side
length O(d), resulting in O(d) transformation steps in total. Because d is a lower bound on
the makespan, this yields an O(1)-approximation of the makespan.

At a high level, the algorithm of Theorem 3 first computes the maximal Manhattan
distance d between a robot’s start and target position. Then we partition P into a set
T of pairwise disjoint rectangular tiles, where each tile t ∈ T is an n′1 × n′2-rectangle for
n′1, n′2 ≤ 24d. We then use an algorithm based on flows to compute a sequence of O(d)
transformation steps, ensuring that all robots are in their target tile. Once all robots are
in the correct tile, we use Lemma 2 simultaneously on all tiles to move each robot to the
correct position within its target tile. The details of the algorithm of Theorem 3 are given
further down in this section.

The above mentioned tiling construction ensures that each square of P belongs to one
unambiguously defined tile and each robot has a start and target tile.

Based on the approach of Theorem 3 we give a O(1)-approximation algorithm for the
makespan with a running time polynomial w.r.t. the number N of robots to be moved.

I Theorem 4. There is an algorithm with running time O(N5) that, given an arbitrary pair
of start and target configurations of a rectangle P with N robots to be moved and maximum
distance d between any start and target position, computes a schedule of makespan O(d), i.e.,
an approximation algorithm with constant stretch.

Intuitively speaking, the approach of Theorem 4 distinguishes two cases.
(1) Both bn2

4 c and the maximum distance d between the robots’ start and target positions,
are lower-bounded by the number N of input robots.

(2) N > bn2
4 c or N > d.

In case (1), the grid is populated sparsely enough such that the robots’ trajectories in
northern, eastern, southern, and western direction can be done sequentially by four individual
transformation sequences.

In order to ensure that each robot has locally enough space, we consider a preprocessed
start configuration Co in which the robots have odd coordinates. We ensure that Cs can
be transformed into Co within O(d) steps. Analogously, we ensure that the outcome of
the northern, eastern, southern, and western trajectories is a configuration Ce with even
coordinates, such that Ce can be transformed into Ct within O(d) transformation steps. The
choice of the divisor 4 in the criteria “N ≤ dn1

4 e
′′ has the following technical reasoning: In

the first case of the proof of Theorem 4, we assume w.l.o.g. that n1 and n2 are even. If this
is not the case, we move all robots from the last line into the second-to-last line and from
the last column into the second-to-last column. This may double the largest x-coordinate
of a robot and the largest y-coordinate of a robot, e.g., in the case that all positions in
the last line and all positions in that last column are occupied by robots. In a next step,

SoCG 2018
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we transform the start configuration into a configuration Co in which all robots’ x- and
y-coordinates are odd. This may cause another doubling of the largest x-coordinate and the
largest y-coordinate which may result fourfold increase of the largest x-coordinate and a
fourfold increase of the largest y-coordinate. The assumption N ≤ dn2

4 e ensures that both
dimensions of the rectangular environment are large enough because n1 ≥ n2.

In the second case, we apply the approach of Theorem 3 as a subroutine to a union of
smallest rectangles that contain the robots’ start and target configurations.

The full detailed version of the proof of Theorem 4 can be found in the full version of the
paper [6].

In the rest of Section 3, we give the proof of Theorem 3, i.e. we give an algorithm that
computes a schedule with makespan linear in the maximum distance between robots’ start
and target positions. The remainder of the proof of Theorem 3 is structured as follows. In
Section 3.1 we give an outline of our flow algorithm that ensures that each robot reaches its
target tile in O(d) transformation steps. Section 3.2 gives the full intuition of this algorithm
and its subroutines. (For full details, we refer to the full version of the paper [6]).

3.1 Outline of the approximation algorithm of Theorem 3
We model the trajectories of robots between tiles as a flow fT , using the weighted directed
graph GT = (T, ET , fT ), which is dual to the tiling T defined in the previous section. In GT ,
we have an edge (v, w) ∈ ET if there is at least one robot that has to move from v into w.
Furthermore, we define the weight fT ((v, w)) of an edge as the integer number of robots that
move from v to w. As P is fully occupied, fT is a circulation, i.e., a flow with no sources
or sinks, in which flow conservation has to hold at all vertices. Because the side lengths of
the tiles are greater than d, GT is a grid graph with additional diagonal edges and thus has
degree at most 8.

The maximum edge value of fT is Θ(d2), but only O(d) robots can possibly leave a tile
within a single transformation step. Therefore, we decompose the flow fT of robots into
a partition consisting of O(d) subflows, where each individual robot’s motion is modeled
by exactly one subflow and each edge in the subflow has value at most d. Thus we are
able to realize each subflow in a single transformation step by placing the corresponding
robots adjacent to the boundaries of its corresponding tiles before we realize the subflow. To
facilitate the decomposition into subflows, we first preprocess GT . In total, the algorithm
consists of the following subroutines, elaborated in detail in Section 3.2.

Step 1: Compute d, the tiling T and the corresponding flow GT .
Step 2: Preprocess GT in order to remove intersecting and bidirectional edges.
Step 3: Compute a partition into O(d) d-subflows.
Step 4: Realize the O(d) subflows using O(d) transformation steps.
Step 5: Simultaneously apply Lemma 2 to all tiles, moving each robot to its target
position.

3.2 Details of the approximation algorithm of Theorem 3
In this section we only give more detailed descriptions of Steps 1-4 because Step 5 is a trivial
application of Lemma 2 to all tiles in parallel.

3.2.1 Step 1: Compute d, the tiling T , and the corresponding flow GT

The maximal distance between robots’ start and target positions can be computed in a
straightforward manner.
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Figure 2 Illustration of the preprocessing (step (1): before and after removing crossing edges
(a)+(b) and step (2): before and after removing bidirectional edges (c)+(d)). The red arrows indicate
how robots change their positions during the preprocessing steps.

For the tiling, we assume that the rectangle P is axis aligned and that its bottom-left
corner is (0, 0). We consider kv := b n1

12dc vertical lines `v
1, . . . , `v

kv
with x-coordinate modulo

12d equal to 0. Analogously, we consider kh := b n2
12dc horizontal lines `h

1 , . . . , `h
kh

with y-
coordinate modulo 12d to 0. Finally, we consider the tiling of P that is induced by the
arrangement induced by `v

1, . . . , `v
kv−1, `h

1 , . . . , `h
hv−1 and the boundary of P . This implies

that the side length of a tile is upper-bounded by 24d− 1.
Finally, computing the flow GT is straightforward by considering the tiling T and the

robots’ start and target positions.

3.2.2 Step 2: Ensuring planarity and unidirectionality

After initialization, we preprocess GT , removing edge intersections and bidirectional edges by
transforming the start configuration Cs into an intermediate start configuration C ′s, obtaining
a planar flow without bidirectional edges. This transformation consists of two steps: (1)
ensuring planarity and (2) ensuring unidirectionality.

Step (1): We observe that edge crossings only occur between two diagonal edges with
adjacent source tiles, as illustrated in Figure 2(a)+(b). To remove a crossing, it suffices to
eliminate one of the diagonal edges by exchange robots between the source tiles. To eliminate
all crossings, each robot is moved at most once, because after moving, the robot does no
longer participate in a diagonal edge. Thus, all necessary exchanges can be done in O(d)
steps by Lemma 2, covering the tiling T by constantly many layers, similar to the proof of
Lemma 2.

Step (2): We delete a bidirectional edge (v, w), (w, v) by moving min{fT ((v, w)), fT ((w, v))}
robots with target tile w from v to w and vice versa which achieves that min{fT ((v, w)),
fT ((w, v))} robots achieve their target tile w and min{fT ((v, w)), fT ((w, v))} robots achieve
their target tile v, thus eliminating the edge with lower flow value. This process is depicted
in Figure 2(c)+(d). Like step (1), this can be done in O(d) parallel steps by Lemma 2. As
we do not add any edges, we maintain planarity during step (2). Observe that during the
preprocessing, we do not destroy the grid structure of GT .

Step (1) and step (2) maintain the flow property of fT without any other manipulations
to the flow fT , because both preprocessing steps can be represented by local circulations.
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3.2.3 Step 3: Computing a flow partition
After preprocessing, we partition the flow GT into d-subflows.

I Definition 5. A subflow of GT is a circulation G′T = (T, E′, f ′T ), such that E′ ⊆ ET , and
0 ≤ f ′T (e) ≤ fT (e) for all e ∈ E′. If f ′T (e) ≤ z for all e ∈ E′ and some z ∈ N, we call G′T a
z-flow.

The flow partition relies on an upper bound on the maximal edge weight in GT . By
construction, tiles have side length at most 24d; therefore, each tile consists of at most 576d2

unit squares. This yields the following upper bound; a tighter constant factor can be achieved
using a more sophisticated argument.

I Observation 6. We have fT (e) ≤ 576d2 for all e ∈ ET .

I Definition 7. A (z, `)-partition of GT is a set of ` z-subflows {G1 = (V1, E1, f1), . . . , G` =
(V`, E`, f`)} of GT , such that G1, . . . , G` sum up to GT .

I Lemma 8. We can compute a (d,O(d))-partition of GT in polynomial time.

Proof sketch. In a slight abuse of notation, throughout this proof, the elements in sets of
cycles are not necessarily unique. A (d,O(d))-partition can be constructed using the following
steps.

We start by computing a (1, h)-partition C© of GT consisting of h ≤ n1n2 cycles. This
is possible because GT is a circulation. If a cycle C intersects itself, we subdivide C into
smaller cycles that are intersection-free. Furthermore, h is clearly upper bounded by
the number of robots n1n2, because every robot can contribute only 1 to the sum of all
edges in GT . As the cycles do not self-intersect, we can partition the cycles C© by their
orientation, obtaining the set C� of clockwise and the set C	 of counterclockwise cycles.
We use C� and C	 to compute a (1, h′)-partition C1

�∪C2
�∪C1

	∪C2
	 with h′ ≤ n1n2, such

that two cycles from the same subset C1
�, C2

�, C1
	, or C2

	 share a common orientation.
Furthermore, we guarantee that two cycles from the same subset are either edge-disjoint
or one lies nested in the other. A partition such as this can be constructed by applying a
recursive peeling algorithm to C� and C	 as depicted in Figure 3, yielding a decomposition
of the flow induced by C� into two cycle sets C1

� and C2
�, where C1

� consists of clockwise
cycles and C2

� consists of counterclockwise cycles, and a similar partition of C	, see the
appendix for details.
Afterwards, we partition each set C1

�, C2
�, C1

	, and C2
	 into O(d) subsets, each inducing

a d-subflow of GT , see the appendix for details. J

3.2.4 A subroutine of Step 4: Realizing a single subflow
In this section, we present a procedure for realizing a single d-subflow G′T of GT .

I Definition 9. A schedule t := C1 → · · · → Ck+1 realizes a subflow G′T = (T, E′, f ′T ) if, for
each pair v, w of tiles, the number of robots moved by t from their start tile v to their target
tile w is f ′T ((v, w)), where we let f ′T ((v, w)) = 0 if (v, w) /∈ E′.

I Lemma 10. Let G′T = (T, E′T , f ′T ) be a planar unidirectional d-subflow. There is a
polynomial-time algorithm that computes a schedule C1 → · · · → Ck+1 realizing G′T for a
constant k ∈ O(1).
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Figure 3 Recursive peeling of the area bounded by the cycles from C�, resulting in clockwise
cycles (thick black cycles). Cycles constituting the boundary of holes are counterclockwise (thick
red cycles). Note that an edge e vanishes when fT (e) cycles containing that edge are removed by
the peeling algorithm described above.

2
1

v

w u

2

1

(a) Preprocessing of diag-
onal edges.

2

21
3

(b) Configuration and
flow after preprocessing.

123

(c) A crossing-free matching of in-
coming and outgoing robots and
the connecting paths inside the cor-
responding tile, for d = 3.

Figure 4 Procedure for computing transformation steps that realize a d-subflow. Figures (a)
and (b) illustrate how we preprocess G′

T such that E′
T consists of horizontal and vertical edges

only. Figure (c) illustrates the main approach. White disks illustrate start positions and black disks
illustrate target positions.

Proof sketch. We give a high-level description of the proof and refer to the full version of
the paper [6] for details.

Our algorithm uses k = O(d) preprocessing steps C1 → · · · → Ck, as depicted in
Figure 4(a)+(b), and one final realization step Ck → Ck+1, shown in Figure 4(c), pushing
the robots from their start tiles into their target tiles. The preprocessing eliminates diagonal
edges and places the moving robots next to the border of their target tiles. For the final
realization step we compute a pairwise disjoint matching between incoming and outgoing
robots, such that each pair is connected by a tunnel inside the corresponding tile in which
these tunnels do not intersect, see Figure 4(a). The final realization step is given via the
robots’ motion induced by pushing each robot into the interior of the tile and by pushing this
one-step motion through the corresponding tunnel into the direction of the corresponding
outgoing robot. J
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(a) (b) (c) (d) (e)

Figure 5 Stacking robots in lines induced by flows of the edges of the subflows to be realized.

3.2.5 Step 4: Realizing all subflows
Next we extend the idea of Lemma 10 to ` ≤ d subflows instead of one and demonstrate how
this can be leveraged to move all robots to their target tile using O(d) transformation steps.

I Lemma 11. Let S := 〈G1 = (V1, E1, f1), . . . , G` = (V`, E`, f`)〉 be a sequence of ` ≤ d

unidirectional planar d-subflows of GT . There is a polynomial-time algorithm computing
O(d) + ` transformation steps C1 → · · · → Ck+` realizing S.

Proof sketch. We give a high level description of the proof and refer for details to the full
version of the paper [6].

Let t be an arbitrary tile. Similar to the approach of Lemma 10, we first apply a
preprocessing step guaranteeing that the robots to be moved into or out of t are in the right
position close to the boundary of t, see Figure 5. Thereafter we move the robots into their
target tiles, using ` applications of the algorithm from Lemma 10 without the preprocessing
phase. In particular, we realize a sequence of ` d-subflows by applying ` times the single
realization step of Lemma 10. J

I Lemma 12. There is a polynomial-time algorithm computing O(d) transformation steps
moving all robots into their target tiles.

Proof. By Lemma 8, we can compute a (d, cd)-partition of GT for c ∈ O(1). We group the
corresponding d-subflows into cd

d = c sequences, each consisting of at most d d-subflows.
We realize each sequence by applying Lemma 11, using O(d) transformation steps for each
sequence. This leads to O(cd) = O(d) steps for realizing all sequences of d-subflows. J

For the proof of Theorem 3, we still need to analyze the time complexity of our approach,
for which we refer to the full version of the paper [6].

4 Variants on labeling

A different version is the unlabeled variant, in which all robots are the same. A generalization
of both this and the labeled version arises when robots belong to one of k color classes, with
robots from the same color class being identical.

We formalize this problem variant by using a coloring c : {1, . . . , n1n2} → {1, . . . , k} for
grouping the robots. By populating unoccupied cells with robots carrying color k + 1, we
may assume that each unit square in the environment P is occupied. The robots draw an
image I =

(
I1, . . . , Ik

)
, where Ii is the set of cells occupied by a robot with color i. We say

that two images Is and It are compatible if in Is and It the number of cells colored with
color i are equal for each color i = 1, . . . , k. By moving the robots, we want to transform a
start image Is into a compatible target image It, minimizing the makespan.

I Theorem 13. There is an algorithm with running time O(k(N)1.5 log(N) + N5) for
computing, given start and target images Is, It with maximum distance d between start and
target positions, an O(1)-approximation of the optimal makespan M and a corresponding
schedule.
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The basic idea is to transform the given unlabeled problem setting into a labeled problem
setting by solving a geometric bottleneck matching problem, see the the full version of the
paper [6] for details.

5 Continuous motion

The continuous case considers N unit disks that have to move into a target configuration;
the velocity of each robot is bounded by 1, and we want to minimize the makespan. For
arrangements of disks that are not well separated, we show that constant stretch is impossible.

I Theorem 14. There is an instance with optimal makespan M ∈ Ω(N1/4).

The basic proof idea is as follows. Let {m1, . . . , mN} be an arbitrary trajectory set
with makespan M . We show that there must be a point in time t ∈ [0, M ] where the area
of Conv(m1(t), . . . , mN (t)) is lower-bounded by cN + Ω(N3/4), where cN is the area of
the convex hull Conv(m1(0), . . . , mN (0)) of m1(0), . . . , mN (0). Assume M ∈ o

(
N1/4)

and
consider the area of Conv(m1(t′), . . . , mN (t′)) at some point t′ ∈ [0, M ]. This area is at most
cN +O(

√
N) · o

(
N1/4)

which is a contradiction. Proof details are given in the full version
of the paper [6].

Conversely, we give a non-trivial upper bound on the stretch, as follows.

I Theorem 15. There is an algorithm that computes a trajectory set with continuous
makespan of O(d +

√
N). If d ∈ Ω(1), this implies a O(

√
N)-approximation algorithm.

The approach of Theorem 15 applies an underlying grid with mesh size 2
√

2. Our
algorithm (1) moves the robots to vertices of the grid, (2) applies our O(1)-approximation for
the discrete case, and (3) moves the robots from the vertices of the grid to their targets. For
a detailed description of the Algorithm of Theorem 15 see the full version of the paper [6].

6 Conclusion

We have presented progress on a number of algorithmic problems of parallel motion planning,
also shedding light on a wide range of interesting open problems described in the following.

The first set of problems consider complexity. The labeled problem of Section 3 is known
to be NP-complete for planar graphs. It is natural to conjecture that the geometric version
is also hard. It seems tougher to characterize the family of optimal trajectories: As shown
above, their nature is unclear, so membership in NP is doubtful.

A second set of questions considers the relationship between stretch factor and disk
separability in the continuous setting. We believe that the upper bound of O(

√
N) on the

worst-case stretch factor for dense arrangements is tight. What is the critical separability
of disks for which constant stretch can be achieved? How does the stretch factor increase
as a function of N below this threshold? For sparse arrangements of disks, simple greedy,
straight-line trajectories between the origins and destinations of disks encounter only isolated
conflicts, resulting in small stretch factors close to 1, i.e., 1 + o(1). What is the relationship
between (local) density and the achievable stretch factor along the whole density spectrum?

Finally, practical motion planning requires a better handle on characterizing and com-
puting optimal solutions for specific instances, along with lower bounds, possibly based
on numerical methods and tools. Moreover, there is a wide range of additional objectives
and requirements, such as accounting for acceleration or deceleration of disks, turn cost, or
multi-stop tour planning. All these are left for future work.
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