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A conflict-free k-coloring of a graph G = (V,E) assigns one of k different colors to

some of the vertices such that, for every vertex v, there is a color that is assigned

to exactly one vertex among v and v’s neighbors. Such colorings have applications in
wireless networking, robotics, and geometry, and are well studied in graph theory. Here we

study the conflict-free coloring of geometric intersection graphs. We demonstrate that the
intersection graph of n geometric objects without fatness properties and size restrictions

may have conflict-free chromatic number in Ω(logn/ log logn) and in Ω(
√

logn) for disks

or squares of different sizes; it is known for general graphs that the worst case is in
Θ(log2 n). For unit-disk intersection graphs, we prove that it is NP-complete to decide

the existence of a conflict-free coloring with one color; we also show that six colors always

suffice, using an algorithm that colors unit disk graphs of restricted height with two
colors. We conjecture that four colors are sufficient, which we prove for unit squares

instead of unit disks. For interval graphs, we establish a tight worst-case bound of two.

Keywords: Conflict-free coloring; intersection graphs; unit disk graphs; complexity;
worst-case bounds.

1. Introduction

Coloring the vertices of a graph is one of the fundamental problems in graph theory,

both scientifically and historically. The notion of proper graph coloring can be

generalized to hypergraphs in several ways. One natural generalization is conflict-

free coloring, which asks to color the vertices of a hypergraph such that every

hyperedge has at least one uniquely colored vertex. This problem has applications

in wireless communication, where “colors” correspond to different frequencies.

The notion of conflict-free coloring can be brought back to simple graphs, e.g.,

by considering the neighborhoods of the vertices of G as hyperedges. The resulting
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problem arises in certain variants of frequency assignment problems if one is not

interested in achieving signal coverage for all points in a region, but only at certain

points of interest. For an illustration, consider a scenario in which one has a given

set of nodes in the plane and wants to establish a communication network between

them. Moreover, assume that constructing nodes at new locations is either very

expensive or forbidden, and one can only “upgrade” any existing node to a wire-

less base station. Conflict-free coloring also plays a role in robot navigation, where

different beacons are used for providing direction. To this end, it is vital that in

any given location, a robot is adjacent to a beacon with a frequency that is unique

among the ones that can be received.

Both in the frequency assignment setting and in the robot navigation setting, one

typically wants to avoid placing unnecessary base stations or beacons. Abstractly

speaking, this corresponds to leaving some vertices uncolored, yielding the following

formalization of conflict-free coloring of graphs. For any vertex v ∈ V of a simple

graph G = (V,E), the neighborhood N [v] consists of all vertices adjacent to v

and v itself. A conflict-free k-coloring of G assigns one of k colors to a (possibly

proper) subset S ⊆ V of vertices such that every vertex v ∈ V has a uniquely

colored neighbor. The conflict-free chromatic number χCF (G) of G is the smallest

k for which a conflict-free coloring exists. Depending on the situation it may also

be more natural to consider open neighborhood conflict-free coloring, where each

vertex v must have a uniquely colored neighbor in its open neighborhood N(v) not

including v.

Conflict-free coloring has received an increasing amount of attention. Because

of the motivation arising from frequency assignment problems, for which the signal

range is often modeled using simple shapes such as disks, it is natural to investigate

the conflict-free coloring of intersection graphs of such shapes. In addition, previous

work has considered either general graphs and hypergraphs (e.g., see Ref. 27) or

other geometric scenarios in the presence of obstacles (e.g., see Ref. 20); we give

a more detailed overview further down. This adds to the relevance of conflict-free

coloring of intersection graphs, which lie in the intersection of general graphs and

geometry.

There is a spectrum of different scientific challenges when studying conflict-free

coloring. What are worst-case bounds on the necessary number of colors? When

is it NP-hard to determine the existence of a conflict-free k-coloring? We address

these questions for the case of intersection graphs.

Our contribution. We present the following results:

• We demonstrate that n geometric objects without fatness properties and size

restrictions may induce intersection graphs with conflict-free chromatic number

in Ω(log n/ log log n).

• We prove that non-unit square and disk graphs may require Ω(
√

log n) colors.

Deciding conflict-free k-colorability is NP-hard for any fixed k for these graph

classes.
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• It is NP-complete for unit-disk intersection graphs to decide the existence of a

conflict-free coloring with one color. The same holds for intersection graphs of

unit squares and other shapes.

• Six colors are always sufficient for conflict-free coloring of unit disks. This uses

an algorithm that colors unit disk graphs contained in a strip of restricted height

with two colors.

• Using a similar argument, we prove that four colors are always sufficient for

conflict-free coloring of unit squares.

• As a corollary, we get a tight worst-case bound of two on the conflict-free chro-

matic number of interval graphs.

Related work. In the geometric context, motivated by frequency assignment prob-

lems, the study of conflict-free coloring of hypergraphs was initiated by Even et al.15

and Smorodinsky.28 For disk intersection hypergraphs, Even et al.15 prove that

O(log n) colors suffice. For disk intersection hypergraphs with degree at most k, Alon

and Smorodinsky4 show that O(log3 k) colors are sufficient. Cheilaris et al.10 prove

that O(log n) colors suffice for the case of hypergraphs induced by planar Jordan

regions with linear union complexity. If every edge of a disk intersection hypergraph

must have k distinct unique colors, Horev et al.21 prove that O(k log n) suffice.

Moreover, for unit disks, Lev-Tov and Peleg24 present an O(1)-approximation algo-

rithm for the conflict-free chromatic number. Abam et al.1 consider the problem

of making a conflict-free coloring robust against removal of a certain number of

vertices, and prove worst-case bounds for the number of colors required. The online

version of the problem has been studied as well; see, e.g., the work of Chen et al.12

that presents, among other results, a randomized online algorithm using O(log n)

colors to maintain a conflict-free coloring of a set of intervals, or the work of Bar-

Noy et al.6 that presents an online algorithm using O(k log n) colors for some classes

of k-degenerate hypergraphs.

The dual problem in which one has to color a given set of points such that each

region contains a uniquely colored point has also received some attention. Har-Peled

and Smorodinsky19 prove that for families of pseudo-disks, every set of points can

be colored using O(log n) colors. For rectangles, Ajwani et al.3 show that O(n0.382)

colors suffice, whereas Elbassioni and Mustafa14 show that it is possible to add a

sublinear number of points such that sublinearly many colors suffice. For coloring

points on a line with respect to intervals, Cheilaris et al.9 present a 2-approximation

algorithm, and a (5− 2
k )-approximation algorithm when every interval must contain

k uniquely colored points.

In general hypergraphs, i.e., hypergraphs not necessarily arising from a geometric

context, Ashok et al.5 prove that maximizing the number of conflict-freely colored

hyperedges is FPT with respect to the number of conflict-freely colored hyperedges

in the solution.

Conflict-free coloring also arises in the context of the conflict-free variant of

the chromatic Art Gallery Problem, which asks to guard a polygon using colored
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guards such that each point sees a uniquely colored guard. Fekete et al.16 prove

that computing the chromatic number is NP-hard in this context. On the positive

side, Hoffmann et al.20 prove Θ(log log n) colors are sometimes necessary and always

sufficient for the conflict-free chromatic art gallery problem under rectangular vis-

ibility in orthogonal polygons. For straight-line visibility, Bärtschi and Suri8 prove

that O(log n) colors suffice for orthogonal and monotone polygons and O(log2 n)

colors suffice for simple polygons. This is generalized by Bärtschi et al.,7 who prove

that O(log n) colors suffice for simple polygons.

There also has been work regarding the scenario where the hypergraph is

induced by the neighborhoods of vertices of a simple graph. Except for the need

to color all vertices, this corresponds to the scenario considered in this work. This

does not change the asymptotic number of colors required, since it suffices to insert

one additional color to color all vertices that would otherwise remain uncolored.

In this situation, Pach and Tardos27 prove that the conflict-free chromatic num-

ber of an n-vertex graph is in O(log2 n). Glebov et al.18 extend this result by

proving that almost all G(n, ω(1/n))-graphs have conflict-free chromatic number

O(log n). Moreover, they show that the upper bound of Pach and Tardos27 is

tight by giving a randomized construction for graphs having conflict-free chromatic

number Θ(log2 n). In more recent work, Gargano and Rescigno17 show that finding

the conflict-free chromatic number for general graphs is NP-complete, and prove

that the problem is FPT w.r.t. vertex cover or neighborhood diversity number.

In our work with Abel et al.,2 we consider conflict-free coloring of general and

planar graphs and proved a conflict-free variant of Hadwiger’s conjecture, which

implies that planar graphs have conflict-free chromatic number at most three. Most

recently, Keller and Smorodinsky23 consider conflict-free coloring on intersection

graphs of geometric objects, in a scenario very similar to ours. Among other results,

they prove that O(log n) colors suffices to color a family F of pseudodisks in a

conflict-free manner. With respect to open neighborhoods (also known as pointed

neighborhoods), they prove that this is tight; for closed neighborhoods as studied

in this paper, the tightness of this bound is not proven and remains open. They

also consider the list coloring variant of the problem.

Conflict-free coloring has also been studied for other graph-based hypergraphs.

For instance, Cheilaris and Tóth11 consider the case of hypergraphs induced by the

paths of a graph. If the input is the graph, they prove that it is coNP-complete to

decide whether a given coloring is conflict-free.

Conflict-free coloring is not the only type of coloring for which unit disk graphs

have been found to require a bounded number of colors. In their recent work, McDi-

armid et al.25 consider clique coloring of unit disk graphs, in particular with regard

to the asymptotic behavior of the clique chromatic number of random unit disk

graphs. They also prove that every unit disk graph in the plane can be colored

with nine colors, while three colors are sometimes necessary. Similar to the present

paper, they prove this by cutting the plane into strips of height
√

3; for each of

these strips it is then proven that three colors suffice.
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2. Preliminaries

In the following, G = (V,E) denotes a graph on n := |V | vertices. For a vertex

v, N(v) denotes its open neighborhood and N [v] = N(v) ∪ {v} denotes its closed

neighborhood. A conflict-free k-coloring of a graph G = (V,E) is a coloring χ :

V ′ → {1, . . . , k} of a subset V ′ ⊆ V of the vertices of G, such that each vertex

v ∈ V has at least one conflict-free neighbor u ∈ N [v], i.e., a neighbor u whose color

χ(u) occurs only once in N [v]. The conflict-free chromatic number χCF (G) is the

minimum number of colors required for a conflict-free coloring of G.

A graph G is a disk graph iff G is the intersection graph of disks in the plane. G

is a unit disk graph iff G is the intersection graph of disks with fixed radius r = 1

in the plane, and a unit square graph iff G is the intersection graph of axis-aligned

squares with side length 1 in the plane. A unit disk (square) graph is of height h iff

G can be modeled by the intersection of unit disks (squares) with center points in

(−∞,∞)×[0, h]. In the following, when dealing with intersection graphs, we assume

that we are given a geometric model. In the case of unit disk and unit square graphs,

we identify the vertices of the graph with the center points of the corresponding

geometric objects in this model.

3. General Objects

Intersection graphs of geometric objects can generally contain cliques of arbitrary

size, so their chromatic number may be unbounded. However, cliques do not require

a large number of colors in a conflict-free coloring, so it is not immediately clear

whether the intersection graphs for a family of geometric objects have bounded

conflict-free chromatic number.

If the intersecting objects can be scaled down arbitrarily, i.e., if every repre-

sentable graph can be represented using arbitrarily small area, we can make use of

the following lemma to prove lower bounds on the number of colors required.

Lemma 1. Let Gk be a graph with χCF (Gk) ≥ k, and let G be a graph containing

two disjoint copies J1
k and J2

k of Gk. Let v1, . . . , vl be vertices of G, not contained in

J1
k or J2

k , and let each vertex vi be adjacent to every vertex of J1
k and J2

k . Moreover,

let these vertices be the only neighbors of J1
k and J2

k . Then in every conflict-free

k-coloring of G, one of the vertices v1, . . . , vl has a color that appears only once in

v1, . . . , vl.

Proof. Assume there was a conflict-free k-coloring χ of G such that none of the

vertices v1, . . . , vl has a unique color. Therefore, each vertex in J1
k has a conflict-

free neighbor in J1
k , and restricting χ to V (J1

k ) yields a conflict-free k-coloring

of J1
k . As χCF (Gk) ≥ k, each color is used on V (J1

k ) at least once. The same

holds for J2
k . Therefore, each vertex v1, . . . , vl has at least two occurrences of

each color in its neighborhood; this contradicts the fact that χ is a conflict-free

coloring of G.
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For general objects like freely scalable ellipses or rectangles, it is possible to

model a complete graph Kk of arbitrary size k, such that the following conditions

hold:

(1) For every object v, there is some non-empty area of v not intersecting any other

objects.

(2) For every pair of objects v, w, there is a non-empty area common to these

objects not intersecting any other objects.

This can be seen by choosing k intersecting lines such that no three lines intersect

in a common point. These lines can then be approximated using sufficiently thin

objects to achieve the desired configuration.

In this case, the conflict-free chromatic number is unbounded, because we can

inductively build a family Gk of intersection graphs with χC(Gk) = k as follows.

Starting with G1 = ({v}, ∅) and G2 = C4 (a four-vertex cycle), we construct Gk by

starting with a Kk modeled according to conditions (1) and (2). Giving each of the

k objects corresponding to the vertices of this Kk a unique color yields a conflict-

free k-coloring of Gk. For every object v, we place two scaled-down non-intersecting

copies of Gk−1 into an area covered only by v. According to Lemma 1, these gadgets

enforce that every vertex of the underlying Kk is colored. For every pair of objects

v, w, we place two scaled-down non-intersecting copies of Gk−2 into an area covered

only by v and w. Figure 1 depicts the construction of G5 for ellipses. The two

copies of Gk−2 enforce that v and w have to receive different colors in any potential

conflict-free (k−1)-coloring of Gk; this can be seen as follows. Assume that v and w

are both colored using the same color; this color cannot be used for the conflict-free

neighbor of any of the vertices in the copies. Thus the restriction of a conflict-free

(k − 1)-coloring of Gk to each copy must be a conflict-free coloring of that copy,

which requires k − 2 colors by induction. Therefore, all k − 1 colors occur twice in

the neighborhood of v and w, a contradiction; in a conflict-free (k − 1)-coloring, v

and w must receive different colors. Thus, Gk requires k colors by the pidgeonhole

principle.

The number of vertices used by this construction satisfies the recurrence

|G1| = 1, |G2| = 4, |Gk| = k + 2k|Gk−1|+ k(k − 1)|Gk−2|.

To estimate the growth of |Gk|, let Ḡk = |Gk| for k ≤ 2 and Ḡk = 3kḠk−1 + k(k −
1)Ḡk−2; clearly, Ḡk ≥ |Gk| for all k. The recurrence Ḡk has the closed-form solution

Ḡk =
k!

13 · 2k+1
· ((5
√

13− 13)(3 +
√

13)k − (13 + 5
√

13)(3−
√

13)k)

= Θ

k!

(
3 +
√

13

2

)k
,

implying that the number of colors required in geometric intersection graphs on n

vertices may be Ω( logn
log logn ).
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2 ·G4

2 ·G4

2 ·G4

2 ·G4

G3

2·

Fig. 1. The graph G5, shown as an intersection graph of ellipses, requires five colors. The five
segments in general position which support the ellipses according to our construction are shown

as dashed lines. Each orange area contains two copies of the graph G3, also depicted in the figure.

Moreover, each of the five large ellipses contains two copies of G4. In total, G5 has 3,825 vertices
(color online).

We summarize.

Theorem 1. The intersection graph of n convex objects in the plane may have

conflict-free chromatic number in Ω(log n/ log log n).

The best upper bound on the number of colors required in this scenario that we

are aware of is O(log2 n), which holds for general graphs and is due to Pach and

Tardos.27

4. Different-Sized Squares and Disks

Due to their fatness, squares and disks do not allow us to construct an arbitrarily

big clique Kn such that condition (2) of Sec. 3 holds. However, we can still prove

that there is no constant bound on their conflict-free chromatic number. The proof
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is based on Lemma 1, which enables us to reduce the conflict-free coloring problem

on intersection hypergraphs to our problem.

Theorem 2. The conflict-free chromatic number of disk intersection graphs and

square intersection graphs can be Ω(
√

log n).

Proof. We prove the theorem by inductively constructing, for any number of colors

k, a disk intersection graph Dk with conflict-free chromatic number χCF (Dk) = k

andO(2k
2

) vertices. The first level of the construction isD1, consisting of an isolated

vertex. The remainder of the construction is based on a lower-bound example due

to Even et al.,15 requiring Ω(log n) colors when each point in the union of all disks

must lie in a uniquely colored disk. This lower-bound example consists of chain

disks 1, . . . , 2k−1 on a horizontal line segment, placed such that all disks overlap

in the center. For each interval [i, j], 1 ≤ i ≤ j ≤ 2k−1, there is one region with

non-zero area in which exactly the disks from this interval overlap. This situation

is depicted in Fig. 2.

Claim. For a chain consisting of at least 2l−1 disks, we need at least l colors in

any coloring that guarantees each interval [i, j] with 1 ≤ i ≤ j ≤ 2l−1 contains at

least one uniquely colored disk.

Proof of Claim. We prove this claim using induction on l. For a chain of length

20, one color is required for the interval [1, 1]. For a chain of length 2l, we need

one unique color for the interval [1, 2l]. Let i be the chain disk colored using this

color. At least one of the intervals [1, i − 1], [i + 1, 2l] has length at least 2l−1. By

induction, this interval requires l colors. These colors must all be distinct from the

color used for i, therefore forcing us to use l + 1 colors in total. �

To construct Dk, for each interval [i, j] with 1 ≤ i ≤ j ≤ 2k−1, we choose

one region in which exactly the disks from [i, j] overlap and place two scaled-down

[1, 1] [1, 2] [1, 3] [1, 4] [2, 4] [3, 4] [4, 4]

[2, 3]

[3, 3][2, 2]
[1, 1]

[4, 4]

[1, 2]

[1, 3]

[1, 4]

[2, 4]

[3, 4]

[2, 2]

[3, 3]

[2, 3]

Fig. 2. A chain of length 4 using either disks or squares, requiring 3 colors in every conflict-free

hypergraph coloring. Adding two copies of D2 to every interval yields a disk intersection graph
that requires 3 colors in any conflict-free coloring.
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disjoint copies of Dk−1 in it. We prove that Dk requires k colors by induction on

k. That D1 requires one color is clear. Given that Dk−1 requires k − 1 colors for

some k ≥ 2, we can prove that Dk requires k colors as follows. Assume there was

a conflict-free (k − 1)-coloring χ of Dk. Due to Lemma 1, we know that, for each

interval [i, j], χ assigns a unique color to at least one of the chain disks in [i, j].

However, this contradicts the claim; therefore, Dk cannot be conflict-free (k − 1)-

colorable. The number of vertices used by Dk satisfies the recurrence

|D1| = 1, |Dk| = 2k−1 + 2k−1(2k−1 + 1)|Dk−1|

= 2k−1 + (22k−2 + 2k−1)|Dk−1|

≤ (22k−2 + 2k)|Dk−1|

≤ 22k−1|Dk−1| ≤ 2k
2−1.

Therefore, a disk intersection graph on n vertices may require Ω(
√

log n) colors in

any conflict-free coloring. All our arguments can also be applied to squares instead

of disks.

Theorem 3. For any fixed number of colors k, deciding whether a disk (or square)

intersection graph is conflict-free k-colorable is NP-complete.

Proof. Conflict-free coloring of disk intersection graphs is clearly in NP. We prove

NP-hardness inductively by reducing conflict-free (k−1)-colorability to conflict-free

k-colorability. For k = 1, NP-hardness follows from Theorem 4. In order to reduce

(k−1)-colorability to k-colorability, consider a graphG for which conflict-free (k−1)-

colorability is to be decided. We construct a graph H that is conflict-free k-colorable

iff G is conflict-free (k− 1)-colorable. For the sake of simplicity, we will refer to the

disk representation of G and H in the description of our construction; however, the

construction does not require this representation unless a disk representation of H is

desired. We start construction of H with a chain H1 of length 2k. For every interval

[i, j], 1 ≤ i ≤ j ≤ 2k, the hypergraph H1 contains a corresponding hyperedge. By the

argument used in the proof of Theorem 2, in a conflict-free hypergraph coloring of

H1, k+1 colors are required. For each 1 ≤ i ≤ 2k, we choose a region corresponding

to the interval [i, i] and place two disjoint copies of G inside. For all other intervals

[i, j], i 6= j, we choose a region corresponding to the interval and place one copy of

G inside; see Fig. 3.

If G is conflict-free (k − 1)-colorable, H is conflict-free k-colorable as follows.

Each copy of G can be colored using colors {2, . . . , k} in a conflict-free manner. In

order to give each chain vertex a conflict-free neighbor, in one of the two copies of

G in interval [i, i], we can color an arbitrary vertex of G with color 1.

If G is not conflict-free (k− 1)-colorable, by Lemma 1 we have to color all chain

vertices. Given such a coloring of the chain vertices, there are two possibilities for

each interval [i, j], 1 ≤ i < j ≤ 2k. (1) The chain vertices corresponding to the
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G

G

G

G

G

G

G

G

G G G G G

G

Fig. 3. The setup of the reduction for k = 2 colors. If G is conflict-free 1-colorable, every copy of
G can be colored using just color 2. Every chain disk can then receive a conflict-free neighbor for

instance by coloring one of the chain disks with color 1.

interval are colored such that there is a uniquely colored vertex. (2) Every color

occurring on the corresponding chain vertices occurs more than once.

As H1 does not have a conflict-free hypergraph k-coloring, case (2) must occur

for at least one interval [i, j]. Let G′ be the copy of G placed in [i, j]. Vertices in G′

cannot use the chain vertices as conflict-free neighbors. Moreover, at least one color

already appears twice in the neighborhood of every vertex of G′ and thus cannot

be the color of a conflict-free neighbor of any vertex in G′. Therefore a conflict-

free k-coloring of H would yield a conflict-free (k − 1)-coloring of G, which is a

contradiction.

For fixed k, this construction works in polynomial time. Therefore, conflict-free

k-coloring of disk intersection graphs is NP-complete for any fixed k ≥ 1. All our

arguments can also be applied to squares instead of disks.

This result also implies NP-hardness if the number k of colors is given as part of

the input instead of being a fixed value. Even et al.15 prove that Θ(log n) colors are

always sufficient and sometimes necessary to color a disk intersection hypergraph

in a conflict-free manner. Their work considers hypergraphs, meaning that every

point in the intersection of all disks must be contained in a uniquely colored disk.

Therefore, their upper bound holds in our scenario as well, but their lower bound

does not. This implies that O(log n) colors are sufficient to color a disk intersection

graph in a conflict-free manner, leaving a gap of O(
√

log n).

5. Unit-Disk Graphs

The constructions used in the previous two sections hinge on the fact that the

considered shapes can be scaled arbitrarily. In the setting of frequency assignment

for radio transmitters, it is natural to only consider fat objects with bounded aspect

ratio and size, such as unit disks and unit squares. As it turns out, their intersection
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graphs have conflict-free chromatic number bounded by a small constant; on the

other hand, even deciding the existence of a conflict-free coloring with a single color

is NP-complete.

5.1. Complexity : One color

While it is trivial to decide whether a graph has a regular chromatic number of 1

and straightforward to check a chromatic number of 2, it is already NP-complete to

decide whether a conflict-free coloring with a single color exists, even for unit-disk

intersection graphs. This is a refinement of Theorem 4.1 in Abel et al.,2 which shows

the same results for general planar graphs.

Theorem 4. It is NP-complete to decide whether a unit-disk intersection graph

G = (V,E) has a conflict-free coloring with one color.

Proof. Membership in NP is straightforward. We prove NP-hardness by reduction

from Positive Planar 1-in-3-SAT, see Mulzer and Rote.26 Given a Boolean

formula φ in 3-CNF with only positive literals and planar clause-variable incidence

graph, we construct a unit disk intersection graph G(φ) that has a conflict-free

1-coloring iff φ is 1-in-3-satisfiable.

Let φ consist of variables {x1, . . . , xn} and clauses {c1, . . . , ck}. In G(φ), vari-

ables xi are represented by a cycle of length 12k and clauses are represented by a

clause gadget; see Fig. 4. A clause gadget is a 5-vertex graph constructed by once

subdividing one of the edges of a K1,3, a star with three leaves. In a clause gadget,

the vertex at distance 2 from the center of the star is called the tip of the clause. In

each clause gadget, the tip is the only vertex that is connected to vertices outside

the gadget. Therefore, the center of the star must be colored in all clause gadgets,

and the tip cannot have a conflict-free neighbor inside the gadget.

Every third vertex of a variable gadget is a true vertex ; these are the vertices

that are colored if the corresponding variable is set to true. We connect the tip of

each clause to a true vertex of each variable occurring in the clause using paths

of length divisible by 3. There are sufficiently many true vertices in each variable

gadget to avoid having to use a true vertex for more than one clause.

Recall that a clause tip c cannot be colored and cannot have a conflict-free

neighbor in the clause gadget. Its neighbors d1, d2, d3 along the paths connecting c

to variables require conflict-free neighbors themselves. Therefore either di must be

colored itself or its predecessor pi on the path must be colored. Along the path to

the variable, every third vertex must be colored, starting with either di or pi. Thus

it is only possible to color di if the true vertices of the corresponding variable are

colored; pi can only be colored if the true vertices of the corresponding variable are

not colored, see Fig. 5.

In a conflict-free 1-coloring χ of G(φ), each clause tip has a conflict-free neighbor.

This implies that for each clause cj , exactly one of the vertices d1, d2, d3 is colored,

which in turn implies that exactly one variable gadget connected to cj has all its
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. . .

. . .

. . .

. . .

Fig. 4. (Left) A variable gadget. True vertices, i.e., vertices that are colored if the variable is set
to true are drawn with bold outline. In a conflict-free coloring of a variable gadget, every third

vertex along the cycle must be colored. This implies that we must color either all true vertices or

none of them. (Right) Clause gadget represented using unit disks and unit squares. The clause
tip that is attached to the remainder of G(φ) is drawn with bold outline. Dashed objects depict

where the connections to the variables attach to the tip. Orange vertices must be colored in any

conflict-free 1-coloring; therefore, the tip must remain uncolored (color online).

t

f

c

. . .

. . .

dipi

Fig. 5. Path connecting a variable to a clause tip c (with dashed clause gadget). The vertices
marked t and f are true and false vertices of a variable. Blue vertices are colored if the variable is

set to true, red vertices are colored if the variable is set to false. Gray vertices cannot be colored.

For the tip c, this is enforced directly by the clause gadget; for the other vertices along the path,
it follows from the fact that the tip cannot be colored (color online).

true vertices colored. Therefore setting the variables that have all their true vertices

colored to true yields a 1-in-3-satisfying assignment for φ. Analogously, a 1-in-3-

satisfying assignment for φ induces a conflict-free 1-coloring of G(φ).

We still have to argue that G(φ) is a unit disk graph that can be constructed

in polynomial time. We consider a straight-line embedding of φ’s clause-variable

incidence graph with vertices placed on an O(n+k)×O(n+k) integer grid; such an

embedding can be obtained in polynomial time based on the graph-drawing tech-

niques of Fraysseix et al.13 We enlarge this embedding by an appropriate polynomial

factor to ensure that clauses and variables are far enough from each other and edges

do not come too close to gadgets they are not incident to. We use the embedding of
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the variables and clauses to place the center of variables gadgets (marked by a cross

in Fig. 4) and clause vertices accordingly. The edges between variables and clauses

can then be replaced by paths; we can ensure that their length is divisible by 3 by

simple local modifications (shifting a constant number of disks closer to each other

and inserting a constant number of new disks). When deciding which true vertex

to use for a clause and where to place the disk adjacent to the clause vertex, we

preserve the order of edges around the clause and variables vertices of the embed-

ding. If multiple possible true vertices exist, we use a closest one. This excludes

intersections between different paths close to variables and unintended intersections

between paths and variable gadgets. We may have to bend the paths around the

clause gadgets; however, for every clauses this involves only a constant number of

disks.

5.2. A worst-case upper bound : Six colors

On the positive side, we show that the conflict-free chromatic number of unit disk

graphs is bounded by six. We do not believe this result to be tight. In particular,

we conjecture that the number is bounded by four; in fact, we do not even know an

example for which two colors are insufficient. One of the major obstacles towards

obtaining tighter bounds is the fact that a simple graph-theoretic characterization

of unit disk graphs is not available, as recognizing unit disk graphs is complete for

the existential theory of the reals.22 This makes it hard to find unit disk graphs

with high conflict-free chromatic number, especially considering the size that such a

graph would require: The smallest graph with conflict-free chromatic number three

we know has 30 vertices, and by enumerating all graphs on 12 vertices one can

show that at least 13 vertices are necessary, even without the restriction to unit

disk graphs.

One approach to conflict-free coloring of unit disk graphs is by subdividing the

plane into strips, coloring each strip independently. We conjecture the following.

Conjecture 1. Unit disk graphs of height 2 are conflict-free 2-colorable.

If this conjecture holds, every unit disk graph is conflict-free 4-colorable. In

this case, one can subdivide the plane into strips of height 2, and then color the

subgraphs in all even strips using colors {1, 2} and the subgraphs in odd strips using

colors {3, 4}. Instead of Conjecture 1, we prove the following weaker result.

Theorem 5. Unit disk graphs G of height
√

3 are conflict-free 2-colorable.

Proof. Given a realization of G consisting of unit disks with center points with

y-coordinate in [0,
√

3], we compute a conflict-free 2-coloring of G using a simple

greedy algorithm detailed in Algorithm 1. The algorithm produces a sequence of

points in ascending xy-lexicographic order (denoted by ≤) and colors them using

colors 1 and 2 in alternation. In each step, the algorithm covers at least one previ-

ously uncovered point; we call a point covered iff it is either colored or has a colored
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Input : The set D of disk center points of G

Output: A conflict-free 2-coloring of G

R ← 1 ; // The current color

A ← ∅ ; // The currently covered points

c ← (−∞, 0) ; // The current point

while A 6= D do

foreach ci ∈ D in lexicographically ascending order with ci > c do

if ∀c′ < ci : (c′ ∈ A ∨ c′ is adjacent to ci) then

c ← ci;

end

end

color c with color R;

R ← 3−R;

A ← A ∪N [c];

end

Algorithm 1. A greedy coloring algorithm computing a conflict-free 2-coloring

of a unit disk graph of height
√

3.

neighbor. Intuitively speaking, the next point to be colored is the rightmost point

that we could choose without leaving a gap containing uncovered points to its left.

More formally, in each step, we find the lexicographically maximal disk center c

such that every center point c′ < c is already covered by the previously colored

points or adjacent to c. Note that c may be a covered point; however, in each step

there must be at least one uncovered point c′ ≤ c.
When this algorithm terminates, every point v is covered by at least one colored

neighbor in N [v]. It remains to exclude the following three cases:

(1) A colored point v is adjacent to another point of the same color,

(2) An uncolored point is adjacent to two or more points of one color and none of

the other color,

(3) An uncolored point is adjacent to two or more points of both colors.

To this end, we use the following observation. Each colored point c induces a

closed vertical strip of width 2 centered around c. As shown in Fig. 6, every point v

in this strip is adjacent to c; we say that c covers the strip. Whenever the algorithm

picks the next colored point, the first candidate it has to consider is the leftmost

uncovered point. Thus, the horizontal distance between two colored points must be

greater than 1. For case (1), assume there was a point v of color 1 adjacent to a

point w > v of color 1. This cannot occur, because between v and w, there must

be a point x of color 2; therefore, the horizontal distance between v and w must be

greater than 2, a contradiction.
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0

√
3

w′

u

w

v

c

v

0

√
3

Fig. 6. (Left) Every colored point c induces a vertical strip of width 2 (dashed lines); all points

v within this strip are adjacent to c. (Right) The configuration in case (2); there must be a point

u of color 2 adjacent to v.

Regarding case (2), assume there was an uncolored point v adjacent to two

points w′ < v < w of color 1; see Fig. 6. Between points w′ and w, there must

be a point u of color 2, and v must not be adjacent to u. There are two possible

orderings: w′ < v < u < w and w′ < u < v < w. W.l.o.g., let u < v; the other

case is symmetric. In this situation, the x-coordinates of the points have to satisfy

x(u) < x(v) − 1, x(w′) < x(u) − 1, and thus x(w′) < x(v) − 2 in contradiction to

the assumption that v and w′ are adjacent.

Regarding case (3), assume there was an uncolored point v adjacent to two

points w′ < v < w of color 1 and two points u′ < v < u of color 2. W.l.o.g., assume

w′ < u′ < v < w < u as depicted in Fig. 7; the case u′ < w′ is symmetric. Because

w′ and v are adjacent, the vertical strip induced by v intersects the strip induced

by w′. Thus, there cannot be a point y with w′ < y < v not adjacent to w′ or v.

This is a contradiction to the choice of u′: The algorithm would have chosen v, or

a larger point, instead of u′.

Subdividing the plane into strips of height
√

3 yields the following corollary.

Corollary 1. Unit disk graphs are conflict-free 6-colorable.

Unfortunately, the proof of Theorem 5 does not appear to have a straightforward

generalization to strips of larger height. Further reducing the height to find strips

that are colorable with one color is also impossible, see Sec. 6.

0

√
3

w′

uu′

w

v

Fig. 7. The configuration in case (3); the algorithm would have chosen v instead of u′.
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5.3. Unit-disk graphs of bounded area

Proving Conjecture 1 is non-trivial, even when all center points lie in a 2×2-square.

In this setting, a circle packing argument can be used to establish the sufficiency

of three colors. If a unit disk graph with conflict-free chromatic number 3 can be

embedded into a 2× 2-square, the following are necessary:

(1) Every minimum dominating set D has size 3. We can pack at most three non-

touching disks into the square, so the maximum independent set has size 3. On

the other hand, if there was any dominating set with at most two vertices, we

could simply color all its vertices with unique colors.

(2) For any minimum dominating set D = {u, v, w}, every pair of dominating ver-

tices must have a common neighbor that is not adjacent to the third dominating

vertex. Otherwise, assume w.l.o.g. that u and v do not have a common neighbor

that is not adjacent to w. We can achieve a conflict-free 2-coloring by assigning

color 1 to u and v and color 2 to w. Therefore, each minimum dominating set

lies on a cycle of length 6, where chords between the dominating vertices and

the vertex on the opposite side are forbidden.

(3) G has diameter 2. Otherwise, any pair v, w of vertices at distance 3 could be

colored with the same color. There cannot be any maximal independent set of

size two because of (1), so there must be a vertex u independent from v and w

that dominates the graph together with v and w.

Using the domination number, one can further restrict the position of the points in

the 2 × 2-square: There is an area in the center of the square, depicted in Fig. 8,

that cannot contain the center of any disk because this would yield a dominating

set of size two.

The smallest graph satisfying constraints (1)–(3), found by exhaustive search,

has 11 vertices and is depicted in Fig. 8. It is not a unit disk graph and it is still

conflict-free 2-colorable, but every coloring requires at least four colored vertices,

Fig. 8. (Left) A vertex-minimal graph satisfying (1)–(3). (Right) In any unit disk graph G embed-

dable in a 2× 2-square with domination number γ(G) = 3, no points lie in the depicted area.
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proving that coloring a minimum dominating set can be insufficient. This implies

that a simple algorithm like the one used in the proof of Theorem 5 will most likely

be insufficient for strips of greater height. We are not aware of any unit disk graph

satisfying these constraints.

6. Unit-Square and Interval Graphs

The constructions of the previous section can also be applied to the case of squares;

for interval graphs, we get a tight worst-case bound. It is straightforward to see

that the construction of Theorem 4 can be applied for unit squares instead of unit

disks.

Corollary 2. It is NP-complete to decide whether a unit square graph G = (V,E)

has a conflict-free coloring with one color.

The proof of Theorem 5 can be applied to unit square graphs of height 2 instead

of unit disk graphs of height
√

3; see Fig. 9.

Corollary 3. Unit square graphs of height 2 are conflict-free 2-colorable. Unit

square graphs are conflict-free 4-colorable.

Unit interval graphs correspond to unit disk or unit square graphs with all

centers lying on a line. Even then, two colors in a conflict-free coloring may be

required; the Bull Graph is such an example, see Fig. 10.

0

2

c

v

Fig. 9. For unit square graphs of height 2, we have a similar situation to that depicted in Fig. 6:

Centered around each colored vertex c, there is a vertical strip of width 4 such that all vertices v
with center points in this strip are adjacent to c. The remainder of the proof of Theorem 5 applies
to unit square graphs analogously.

Fig. 10. (Left) Realizing the Bull Graph as a unit interval graph. Conflict-free coloring requiring

two colors: there is no dominating vertex, the only pair of vertices at distance 3 is no dominating
set. (Right) A conflict-free 2-coloring of an interval graph as computed by the greedy coloring
algorithm sketched below.
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In this case, the bound of 2 is tight: By Theorem 5, unit interval graphs are

conflict-free 2-colorable. By adapting the algorithm used in the proof to always

choose the interval extending as far as possible to the right without leaving a pre-

vious interval uncovered, this can be extended to interval graphs with non-unit

intervals. For an example of this procedure, refer to Fig. 10.

7. Conclusion

There are various directions for future work. In addition to closing the worst-case

gap for unit disks (and proving Conjecture 1), the worst-case conflict-free chromatic

number for unit square graphs also remains open. Other questions include a tight

bound for disk (or square) intersection graphs, and a necessary criterion for a fam-

ily of geometric objects to have intersection graphs with unbounded conflict-free

chromatic number.
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