Computing Crossing-Free Configurations with
Minimum Bottleneck*

Sandor P. Fekete! and Phillip Keldenich?!

1 Department of Computer Science, TU Braunschweig, Germany
{s.fekete,p.keldenich}@tu-bs.de

—— Abstract

We consider problems of finding non-crossing bottleneck structures for a given planar point set:
For a given a set of vertices V, the problem MINIMUM BOTTLENECK PorycoN (MBP) is to find
a simple polygon P with vertex set V' whose longest edge is as short as possible; the problem
MINIMUM BOTTLENECK SIMPLE MATCHING (MBSM) is to find a crossing-free matching of V'
whose longest edge is as short as possible. Both problems are known to be NP-complete and
neither admits a PTAS. We develop exact methods that can solve benchmark instances (newly
generated and from the classic TSPLIB library) with up to 1,500 points for MBP and up to
20,000 points for MBSM to provable optimality.

1 Introduction

Finding a simple polygon with a given set V of vertices in the plane is one of the basic
problems of computational geometry. If we want to minimize the overall length, this is is
equivalent to the classic Traveling Salesman Problem (TSP), as a shortest tour is always
non-crossing. However, if the objective is to minimize the length of the longest edge, this is
no longer the case, see Fig. 1. This problem MINIMUM BOTTLENECK POLYGON (MBP) is
NP-complete and unless P=NP, it cannot be approximated within a factor better than /3,
as it is NP-complete to decide whether a hexagonal grid graph has a Hamiltonian cycle (HC)
of unit edges (see Arkin et al. [5]). We are not aware of any constant-factor approximation
algorithms for the MBP.

A similarly basic geometric optimization problem is to find a matching for a given
vertex set. When minimizing the total length of all edges, an optimal solution must also
be non-crossing; this allows it to use standard matching techniques, subject to the (purely
theoretical) issue of computing the sum of a set of square roots. Matching techniques can
also be used to compute a MINIMUM BOTTLENECK MATCHING (MBM) in polynomial time.
However, a solution to MBM does not have to be non-crossing, as shown in Fig. 1. In fact,
it was shown by Abu-Affash et al. [2] that this problem MINIMUM BOTTLENECK SIMPLE
MatcHING (MBSM) is NP-complete and does not allow a PTAS. They also provide a
21/10 ~ 6.325-approximation algorithm and state without proof that they can reduce this
factor to (1 + v/2)v/5 ~ 5.398.

In this paper, we develop methods for computing provably optimal solutions for benchmark
instances up to 2,000 points. Beyond illustrating the practical solvability of both problems,
this will provide ground truth for testing potential (improved) approximation methods.
Related work. There is a huge body of related work; due to limited space, we only mention
a small subset.

* This work was partially supported by the DFG Research Unit "Controlling Concurrent Change", funding
number FOR 1800, project FE407/17-2, "Conflict Resolution and Optimization".

34th European Workshop on Computational Geometry, Berlin, Germany, March 21-23, 2018.

This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

23:2 Computing Crossing-Free Configurations with Minimum Bottleneck

Figure 1 Left: A minimum bottleneck matching and a crossing-free minimum bottleneck matching.
Right: A minimum bottleneck tour and a minimum bottleneck polygon.

The minimum bottleneck TSP was first introduced by Gilmore and Gomory [9]. For
metric instances, there is a 2-approximation algorithm implied by Fleischner’s theorem [8, 12]
which states that the square of every two-connected graph is Hamiltonian; for general metric
instances, this factor is best possible. Hochbaum and Shmoys [10] also prove a factor of 2
within a framework providing approximation algorithms for several bottleneck problems. The
problem of finding a longest simple polygon for a given vertex set was considered by Alon et
al. [3]; they conjecture this problem to be NP-hard, but this is still open. See Dumitrescu
and Té6th [6] for improved approximation factors.

2 Minimum Bottleneck Polygonalization

2.1 Modeling

We start with a basic formulation NMBP(V') of MINIMUM BOTTLENECK POLYGON as a
Mixed Integer Program, where x,, is a Boolean variable encoding whether pq is an edge of
the polygon and B encodes the bottleneck of the solution. For two points p,q € V, let x(pq)
be the set of line segments crossing pq.

min B s.t.
VpGV:prq:Q (1)
a#p
Vp,g € V,rs € x(pq) : Tpg + xrs < 1 (2)
VOCSCV: Y mp>2 (3)
pES,geV\S
Vp,q €V i |lpglly - 2pq < B (4)
zpq € {0,1}

Degree constraints (1) ensure two incident edges for each point, while crossing constraints (2)
exclude crossing edges. The subtour constraints (3) enforce a connected solution. Finally,
the bottleneck constraints (4) enforce the maximum edge length B.

This naive formulation is only practical for small point sets. Firstly, it is well known that
using an auxiliary variable B to encode a min max-type objective often induces weak LP
relaxations and thus leads to a suboptimally large search tree. Moreover, the total number of
crossing constraints corresponds to the number of convex quadruples in V', which is known to
be Q(n?) (see [11, 14]), so using all these constraints at once becomes prohibitively expensive.

In the following, we present a formulation of the MBP as a sequence BMBP, (V) of IPs
addressing these issues; this resembles the approach used in [7] for determining the threshold
value for a triangulation whose shortest edge is as long as possible. For a threshold value 7,
BMBP., (V) is integer feasible iff V has a polygon with bottleneck at most 7; we exclude all
edges longer than 7. As before, we use degree constraints (5), subtour constraints (7) and

S. P. Fekete and P. Keldenich 23:3

crossing constraints (6). Thus, a minimum bottleneck polygon can be found with binary
search over possible values of 7. The optimal bottleneck is the length of an edge; therefore,
this is a discrete set of possible values.

min Z lpalls - zpg s.t.
p,a€V,llpall, <7
VpeV: Z Tpg =2 (5)
qeV,llpqll, <7

Vp,q € V,|Ipglly < 775 € x(pq) : Tpg + 2ps <1 (6)
VWS SCV: > Tpg > 2 (7)

p€S,q¢S,|lpgll, <7

Tpg € {0,1}

In our implementation of this formulation, only violated crossing and subtour constraints are
added iteratively by generating appropriate cutting planes. This results in only small subsets

of these large families actually being used. This is aided by our use of the objective function.

Instead of directly minimizing the bottleneck, we minimize the sum of all edge lengths. Due to
the triangle inequality, most avoidable edge crossings never occur in intermediate (fractional
and integral) solutions. Moreover, we do not have to solve BMBP. (V') to optimality; we can
abort the search as soon as the first integer feasible solution is found.

2.2 Computational Results

We implemented NMBP (V) and BMBP., (V) in C++, using IBM ILOG CPLEX 12.6.2 as
our IP solver. All our experiments ran on a workstation running Linux 4.4 on an Intel Core
i7-6700K CPU at 4 GHz clock frequency with 64 GiB of RAM. In order to efficiently construct
BMBP.(V), we used an implementation of kd-trees provided by CGAL [1] to enumerate
all points within distance 7 of a query point. Moreover, violated crossing constraints are
detected using CGAL’s sweep line implementation. To compare the performance of NMBP
and BMBP, we ran both NMBP and BMBP on a set of small instances. Using NMBP, most
instances with more than 50 points cannot be solved within 500 seconds, while BMBP solves
these instances in less than half a second. Thus, we only evaluate BMBP in the remainder
of the section. Fig. 2 shows the results of running BMBP on randomly generated point sets
with a modest time limit of 10 minutes. We also ran BMBP on all geometric instances from
the classic TSPLIB [13] with fewer than 2,500 points. Within a time limit of one hour, we
were able to solve most of them to optimality; see Fig. 3.

3 Minimum Bottleneck Matching

3.1 Modeling

By modifying the right-hand side of the degree constraints (1) and (5) to 1 and removing
the subtour constraints (3) and (7), we obtain a formulation of the crossing-free minimum
bottleneck matching problem as naive MILP NMBM (V') and as sequence of IPs BMBM, (V).
In order to improve its performance, we generate blossom constraints

VS C V,|S] odd: > Tpg > 1, (8)
pES,q¢S,lIpqll, <7

EuroCG’'18

23:4 Computing Crossing-Free Configurations with Minimum Bottleneck

600 10,000 100 i
—&— Time [s]

500 M o semory piB) 18000 = - 80| .
= ggg i 16,000 % = 0| .
g | 5 =
s 14,000 ¢ = + .
E 200 - ' £ 3 40

100 | 2,000 = 20 |- B

0 1 | 0 | |
0 500 1,000 1,500 0 500 1,000 1,500
Number of points n Number of points n

Figure 2 Left: Average running time and peak memory usage for BMBP, run with a time limit
of 600s on point sets generated uniformly at random. Right: Percentage of instances solved within

the time limit.

3,600 ® ® oo o -

3,000 |- ° o |
. []
wn
o 2,000 | e a
£
& 1,000 |- 1

P []
0 essemesamn #u o0e & 0o e ‘ ‘ ‘ ‘ ‘

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400

Number of points n

Figure 3 Time required by BMBP to solve the TSPLIB instances; computation was aborted

after one hour.

as cutting planes. We identify violated blossom inequalities by searching for odd components
in the support graph of a fractional solution. In order to further restrict the search space for
the binary search, we implemented a minimum bottleneck matching algorithm to serve as a
lower bound and a crossing removal heuristic to produce an initial crossing-free solution as

an upper bound; see Section 3.2.

3.2 Crossing Repair Heuristic

A straightforward way to heuristically turn a crossing matching into a non-crossing one is to
use a sequence of local 2-OPT exchanges, replacing a crossing pair of edges pq,rs by pr, sq
or ps,qr. Any 2-OPT step decreases the sum of edge lengths, so this process must terminate
with a non-crossing matching. However, this heuristic does not seem to perform well with
respect to the bottleneck.

An alternative is a simple but effective heuristic for converting a crossing matching M¢
with bottleneck B into a non-crossing matching My, while trying to keep the bottleneck
edge as short as possible. We use a standard sweep line algorithm to detect crossings. If
there is no more crossing, we are done. Otherwise, we pick an arbitrary crossing pq, rs. Using
a kd-tree, we perform a simultaneous incremental nearest-neighbor search, starting from
p,q,r and s, constructing a set of close points IV that contains up to K points, for some
constant K; we use K = 50 in our experiments. Whenever a new point is discovered, it
is added to IV, together with its matching partner in Mc. Once N contains K points, we
compute the bounding box of N and extend it by B in every direction. We use a range query

S. P. Fekete and P. Keldenich 23:5

600 * =% 2,000 100 = T . . .
—=a— Solved in time
60 - 1,000 =™ 80f — & Solved by heuristic |
=10 ;. §- 60 |
[} >
E 1 4100 § £ 4l i
= g 9
01 —a— Time [s] § n 20 | |
— & Memory [MiB] 20
| | | T T T oL | | | | T
1,000 10,000 20,000 30,000 1,000 10,000 20,000 30,000
Number of points n Number of points n

Figure 4 Left: Average running time and peak memory usage for BMBM, run with a time limit
of 600s on point sets generated uniformly at random. Right: Percentage of instances solved within
the time limit, and percentage of instances solved to optimality using the crossing-removal heuristic.

7,200 oo0 ° ® *—eo
6,000 -
=
o 4,000 + -
E
& 2000 B
() onneswte o ¢ °

o o \ \ \ \ \ \
0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000

Number of points n

Figure 5 Time required by BMBM to solve the TSBLIB instances; the time limit was two hours.

to find all points inside the extended bounding box; this set of points consists of our internal
points IV and external points T'. For all external points, we find the corresponding matching
edge in M¢; this gives us a set of edges Ep. We use BMBM, (N) with binary search on
7 to find a minimum bottleneck crossing-free matching on N; however, in order to avoid
introducing new crossings, we prohibit using any edge that crosses an edge of Er, unless this
edge is part of M¢. In M, we replace the matching edges corresponding to points in N
with the edges from the resulting matching. In this way, the crossing pq, rs disappears and
no new crossings can appear. We iterate this procedure until there are no more crossings; the
number of crossings is reduced by at least one in each iteration, thus the heuristic terminates
with a crossing-free matching Myc. In certain situations, this heuristic can fail, because a
crossing-free matching cannot be found due to the forbidden edges. In this case, we resort
to performing 2-OPT steps to remove some crossings before continuing to use the original

heuristic.

3.3 Computational Results

We implemented both NMBM and BMBM and evaluated them under the same circumstances
as outlined in Section 2.2. Similar to the situation for polygons, the naive NMBM cannot
compete with BMBM, so we give only give computational results BMBM. We were able to
solve almost all TSPLIB instances with up to 20,000 points within a time limit of two hours
(see Fig. 5). For point sets chosen uniformly at random from the unit square, we were able to
solve all generated instances with up to 6,000 points and most instances with up to 10,000
points within ten minutes (see Fig. 4).

In many instances, applying our crossing removal heuristic to a minimum bottleneck
matching yields a crossing-free solution with the same bottleneck (see Fig. 4), thus resulting in
a provably optimal solution. For all randomly generated instances, the minimum bottleneck

EuroCG’'18

23:6 Computing Crossing-Free Configurations with Minimum Bottleneck

was achievable in a crossing-free manner; on these instances, our crossing repair heuristic
was off by a factor of at most 2.215 (this factor was 1.11 on average with median 1.024).

4 Future Work

We presented exact approaches for both the MBP and the MBSM. Many interesting theoretical
and practical problems remain that are left for future work.

The most interesting theoretical problem is to develop a constant-factor approximation
algorithm for MBP. In our experiments, we found that for large point sets generated uniformly
at random, a minimum bottleneck matching can always be achieved with a non-crossing
solution. Is there an analytic basis for this observation? For general point sets, it may be
interesting to explore the properties of the matching polytope with added crossing constraints.

On the practical side, the quadratic number of edge variables is the biggest impediment
for solving larger instances. For the classic TSP, this has been dealt with by using column gen-
eration and related methods [4]. For MBP, there are potentially many additional constraints
that could be used for cutting plane generation. Doing this in an efficient manner requires
rewriting large parts of the integer programming solver. For MBSM, more sophisticated
algorithms may be able to identify more (helpful) blossom constraints.

—— References

1 The Computational Geometry Algorithms Library. http://www.cgal.org.

2 A K. Abu-Affash, P. Carmi, M. J. Katz, and Y. Trabelsi. Bottleneck non-crossing matching
in the plane. Computational Geometry, 47(3):447-457, 2014.

3 N. Alon, S. Rajagopalan, and S. Suri. Long non-crossing configurations in the plane. Fun-
dam. Inform., 22(4):385-394, 1995.

4 D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The Traveling Salesman
Problem: A computational study. Princeton university press, 2011.

5 E. M. Arkin, S. P. Fekete, K. Islam, H. Meijer, J. S. Mitchell, Y. Nunez-Rodriguez, V. Pol-
ishchuk, D. Rappaport, and H. Xiao. Not being (super)thin or solid is hard: A study of
grid Hamiltonicity. Computational Geometry, 42(6-7):582-605, 2009.

6 A. Dumitrescu and C. D. Téth. Long non-crossing configurations in the plane. Discrete &
Computational Geometry, 44(4):727-752, 2010.

7 S. P. Fekete, W. Hellmann, M. Hemmer, A. Schmidt, and J. Troegel. Computing MaxMin
edge length triangulations. In Proc. 17th Worksh. Alg. Eng. Exp. (ALENEX), pages 5569,
2015. Full version to appear in Journal of Computational Geometry.

8 H. Fleischner. The square of every two-connected graph is Hamiltonian. Journal of Com-
binatorial Theory, Series B, 16(1):29-34, 1974.

9 P. C. Gilmore and R. E. Gomory. Sequencing a one state-variable machine: A solvable case
of the Traveling Salesman Problem. Operations Research, 12(5):655-679, 1964.

10 D. S. Hochbaum and D. Shmoys. A unified approach to approximation algorithms for
bottleneck problems. Journal of the ACM, 33:533-550, 07 1986.

11 L. Lovész, K. Vesztergombi, U. Wagner, and E. Welzl. Convex quadrilaterals and k-sets.
In Contemporary Mathematics Series, 342, AMS 2004, pages 139-148, 2004.

12 R. G. Parker and R. L. Rardin. Guaranteed performance heuristics for the bottleneck
Travelling Salesman Problem. Operations Research Letters, 2(6):269-272, 1984.

13 G. Reinelt. TSPlib — A Traveling Salesman Problem library. ORSA J. Computing, 3(4),
1991.

14 E. R. Scheinerman and H. S. Wilf. The rectilinear crossing number of a complete graph
and Sylvester’s “four point problem” of geometric probability. The American Mathematical
Monthly, 101(10):939-943, 1994.

	Preface
	Index of Abstracts
	Author Index

