
Beam It Up, Scotty:
Angular Freeze-Tag with Directional Antennas�

Sándor P. Fekete1 and Dominik Krupke1

1 TU Braunschweig
{s.fekete,d.krupke}@tu-bs.de

Abstract
We consider distributing mission data among the members of a satellite swarm. In this process,
spacecraft cannot be reached all at once by a single broadcast, because transmission requires the
use of highly focused directional antennas. As a consequence, a spacecraft can transmit data to
another satellite only if its antenna is aiming right at the recipient; this may require adjusting
the orientation of the transmitter, incurring a time cost proportional to the required angle of
rotation. The task is to minimize the total distribution time. This makes the problem similar in
nature to the Freeze-Tag Problem of waking up a set of sleeping robots, but with angular cost
at vertices, instead of distance cost along the edges of a graph. We prove that approximating
the minimum length of a schedule for this Angular Free-Tag Problem within a factor of less than
5/3 is NP-complete, and provide a 9-approximation for the 2-dimensional case that works even
in online settings with incomplete information. Furthermore, we develop an exact method based
on Mixed Integer Programming that works in arbitrary dimensions and can compute provably
optimal solutions for benchmark instances with about a dozen satellites.

1 Introduction

Providing instructions to all members of a distributed group is a fundamental task for many
types of team missions. In terrestrial settings, this can usually be achieved by broadcasting
to all recipients in parallel, requiring only a single transmission. However, for long-distance
space missions, omnidirectional transmission can no longer be employed, due to significant
loss in signal strength. Instead, transferring data is accomplished with the help of directional
antennas, requiring a highly focused communication beam that is targeted right at the
intended recipient. (See Figure 1 for an illustration.) As a consequence, these transmissions
must be performed individually, involving maneuvers for achieving appropriate antenna
orientation; the time for such a maneuver is basically proportional to the required angle of
rotation, with negligible time for the actual transmission itself. The overall process does allow
one parallel component: a team member that has already been “activated” by having received
the data may relay this to other partners, motivating the use of intricate communication trees
for achieving rapid dissemination of information to all members of a swarm of spacecraft.

This can be utilized if we want to quickly distribute data, e.g., an important update. In
the following we consider a basic version of the problem in which the agents are static points
in the euclidean space, there are no delays for transmission, and the transmission cone is
modeled as a ray. (Also note that more advanced scenarios for space missions may require
both a transmitting and a receiving antenna that are directed at the communication partner;
see the Conclusions in Section 5.)

� Partially supported by the European Space Agency, project ASIMOV, contract number
4000122514/17/F/MOS.

34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



22:2 Angular Freeze-Tag

I Problem 1.1. Angular Freeze Tag (AFT). Given a set P = {p0, . . . , pn} of agent
positions in d-dimensional space. Each agent pi œ P has an initial heading –i. At time t = 0,
only p0 is active, while all other agents are inactive. An agent pi is activated by an active
agent pj whose heading –j aims right at pi; adjusting this heading incurs a cost equal to
the required angular change. The objective is to minimize the time T until all agents are
activated, i.e., minimize the makespan of the overall activation schedule.
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Figure 1 (Left) The space probe Voyager and its directional antenna for transmitting data.
(Image CC by NASA.) (Right) Activating all agents by rotations: p0 first activates p2 which then
activates p3 while p0 rotates back to activate p1.

Related Work. The original Freeze-Tag Problem (FTP) was introduced by Arkin et
al. [2], who studied the task of waking up a swarm of robots. In the FTP, activating an
inactive robot is performed by moving an active robot next to it. The objective (minimize
the makespan of the overall schedule) is the same as for our problem, but the cost for an
activation (the distance to the robot instead of the angle) is di�erent. This problem is
NP-hard even for star graphs, but there are polynomial-time approximation schemes (PTAS)
for star graphs and geometrically embedded instances [3]. Unweighted graphs are considered
in [4]. A set of heuristics is evaluated in [11]. Results on the hardness in Euclidean space are
provided by [1] and [9].

Other geometric questions related to the use of directional antennas have also been
considered. Carmi et al. [8] studied the –-MST, which arose from finding orientations
of directional antennas with –-cones, such that the connectivity graph yields an MST of
minimum weight, based on bidirectional communication. They prove that for – < fi/3, a
solution may not exist, while – Ø fi/3 always su�ces. See Aschner and Katz [5] for more
recent hardness proofs and constant-factor approximations for some –.

2 Hardness of Approximation

We show that the AFT is computationally hard, even to approximate.

I Theorem 2.1. A c-approximation algorithm for the AFT with c < 5/3 implies P = NP .

Proof. We give a reduction from Satisfiability; see Figure 2 for a sketch. Our construction
has a solution with a makespan of 3Á if it is satisfiable and 5Á otherwise, where Á > 0 is a
su�ciently small angle. Our construction uses five di�erent types of agents, as follows.

The start agent p0 directly activates the decision agents, but does not have any other
agents within 5Á of –i.
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Figure 2 Sketch of the hardness construction. Red variable agents are 2Á from their designated
heading, which they can target upon activation. The decision agent for each variable is a rotation Á
from both of its corresponding variable assignment agents. A schedule of makespan 3Á exists if and
only if there is a satisfying truth assignment; otherwise, the makespan is at least 5Á.

For each variable we have a decision agent and two variable assignment agents (one each
for true and false) in opposing angles of Á, but no further agents within a 5Á rotational
range. It is directly activated from p0.
The variable assignment agent directly activates all corresponding literal agents, but has
no further agents in a 4Á rotation range. The earliest possible activation time is Á. Only
one of the two agents can be activated at time Á (by the decision agent), the other one
has to wait an additional 2Á.
For each literal there is a literal agent that has its clause agent a rotation of 2Á away, but
no further agents within 4Á. The earliest possible activation time is Á.
For each clause there is a clause agent that has no agent within its 2Á rotation range. Its
earliest possible activation time is 3Á.

A clause agent can only be activated by its literal agents in less than 5Á and a literal agent
is either activated at Á or 3Á, depending on which of the variable assignment agents got
activated first. Thus, a clause is activated at 3Á if and only if a corresponding variable agent
has been activated in time; otherwise, it takes 5Á. J

3 Approximation Algorithm

We can provide a simple constant factor approximation, based on a result by Beck [6] on
the linear search problem. In that scenario, an agent has to locate a hidden object in a
one-dimensional environment; from a given starting location, the best strategy for this online
problem is to alternate between going left and right, while doubling the search depth in each
iteration. This yields a total search distance that is within a factor of 9 of the optimum.

I Theorem 3.1. There is a 9-approximation algorithm for the AFT in 2-dimensional space,
even for unknown agent locations and headings, assuming a lower bound of Á > 0 for the
rotational angle of any activating agent.

Proof. As soon as an agent is activated, it follows the doubling strategy from linear search,
carried out for rotation. It follows straightforward by induction that any agent pi that gets
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Figure 3 An example of the auxiliary graph. Every point (p0, p1, p2, p3) has a vertex for its initial
heading (v

i

) and a vertex for the heading to any other point di�erent from p0. Between the vertices
of the same point, there are directed edges with the cost of the corresponding rotation; as shown in
the lower left, there are no incoming edges for the start vertex. If points are collinear, there can be
two vertices for the same heading. A possible solution would be for p0 to first head to p2 and then
to p1, while p2 heads to p3. The corresponding movements are visualized by red edges.

activated by Ti in an optimal schedule is activated within 9Ti. J

Note that we cannot apply the refined technique by Bose et al. [7] for linear search, as it
requires both an upper and a lower bound on the search distance.

4 Exact Solution

In the following, we describe the set of solutions by a Mixed Integer Program (MIP). This
allows us to use an advanced solver such as CPLEX to obtain provably optimal solutions.

Each agent has only a finite set of relevant headings; between such two configurations there
is an easily computable optimal rotation. The relevant configurations are the initial heading
of an agent and the headings that activate other agents, for a total of O(|P |) configurations
and O(|P |2) transitions per agent. We can encode this into an auxiliary directed graph
G = (V,E) in which the configurations are the vertices and the vertices of each agent form a
weakly connected component. For an agent pi œ P we denote the initial heading vertex by
vi, and the vertices that activate another agent pj œ P by viæj . There is a directed edge
between all vertices viæj , pj œ P \ {pi, p0} as well as from vi to all viæj , pj œ P \ {pi, p0}.
There are no edges between the vertices of di�erent agents. The movement (and agent
activations) of an agent pi can be represented by a directed path starting at vi. Figure 3
visualizes such a graph and how to encode a solution.

We use Boolean variables xe, e œ E that represent the transition of an agent between two
configurations, and continuous variables yv, v œ V that represent the time at which an agent
reaches a specific configuration. If the configuration is not used, it may be zero. The value
needs only to be tight for configurations that are critical for the makespan.

The general idea of the Mixed Integer Program is simple: the usage of an edge implies
that the target’s time has to be the source’s time plus the transition time; we want to
minimize the maximum value. It is also fairly simple to adapt this MIP to other problem
variants. Let us start with the objective function that minimizes the latest activation time

min max
piœP

yvi . (1)
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Note that we need to implement the min-max via min t and t Ø yvi’pi œ P , resulting in
O(|P |) additional constraints. For every agent we need to visit a vertex that activates it, i.e.,
we need to use an edge that visits such a vertex (exactly one to be precise).

ÿ

eœE
in

(vjæi),pjœP
xe = 1 ’pi œ P \ {p0}. (2)

Next we enforce that there are only directed paths starting at initial heading vertices by
enforcing that there can only be at most one outgoing edge per vertex and only if there is
also an ingoing one (3) or it is a start vertex (4), and prohibiting subcycles (5).

ÿ

E
out

(viæj)

xe Æ
ÿ

E
in

(viæj)

xe Æ 1 ’viæj œ V (3)

ÿ

E
out

(vi)

xe Æ 1 ’pi œ P (4)

ÿ

v,wœS
xvw Æ |S|≠ 1 ’S µ V (5)

If agent pi is activated by agent pj , then yvi = yvjæi
. Since yvkæi

= 0 for all other agents pk,
we can write

yvi =
ÿ

pjœP
yvjæi

’pi œ P \ {p0}. (6)

If we use a directed edge, we know that the target has to have the time of the source plus the
minimal transition time, i.e., for an edge vw œ E : yw Ø yv + cost(vw). We can neutralize
this constraint by adding a large negative value to the right side that lowers it below zero
if the edge is not selected. This value only needs to be 3fi, because no optimal solution is
larger than 2fi and an edge cost is at most fi.

yw Ø yv + cost(vw) + (3fixvw ≠ 3fi) ’vw œ E (7)

This constraint also prevents cyclic activations or cycles as in constraint (5) as long as they
are not based on zero-cost transitions (this works analogous to the Miller-Tucker-Zemlin
subtour elimination constraints for TSP [10]). To also prevent zero-cost cyclic activations we
can use the following constraint:

ÿ

pi,pjœS

ÿ

eœE
in

(viæj)

xe Æ |S|≠ 1 ’S µ P \ {p0}. (8)

Because this only happens for degenerated cases with zero-cost edges, we add the con-
straints (5) and (8) iteratively only if necessary.

In the end we have �(|P |2) continuous variables, �(|P |3) Boolean variables (of which only
|P |≠1 variables will be true), and �(|P |3) constraints (excluding (5) and (8)), resulting in a
relatively large problem that also becomes very quickly hard to solve, as can be seen in Fig. 4.
Interestingly, this is not because CPLEX does not find a solution, but because it does not find
an e�ective lower bound. Code on https://github.com/d-krupke/eurocg18-angularft.

5 Conclusion

We provided first results for a basic version of Angular Freeze Tag. Even in 2D with static
transmitters, we need better lower bounds to improve approximation and the size of optimally
solvable instances. There is also a wide spectrum of practically important generalizations.

EuroCG’18



22:6 Angular Freeze-Tag

 0

 1.57

 3.14

 4.71

 6.28

 7.85

 5  10  15  20  25  30
 0

 20

 40

 60

 80

 100

up
pe

r b
ou

nd
 - 

lo
we

r b
ou

nd

in
st

an
ce

s 
(%

) s
ol

ve
d 

to
 o

pt
im

al
ity

n

Figure 4 Results for random instances with CPLEX and a 15min time limit on a PC (i7, 64GB).
For 12 points only 50% can be solved to optimality. For unsolved instances, the lower bound is often
close to zero, so providing better lower bounds will drastically improve performance.

These include approximation for the three-dimensional version and scenarios with moving
satellites. Allowing inactive receivers to adjust their heading ahead of time may greatly speed
up schedules. On the other hand, advanced missions may require both partners in a data
exchange to have their directional antennas pointing at each other, making the scheduling
process considerably more involved. All these issues are left for future work.
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