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Abstract. In the circle packing problem for triangular containers, one
asks whether a given set of circles can be packed into a given triangle.
Packing problems like this have been shown to be NP-hard. In this paper,
we present a new sufficient condition for packing circles into any right
or obtuse triangle using only the circles’ combined area: It is possible
to pack any circle instance whose combined area does not exceed the
triangle’s incircle. This area condition is tight, in the sense that for any
larger area, there are instances which cannot be packed.
A similar result for square containers has been established earlier this year,
using the versatile, divide-and-conquer-based Split Packing algorithm. In
this paper, we present a generalized, weighted version of this approach,
allowing us to construct packings of circles into asymmetric triangles.
It seems crucial to the success of these results that Split Packing does
not depend on an orthogonal subdivision structure. Beside realizing all
packings below the critical density bound, our algorithm can also be
used as a constant-factor approximation algorithm when looking for the
smallest non-acute triangle of a given side ratio in which a given set of
circles can be packed.
An interactive visualization of the Split Packing approach and other
related material can be found at https://morr.cc/split-packing/.

1 Introduction

Given a set of circles, can you decide whether it is possible to pack these circles into
a given container without overlapping one another or the container’s boundary?
This naturally occurring circle packing problem has numerous applications in
engineering, science, operational research and everyday life. Examples include
packaging cylinders [2], bundling tubes or cables [16, 18], the cutting industry
[17], the layout of control panels [2], the design of digital modulation schemes
[14], or radio tower placement [17]. Further applications stem from chemistry
[19], foresting [17], and origami design [9].

Despite its simple formulation, packing problems like these were shown to
be NP-hard in 2010 by Demaine, Fekete, and Lang [3], using a reduction from
3-Partition. Additionally, due to the irrational coordinates which arise when
packing circular objects, it is also surprisingly hard to solve circle packing
problems in practice. Even when the input consists of equally-sized circles, exact
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boundaries for the smallest square container are currently only known for up to
35 circles, see [10]. For right isosceles triangular containers, optimal results have
been published for up to 7 equal circles, see [20].

The related problem of packing square objects has long been studied. Already
in 1967, Moon and Moser [12] found a sufficient condition: They proved that it
is possible to pack a set of squares into the unit square in a shelf-like manner if
their combined area does not exceed 1/2, see Figure 2. At the same time, 1/2 is
the largest upper area bound you could hope for, because two squares larger than
the quarter-squares depicted in Figure 1 cannot be packed anymore. We call the
ratio between the largest combined object area that can always be packed and
the area of the container the problem’s critical density, or worst-case density.

Fig. 1. Worst-case
instance for pack-
ing squares into a
square.

Fig. 2. Example of
Moon and Moser’s
shelf-packing.

Fig. 3. Worst-case
instance for pack-
ing circles into a
square.

Fig. 4. Example
packing produced
by Split Packing.

Fig. 5. Suspected worst-case instance
for packing circles into a non-acute tri-
angle.

Fig. 6. Example packing produced by
Split Packing.

We recently showed a similar result for circular objects: Each circle instance
not exceeding the area of the instance shown in Figure 3 can be packed, and
this area condition is tight [13]. Proving this required a fundamentally different
approach than Moon and Moser’s orthogonal shelf-packing, compare Figure 4.

In this paper, we consider the problem of packing circles into non-acute
triangular containers. It is obvious that circles larger than a triangle’s incircle
cannot be packed (compare Figure 5), but is it also possible to pack all circle
instances of up to that combined area? We will answer this question affirmatively
and introduce a weighted modification of the Split Packing algorithm, allowing
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us to pack circles into asymmetric non-acute triangles with critical density. See
Figure 6 for an example packing.

Many authors have considered heuristics for circle packing problems, see [7,
17] for overviews of numerous heuristics and optimization methods. The best
known solutions for packing equal circles into squares, triangles and other shapes
are continuously published on Specht’s website http://packomania.com [15].

That being said, the literature on exact approximation algorithms which
actually give performance guarantees is small. Miyazawa et al. [11] devised
asymptotic polynomial-time approximation schemes for packing circles into the
smallest number of unit square bins. And recently, Hokama, Miyazawa, and
Schouery [8] developed an asymptotic approximation algorithm for the online
version of that problem. To the best of our knowledge, this paper presents the
first approximation algorithm for packing circles into triangular containers.

1.1 Results

We show that, for any right or obtuse triangle, any circle instance with a combined
area of up to the triangle’s incircle can be packed into that triangle. At the same
time, for any larger area, there are instances which cannot be packed, making the
ratio between the incircle’s and the triangle’s area the triangle’s critical density.
For a right isosceles triangle, this density is approximately 53.91%. In the general
case, the critical density of a non-acute triangle with side lengths a, b, and c is√

−(a− b− c)(a+ b− c)(a− b+ c)

(a+ b+ c)3
π.

Our proof is constructive: The Split Packing algorithm can be used to construct
the packings in polynomial time. Split Packing can also be used as a constant-
factor approximation algorithm of the smallest-area non-acute triangle of a given
side ratio which can pack a given set of circles. The approximation factor is the
reciprocal of the critical density.

While we focus on triangular containers in this paper, we see more opportu-
nities to generalize the Split Packing approach for other container and object
types. We discuss some of these extensions in the conclusion on page 11.

1.2 Key ideas

The Split Packing approach, which we successfully used for packing circles into
square containers earlier this year [13], is built on two basic ideas:

First, it applies a recursive subdivision strategy, which cuts the container
into smaller triangles, while keeping the combined area of the triangles’ incircles
constant. And second, it performs the splitting of the circle instance into subgroups
using an algorithm which resembles greedy scheduling. This makes sure the
resulting subgroups are close to equal in terms of their combined area. If the
groups’ areas deviate from the targeted 1:1 ratio, we can gain information
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about the minimum circle size in the larger group, allowing us to round off the
subcontainer triangles.

In this paper, we introduce a weighted generalization of the Split Packing
approach: When packing into asymmetric triangles, we do not want the resulting
groups to have equal area, as it is not possible to cut the container into two
subtriangles of equal size. Instead, we target a different area ratio, defined by the
incircles of the two triangles created by cutting the container orthogonally its
the base through its tip, see Figure 8 on page 8. We call this desired area ratio
the split key.

The rest of the paper will detail this process.

2 Greedy splitting

The following definitions makes it easier to talk about the properties of circle
instances:

Definition 1. A circle instance is a multiset of nonnegative real numbers, which
define the circles’ areas. For any circle instance C, sum(C) is the combined area
of the instance’s circles and min(C) is the area of the smallest circle contained
in the instance.

Definition 2. C is the set of all circle instances. C(a) consists of exactly those
circle instances C with sum(C) ≤ a. Finally, C(a, b) consists of exactly those
circle instances C ∈ C(a) with min(C) ≥ b.

Algorithm 1 takes a circle instance C, and splits it into two groups according
to the split key F , which determines the targeted ratio of the resulting groups’
combined areas. Because the method resembles a greedy scheduling algorithm, we
call the process greedy splitting. The algorithm first creates two empty “buckets”,
and in each step adds the largest remaining circle of the input instance to the
“relatively more empty” bucket:

Algorithm 1 Split(C,F )

Input: A circle instance C, sorted by size in descending order, and a split key
F = (f1, f2)

Output: Circle instances C1, C2

C1 ← ∅
C2 ← ∅
for all c ∈ C do

j = argmini
sum(Ci)

fi
� Find the index of the more empty bucket.

Cj ← Cj ∪ {c}
end for

If the resulting groups’ area ratio deviates from the area ratio targeted by
the split key, we gain additional information about the “relatively larger” group:

376 S.P. Fekete et al.



The more this group exceeds its targeted ratio, the larger the minimum size of its
elements, allowing a “more rounded” subcontainer in the packing. See Figure 9
on page 9 for an illustration.

Lemma 1. For any C1 and C2 produced by Split(C, (f1, f2)):

min(Ci) ≥ sum(Ci)− fi
sum(Cj)

fj

Proof. If sum(Ci)
fi

<
sum(Cj)

fj
, then the lemma says that min(Ci) is larger than a

negative number, which is certainly true.

Otherwise, set r :=
sum(Cj)

fj
. This value describes the smaller “relative filling

level” by the time the algorithm ends. Now assume for contradiction Ci con-
tained an element smaller than sum(Ci)− fir. As the elements were inserted by
descending size, all elements which were put into Ci after that element would
have to be at least as small. So the final element put into Ci (let us call it c)
would be smaller than sum(Ci)− fir, as well.

But this means that

sum(Ci)− c

fi
>

sum(Ci)− (sum(Ci)− fir)

fi
= r,

meaning that at the moment before c was inserted, the relative filling level of Ci

would already have been larger than r. Recall that r is the smallest filling level
of any group by the time the algorithm ends, meaning that at the time when c
is inserted, Ci’s filling level is already larger than the filling level of the other
group. This is a contradiction, as the greedy algorithm would choose to put c
not into Ci, but into the other group with the smaller filling level in this case. �

We are now going to define a term which encapsulates all properties of the
circle instances output by Split. These properties depend on the used split key
F , and also on the combined area a and the minimum circle size b of the circle
instance, which is why it the term has three parameters.

Definition 3. For any 0 ≤ b ≤ a and any split key F = (f1, f2), we say that the
tuples (a1, b1), (a2, b2) are (a, b, F )-conjugated if

– a1 + a2 = a,
– bi ≥ b, and
– bi ≥ ai − fi

aj

fj
.

Two circle instances C1 and C2 are (a, b, F )-conjugated if there are any
(a, b, F )-conjugated tuples (a1, b1) and (a2, b2) so that C1 ∈ C(a1, b1) and C2 ∈
C(a2, b2).

We can now associate this property with Split in the following theorem:

Theorem 1. For any C ∈ C(a, b) and any split key F = (f1, f2), Split(C,F )
always produces two (a, b, F )-conjugated subinstances.
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Proof. That the subinstances’ combined areas add up to a follows directly from
the algorithm. As the minimum size of all circles in C is b, this must also be true
for the subinstances, so min(Ci) ≥ b. The other minimum-size property follows
from Lemma 1. �

3 Split Packing

The Split algorithm presented in the previous section, in addition to the proper-
ties of the instances it produces, are the foundations on which we now build the
central theorem of this paper. Split Packing by itself is a general framework to
pack circles and other shapes into containers. We will apply the Split Packing
theorem to triangular containers in the next section.

We will often want to state that a shape can pack all circle instances which
belong to a certain class. For this, we define the term C-shape:

Definition 4. For any C ⊆ C, a C-shape is a shape in which each C ∈ C can be
packed.

For example, if a shape is a C(a)-shape, it means that it can pack all circle
instances with a combined area of a. And a C(a, b)-shape can pack all circle
instances with a combined area of a, whose circles each have an area of at most b.

We can now state our central theorem: If it is possible to find two subcontainers
which fit in a given shape, and which can pack all possible subinstances produced
by Split, it is possible to pack the original class of circle instances into that
shape.

Theorem 2 (Split Packing). A shape s is a C(a, b)-shape if there is a split
key F , so that for all (a, b, F )-conjugated tuples (a1, b1) and (a2, b2) one can find
a C(a1, b1)-shape and a C(a2, b2)-shape which can be packed into s.

Proof. Consider an arbitrary C ∈ C(a, b). We use Split(C,F ) to produce two
subinstances C1 and C2. We know from Theorem 1 that those subinstances will
always be (a, b, F )-conjugated. So if we can indeed find two shapes which can
pack these subinstances, and if we can pack these two shapes into s, then we also
can pack the original circle instance C into s.

Note that in the special case that C consists of a single circle, Split(C,F )
will yield two circle instances C1 = {C} and C2 = ∅. For this case, Theorem 1
guarantees a minimum size of a for the first group, and the associated C(a1, b1)-
shape is just an a-circle. This means that we can simply place the input circle in
the container, and stop the recursion at this point. �

Written as an algorithm, Split Packing looks like this:
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Algorithm 2 Splitpack(s, C)

Input: A C(a, b)-shape s and a circle instance C ∈ C(a, b), sorted by size in descending
order

Output: A packing of C into s
Determine split key F for shape s
(C1, C2) ← Split(C,F ) � See Algorithm 1.
for all i ∈ {1, 2} do

ai ← sum(Ci)
bi ← minimum guarantee for Ci � See Lemma 1.
Determine a C(ai, bi)-shape si
Splitpack(si, Ci)

end for
Pack s1, s2, and their contents into s

Note that the Split Packing algorithm can easily be extended to allow splitting
into more than two subgroups. For simplicity, we only describe the case of two
subgroups here, as this suffices for the shapes we discuss in this paper.

3.1 Analysis

The analysis of the Split Packing approach follows exactly the same lines as in
our previous paper [13]. We will repeat the result here without proof.

Theorem 3. Split Packing requires O(n) basic geometric constructions and
O(n2) numerical operations.

Theorem 4. Split Packing, when used to pack circles into a C(a, b)-shape of area
A, is an approximation algorithm with an approximation factor of A

a , compared
to the container of minimum area.

4 Packing into hats

After this general description of Split Packing, we will now apply it to concrete
containers. We start with an observation:

If all circles which we want to pack have a certain minimum size, sharp corners
of the container cannot be utilized anyway. This observation motivates a family
of shapes which resemble rounded triangles. We call these shapes hats:

Definition 5. For each 0 ≤ b ≤ a, an (a, b)-hat is a non-acute triangle with
an incircle of area a, whose corners are rounded to the radius of a b-circle, see
Figure 7. Call the two smaller angles of the original triangle left-angle and
right-angle. If we say right hat, the hat is based on a right triangle.
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bb
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a

left-angle right-angle

Fig. 7. An (a, b)-hat.

We will now proceed to show that all circle instances with a combined area
of up to a with a minimum circle size of b can be packed into an (a, b)-hat.

First, it is important to choose the correct split key when packing into
asymmetric hats. We are aiming for a group ratio which will lead to a cut through
the hat’s tip if it is reached exactly:

Definition 6. To get a hat’s associated split key, split the underlying triangle
orthogonally to its base through its tip, and inscribe two circles in the two sides,
see Figure 8. The areas of these circles are the two components of the hat’s split
key.

f2
f1

Fig. 8. A hat’s associated split key equals (f1, f2)

Lemma 2. Consider an (a, 0)-hat with the associated split key F = (f1, f2), and
call its left- and right-angles α and β. For all (a, 0, F )-conjugated tuples (a1, b1)
and (a2, b2), the following two shapes can be packed into the hat:

– a right (a1, b1)-hat with a right-angle of α and
– a right (a2, b2)-hat with a left-angle of β.

The proof of this theorem is rather technical in nature. We omit it here due
to space constraints, refer to the full version [6]. See Figure 9 for an intuition
of what the resulting hats look like. Note that, as the hats’ incircles are getting
larger than the targeted area ratio, their corners become more rounded so that
they don’t overlap the container’s boundary.
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Fig. 9. Hat-in-hat packings for different ratios of a1 and a2.

In the previous lemma, the container is always an (a, 0)-hat, which is essentially
a non-rounded triangle with an incircle of a. The next lemma extends this idea
to hats which are actually rounded. It is identical to Lemma 2, except that the
rounding of the container hat is no longer 0, but b.

Lemma 3. Consider an (a, b)-hat with the associated split key F = (f1, f2), and
call its left- and right-angles α and β. For all (a, b, F )-conjugated tuples (a1, b1)
and (a2, b2) with a1 + a2 ≤ a, the following two shapes can be packed into the hat:

– a right (a1, b1)-hat with a right-angle of α and
– a right (a2, b2)-hat with a left-angle of β.

Proof. Lemma 2 tells us that this theorem is true for b = 0. Now, the container’s
corners can be rounded to the radius of a b-circle, and we need to show that the
two hats from the previous construction still fit inside. But all of the two hat’s
corners are also rounded to (at least) the same radius (see Theorem 1), so they
will never overlap the container, see Figure 10. �

0.7a
0.3a

0.7a
0.3a

Fig. 10. Rounding all hats’ corners by the same radius does not affect the packing.

With these preparations, we can apply Split Packing to hats:

Theorem 5. Given an (a, b)-hat, all circle instances with a combined area of at
most a and a minimum circle size of at least b can be packed into that hat.

Proof. We proof by induction that we can pack each C ∈ C(a, b) into the hat:
If C only consists of a single circle, it can be packed into the hat, as it is at

most as big as the hat’s incircle.
Now assume that for any 0 ≤ b ≤ a, any (a, b)-hat could pack all circle

instances into C(a, b) with at most n circles. Consider a circle instance C ∈ C(a, b)
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containing n + 1 circles. Definition 6 tells us how to compute the split key F .
Then we know from Theorem 1 that Split will partition C into two subinstances
C1 ∈ C(a1, b1) and C2 ∈ C(a2, b2), whose parameters are (a, b, F )-conjugated. As
Split can never return an empty instance (except for |C| = 1, a case which we
handled above), each subinstance will contain at most n circles. We know from
Lemma 3 that, for all pairs of (a, b, F )-conjugated tuples, we can find two hats
with matching parameters which fit into the container hat. By assumption, these
hats can now pack all instances from C(a1, b1) and C(a2, b2), respectively, which
means that they can especially also pack C1 and C2. If we then pack the two hats
into the container, we have constructed a packing of C into the container hat.

By induction, we can pack each C ∈ C(a, b) into the (a, b)-hat. �

Finally, we can state this paper’s central result:

Theorem 6. Given a non-acute triangle with an incircle of area a, all circle
instances with a combined area of up to a can be packed into the triangle, and
this bound is tight. Expressed algebraically, for a triangle with side lengths a, b,
and c, the critical density is√

−(a− b− c)(a+ b− c)(a− b+ c)

(a+ b+ c)3
π.

Proof. The triangle is an (a, 0)-hat, which by Theorem 5 is a C(a)-shape.
On the other hand, a single circle of area a + ε cannot be packed, as the

incircle is by definition the largest circle which fits into the triangle.
As for the algebraic formulation of the critical density, the area of the triangle

can be calculated using Heron’s formula:

Δ(a, b, c) :=
√
s(s− a)(s− b)(s− c) with s =

a+ b+ c

2

It is also known that the radius of the incircle of this triangle is

R(a, b, c) :=
Δ(a, b, c)

s
with s =

a+ b+ c

2
,

so the incircle has an area of

I(a, b, c) = πR(a, b, c)2 =
(a+ b− c)(c+ a− b)(b+ c− a)

4(a+ b+ c)
.

Finally, the ratio between the areas of the circle and the triangle can be
calculated to be

I(a, b, c)

Δ(a, b, c)
=

√
−(a− b− c)(a+ b− c)(a− b+ c)

(a+ b+ c)3
π,

For a right isosceles triangle, this density is approximately 53.91%. �
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5 Conclusion

In this paper, we presented a constructive proof of the critical densities when
packing circles into right or obtuse triangles, using a weighted Split Packing
technique. We see more opportunities to apply this approach in the context of
other packing and covering problems.

It is possible to use Split Packing to pack into more container types. At this
point, we can establish the critical densities for packing circles into equilateral
triangles and rectangles exceeding a certain aspect ratio. The case of acute
triangles is still open, we discuss why the approach presented in this paper does
not work there in the full version [6].

Split Packing can also be extended to pack objects other than circles. We
can establish the critical densities for packing octagons into squares, and think
we can describe the maximum shape which can be packed into squares using
Split Packing.

Another natural extension is the online version of the problem. The current
best algorithm that packs squares into a square in an online fashion by Brubach [1],
based on the work by Fekete and Hoffmann [4, 5], gives a density guarantee of
2
5 . It is possible to directly use this algorithm to pack circles into a square in
an online situation with a density of π

10 ≈ 0.3142. It would be interesting to see
whether some form of online Split Packing would give better results.

A related problem asks for the smallest area so that we can always cover
the container with circles of that combined area. For example, we conjecture
that for an isosceles right triangle, any circle instance with a total area of at least
its excircle’s area is sufficient to cover it.
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