2017 NASA/ESA Conference on Adaptive Hardware and Systems (AHS)

Resource-Efficient Dynamic Partial Reconfiguration
on FPGAs for Space Instruments

Alexander Dorflinger, Bjorn Fiethe, Harald Michalik Séndor P. Fekete, Phillip Keldenich, Christian Scheffer

Institute of Computer and Network Engineering (IDA)
TU Braunschweig
Braunschweig, Germany
{doerflinger, fiethe, michalik} @ida.ing.tu-bs.de

Abstract—Field-Programmable Gate Arrays (FPGAs) provide
highly flexible platforms to implement sophisticated data pro-
cessing for scientific space instruments. The dynamic partial
reconfiguration (DPR) capability of FPGAs allows it to schedule
HW tasks. While this feature adds another dimension of process-
ing power that can be exploited without significantly increasing
system complexity and power consumption, there are still several
challenges for an efficient DPR use. State-of-the-art concepts
concentrate either on resource-efficient implementations at design
time or flexible HW task scheduling at runtime. In this paper we
propose a balanced algorithm that considers both optimization
goals and is well suited for resource-limited space applications.

I. INTRODUCTION

The demand for on-board processing capabilities of space
missions has been increasing steadily in recent years. State-
of-the-art remote sensing instruments on spacecrafts deliver
vast amounts of high-resolution data at very high data rates,
but the telemetry rate is very limited, especially for deep-
space missions. Thus, classic ground-processing steps need to
be performed already on board the spacecraft. Final physical
values have to be extracted and processed by an autonomous,
intelligent and reliable application, adapting itself to the chang-
ing needs. The benefits of an adaptable processing platform are
a superior data yield and a reduced risk of total instrument loss
[1]. An additional advantage of adaptability is the possibility to
time-share resources, when dedicated functions are not needed
at the same time. All this promises more efficient hardware
and power utilization, which is a design driver for future
robotic missions and planetary landers. This challenge can be
handled by combining modern reconfigurable hardware with
sophisticated optimization techniques.

Radiation-tolerant, space-suitable SRAM-based FPGAs
with large logic density provide a highly flexible platform
to implement highly reliable data processing for scientific
space instruments and have already been proven in many
space missions. The ability of SRAM-based FPGAs to support
dynamic reconfiguration allows a very flexible use of the
available HW platform within the very tight constraints of
scientific space missions [2]. A wide range of methodological
developments on FPGAs are available to combine the per-
formance of an ASIC implementation with the flexibility of
software realizations. One important development is Dynamic
Partial Reconfiguration (DPR) during runtime. In this paper we

978-1-5386-3439-4/17/$31.00 ©2017 IEEE

Department of Computer Science
TU Braunschweig
Braunschweig, Germany
{s.fekete, p.keldenich, c.scheffer}@tu-bs.de

evaluate the usability and capabilities of the DPR for a typical
space application with its resource limited HW/SW platform.

With DPR, different hardware modules can be used in the
same region of the FPGA over time, which enables further
optimization of FPGA usage. However, this mechanism is
also quite costly compared to static system designs. Firstly,
active runtime of a reconfigurable region is reduced due to
reconfiguration times. Secondly, flexibility of running dif-
ferent tasks on the same region is afforded at the expense
of increased resource demands and resource underallocation.
Resource underallocation at design time (small reconfigurable
modules assigned to large reconfigurable regions) and runtime
(unassigned reconfigurable regions due to scheduling stalls) is
still a sophisticated optimization problem today. Particularly
when scheduling HW tasks of very different sizes and diverse
resource demands (logic-/memory-/arithmetic-intensive), the
given restrictions limit the performance and flexibility gain
of DPR. Most state-of-the-art concepts optimize for either
most efficient placement at design time or highest scheduling
flexibility at runtime. In this paper we propose an algorithm
that balances both.

The paper is organized as follows. Problems that arise
when partitioning a reconfigurable area into regions are de-
scribed in Section II. In Section III, we analyze existing
concepts for bindings between Reconfigurable Regions (RRs)
and Reconfigurable Modules (RMs). Section IV introduces our
new approach for optimum resource efficiency and scheduling
flexibility. Section V provides a detailed description of the
algorithm. In Section VI, we evaluate the quality of our new
approach in comparison to existing strategies.

II. PROBLEM DESCRIPTION

A typical SRAM-based FPGA is composed of logic (flip-
flop/latch and lookup table) contained in Configurable Logic
Blocks (CLBs), Block RAMs (BRAMs), Digital Signal Pro-
cessors (DSPs), clock-, and I/O-related components. For sim-
plicity, we first distinguish only three physical resource types
in this paper: CLB, BRAM, and DSP. These are the most
common reconfigurable resources available for space usage,
such as in Xilinx 4/5-series and UltraScale+ FPGAs or the
Altera Stratix V. Different HW tasks require different com-
positions of these three resource types, e.g., an arithmetic-



BRAM CLB DSP

T
RRRRNRRNRN

T

[T
RRRRRNRNNN

T

Fig. 1. Typical FPGA fabric layout.

intensive task demands a higher DSP proportion compared to
a logic-intensive task.

Fig. 1 depicts a typical FPGA fabric with a uniform vertical
but non-uniform horizontal layout. This non-uniform charac-
teristic is one of the constraints that need to be considered
when partitioning the Total Reconfigurable Area (TRA). For
an efficient assignment of RMs to RRs at runtime, different
optimization goals can be formulated. The ratio between
required resources of an RM and provided resources of an RR
is to be maximized (resource efficiency). For high scheduling
flexibility, it has to be possible to assign an RM to multiple
RRs. The arrangement of RRs should allow an easy communi-
cation channel to connect them (communication complexity).

Several concepts exist for optimum partitioning. However,
when dealing with HW tasks that consist of diverse resource
demands, such as the space application introduced in Section
VI, these concepts still achieve poor results. Main reason for
drawbacks in this use case is the assumption of a uniform
FPGA fabric or uniform resource demands of RMs.

III. RELATED WORK

Existing concepts for assigning RMs to RRs can be clas-
sified into three categorizations that favor different optimiza-
tion goals. The main attributes of these categories, such as
resource efficiency, scheduling flexibility, communication- and
bitstream complexity are briefly discussed in the following; for
a more general overview, see [3].

A. Fixed Uniform RR Size

The simplest approach for selecting RRs divides the TRA
into regions of uniform size. As it should be possible to
schedule each RM into any RR, the RR size must suffice to the
most resource-demanding RM with respect to of the different
resource types. This requirement leads to resource under-
allocation at design time. Furthermore, the fair distribution of
resources restricts the number of RRs on a given FPGA fabric:
the example in Fig. 2 allows an even partitioning of RAM and
DSP resources only for three horizontally arranged RRs. On
the other hand, this approach allows each RM to be scheduled
in any RR and therefore offers high scheduling flexibility per
RR. Resource management and scheduling strategies of this
approach are discussed in [4] and [5]. The fixed structure

25

— Communication channel
— Total reconfigurable area

I I I

RRy RR;

RM; RM,

Fig. 2. Fixed uniform RR size.

— Communication channel
— Total reconfigurable area

I I

RR1 RR;
RMy RM
i RM, | R,

Fig. 3. Fixed non-uniform RR size.

allows a simple interfacing of the RRs to a communication
channel that can be routed in the static part of the FPGA. When
selecting RRs of identical resource arrangement, bitstream
relocation can be applied [6] and only one bitstream per RM
needs to be generated and stored. When applied, this results
in low bitstream complexity.

B. Fixed Non-Uniform RR Size

The disadvantage of underallocation of resources at design
time in the previous approach can be avoided by using a
fixed non-uniform RR size, as depicted in Fig. 3. Several RMs
with similar resource demands are clustered and assigned to
one RR, which improves resource efficiency. [7] presents an
algorithm for optimum clustering; for alternative approaches
to the related packing problems, see [8] or [9].

The bilateral assignment between RM and RR results in a
low bitstream complexity. The communication channel can be
routed in the static part of the FPGA again and the number
of interfaces is fixed, therefore communication complexity is
low. However, with only one given RR per RM, scheduling
flexibility is limited. An RM cannot be scheduled anymore
once its RR is already occupied, even though there may be
other free RRs, resulting in runtime underallocation.



— Communication channel
— Total reconfigurable area

RM; RR, RR;
(level 2) (level 2) | (level 2)
RM, — ] RR (level 1)
(level 2) RR3 RRy
(level 2) | (level 2)
[ 11
RM; (level 1) "f_’ L
RM; (level 1) >
RR; (level 1) RRs(level 1)

Fig. 4. Adaptive RR size.

As small modules also fit into regions reserved for larger
ones, this restriction could be weakened by populating large
regions with small modules. For large modules, however, it
will always be difficult to provide alternative regions. This
fixed non-uniform RR size approach is still quite popular in
state-of-the-art (dynamic) partial reconfiguration systems. [10]
discusses scheduling of HW tasks under such constraints. [11]
proposed an algorithm for optimized partitioning of the FPGA
fabric w.r.t. different resource types, but only static reconfig-
uration problems are targeted and therefore the algorithm is
not suited for dynamic scheduling of HW tasks.

C. Adaptive RR Size

A more general approach allows adaption of RR size during
operation, as depicted in Fig. 4. A quadtree (as proposed
n [12]) or a 2D mesh (as proposed in [13]) can react to
changing runtime requirements and provide RRs of flexible
size. A proper scheduling algorithm minimizes fragmented
free space and therefore offers maximum flexibility for placing
new RMs during runtime. As the RR size is adaptable, RMs
can be placed resource efficiently at design time. Therefore,
this academic approach promises optimized results w.r.t. both
resource efficiency and scheduling flexibility.

When transferring this concept to silicon, limitations arise.
The overhead for the communication infrastructure connecting
all RRs grows with the number of RR levels. In contrast to
the fixed RR size concepts, the communication channel is
now part of the reconfiguration area, which limits synthesis
optimization. Both the non-uniform FPGA fabric and the non-
uniform resource requirement of RMs make it difficult to
define a standard minimum RR size. Fig. 4 illustrates this
effect, because it is not possible to guarantee any BRAM
or DSP resources in an RR of level 2. Because it must be
possible to place an RM in any RR of corresponding level,
bitstream generation and management becomes a sophisticated
task. Each RM of level i can be placed in 2! RRs, which results
in a high bitstream complexity.

26

IV. MERGING RR SIZE

As discussed in the previous section, state-of-the-art ap-
proaches neglect one of the concurrent optimization goals (ef-
ficiency, flexibility, complexity). In the following we propose
a novel algorithm that balances all three of them and is well
suited for HW tasks with diverse resource demands.

The basic idea extends the fixed non-uniform RR size ap-
proach with the possibility to merge adjacent regions. Merging
adjacent regions additionally increases the size distribution
of available sites for placing RMs, which promises high
resource efficiency. Because RMs with high resource demands
can be placed either in a large RR of sufficient size or in
multiple small merged RRs, scheduling flexibility is increased.
By defining the maximum number of RRs at design time,
complexity of the communication channel can be confined. It
also bounds the placement possibilities for each RM and thus
bitstream complexity. Entrenching the communication channel
into the TRA as shown in Fig. 5 keeps routing paths short and
improves timing behavior.

Because the communication channel itself is part of the
TRA, multiple operation modes of the system with different
sets of HW tasks are possible. When transitioning from one
operation mode to another, the TRA needs to be cleared first.
The communication channel for the new operation mode with
different locations or number of interfaces is loaded in the
second step. Now the system is ready again to schedule HW
tasks and place RMs. This process allows to optimize the
distribution of RRs for each operation mode separately.

Merging adjacent RRs requires hierarchical reconfiguration,
which is not supported by the standard Xilinx toolchain [14].
Several different solutions can still be applied: hierarchical
reconfiguration is possible when using the GoAhead partial
reconfiguration framework [15]. Alternatively, adjacent RRs
can be connected to each other with a universal interface. RMs
using multiple RRs need to be split hierarchically accordingly.
Furthermore, reconfiguring the complete FPGA when chang-
ing level of RR hierarchy, is most simple but also restricts
scheduling.

The challenge for this approach to be successful is to find
an optimum partitioning of the TRA. The position of the
RR boundaries significantly influences resource efficiency and
scheduling flexibility. We have developed an algorithm that
finds an optimum layout on a given reconfiguration area for a
given set of HW tasks with given resource demands.

V. ALGORITHM

Our input consists of a rectangular TRA of width w, height
h and maximum dimension D := max{w,h}, a list of n
RMs My, ..., M, and m resource types R,..., R,,, such as
DSP or memory resources. Each module is characterized by
the amount R, (M;) of logic cells and the amount R;(M;) of
cells of every other resource R; required for reallzlng it. For
each resource R;, there are s; resource strips S} R, 7...,513{,.
They can either be horizontal or vertical, but all strips of
all resources share the same orientation and do not intersect.



— Communication channel
| — Total reconfigurable area

RR

RR;

RR3

RM7

Fi

g. 5. Merging RR size.

Each resource strip has a position c(S}'%j), which is the z-
coordinate of its left side (in case of vertical resource strips)
and the y-coordinate of its top side (in case of horizontal
resource strips). Each resource strip has a given thickness
h(R;) and is subdivided into cells of size w(R;). We assume
that these values are identical for all strips of a resource R;.
Moreover, the TRA has a communication channel consisting of
a rectangular region; without loss of generality, this is located
at the top. In the following, let ¢, denote the x-coordinate of
the left side of the communication channel and let ¢,, and ¢,
be its width and height. For an overview of the parameters,
refer to Fig. 6.

It is important to note that, in general, the given list of
modules will not fit into the TRA. Instead, the system has
to react to a given request sequence that only arrives after the
system has been configured. Each request in the sequence asks
to add an RM to or remove an RM from the current system
configuration. Therefore, just computing a static mapping of
RMs to RRs is insufficient. Instead, we have to compute a
decomposition of the TRA into non-overlapping rectangular
RRs. In order to achieve low-latency communication with the
outside world, we require each RR to touch the communication
channel. Moreover, as we want to be able to control the
complexity of the communication infrastructure, we have a
parameter Ny that acts as an upper bound on the number of
RRs we are allowed to use.

Additionally, for each module M;, we have to pro-
duce a given number p(M;) of possible placements
M;1,..., M; par,)- Bach placement M; ; maps module M;
to a region of the TRA consisting of at least one RR of the
decomposition. It is allowed to merge several adjacent RRs
into a larger region for a module placement. For each module
placement M; ;, the resource requirements of module M; must
be satisfied, i.e., for every resource Ry, the region used by
M; ; must contain at least Ry (M;) cells of that resource. In
the following, this output will be referred to as layout.

27

Intuitively speaking, the output of the algorithm should
maximize the resource efficiency and flexibility of the assign-
ment to be able to react well to the module request sequence.
This can be formalized using different goal functions. For
instance, one could try to maximize the minimum number
of requests that can always be served, regardless of the
request sequence. Another possibility would be to maximize
the number of insertion-only request sequences that can be
served. Moreover, one could also try to maximize the critical
resource usage, i.e., the fraction of resources that has to be
used before the algorithm can fail to serve a request. How-
ever, these objective functions would require us to produce a
packing strategy together with the output. Additionally, they
are extremely hard to evaluate for a given layout, which makes
this direct approach computationally infeasible. Therefore, we
have to resort to optimizing a different goal function that can
be evaluated more easily for a given layout and that is a
good heuristic for the flexibility of a layout. For this purpose,
we propose to minimize the overlap depth, i.e., the weighted
number of module placements that overlap in any region of
the layout. To formalize this, for each reconfigurable region R
in the layout, let 0;(R) be the number of module placements
of module M; using this region. Then, the overlap depth of a
layout is

An algorithm that computes a layout minimizing o can also
be used to find a packing of the modules into the TRA if they
fit, by requesting a layout with overlap depth 1, where each
module has only one placement option.

The problems arising when optimizing over assignments
of RMs to regions in the TRA are variants of geometric
packing problems that are known to be computationally hard.
In their general form, these problems are usually intractable in
practice, even when dealing with instances of moderate size.
This is in part due to the fact that solving them typically
requires a representation of the packing area as a large grid.

Minimizing the overlap depth o in our setting is NP-hard',
even when only considering logic resources. One can reduce
the NP-complete problem PARTITION to it by using the com-
munication channel to subdivide the TRA into two regions of
equal height A and width w. A PARTITION instance z1, ..., 2,
can then be solved by asking for an overlap depth o = 1, with
n modules, using logic resource requirements wzy, ..., Wz,
and height h = %Zzl Therefore, on the theoretical side,
an algorithm computing an optimal layout cannot be efficient
in general. In practice, the restricted structure of the problem
can be leveraged to compute optimal solutions for practical
instances in reasonable time. In particular, the requirement
that each RR touches the communication channel effectively
eliminates one dimension and thus can be used to avoid
representing the TRA as a grid. In this section, we present
a practical algorithm for this problem, based on a formulation

IFor an introduction to complexity theory, we refer to [16].



of the problem as an Integer Linear Program (ILP) that is
constructed from the input and then solved using an integer
linear program solver like CPLEX [17] or GLPK [18].

s(B1) =, Sk, s(B3) Sk, T
: comin. | —
L channel Bd
B O ch ]
- i
____________ L ___J Cu L
L : .
] 1 ! R [
! 2
R H s(Bs)l Bag o
1 1
— 1 —
[] : : w(R1)
h(R1)
Yy w o

Fig. 6. The situation under consideration by the algorithm.

A. Decomposition into Regions

The communication channel subdivides the TRA into sev-
eral rectangular regions, some of which may be empty if the
communication channel touches more than one side of the
TRA. There are three rectangular regions that may contain
more than one rectangle.

1) A region B; to the left of the communication channel,

2) aregion By below the communication channel, and

3) aregion Bs to the right of the communication channel.

Moreover, there are two further rectangles R, R5 in the lower
left and right corners of the TRA. If c;, = h, these rectangles
are empty and can be ignored. Otherwise, they have to touch
the communication channel, implying that their width w(R)
and height h(R) satisfy the following:

hRi)=h—cp, w(Ry)>e, or (1)
h(R1) > h—cn, w(Ri) = cq, )
and, analogously,
h(R2) =h—cp, w(Ra) > w— ¢y — ¢y OF 3)
h(R2) > h—ch, w(Re) =w—cz — Co. @)

We want to further subdivide each of the regions B1, By, B3
into rectangular RRs. One of the dimensions in these regions is
always fixed, as B; and B3 have fixed width and B5 has fixed
height, see Fig. 6. Let s(Bj) be the size of this fixed dimension
of region By, and S(Bj) be size of the other dimension of
By, which is fixed once the sizes of the rectangles R, Ro are
chosen. In the following sections, we will describe the integer
linear program used by our algorithm.

B. Decomposition into Rectangles

We start by giving the variables and constraints of the
ILP that describe the shape of the rectangles R1, Ro and the
decomposition of the regions Bj, By, B3 into RRs.

28

For the rectangle R, we introduce a Boolean variable Ox,
that is zero iff Equation (1) holds. If Equation (1) holds, the
height of R is fixed to h — ¢;, and its width is described
by the integer variable Si,. Otherwise, its width is fixed to
¢ and its height is described by the integer variable Sg,.
Similarly, for Ro, we have variables O, and Sg,. For R,
and R9, we introduce auxiliary variables wg,, hgr,,ar, and
WR,, hr,,aRr, encoding the width, height and area of R,
and R,. We introduce constraints ensuring that these auxiliary
variables are fixed to their correct value if Og, and Og, are
integral. The constraint wg, + wgr, < w ensures that the
rectangles fit into the TRA.

For each region By, we have Nz — 2 potential rectangles.
Moreover, for each potential rectangle R¥,1 < i < Np —
2,k € {1,2,3}, we have an integer variable P} describing
its position. For the rectangles in B; and Bs, this is the y-
coordinate of the top side of RY. For rectangles in By, this is
the x-coordinate of the left side of RE.

Rectangles in B; have to satisfy 0 < Pi1 < h — hg,.
Similarly, for rectangles in Ba, wgr, < Pf < w —wr, has to
hold, and 0 < P? < h — hg, for rectangles in Bs. Moreover,
for each rectangle Rf‘, there is a Boolean variable xz that
will be zero if Rf is not used, i.e., that has zero area. For
these rectangles, we enforce Pik > Pf_ 1,1 <1< Ng—2
in order to break symmetries. This also enables us to express
the size S¥ of rectangle RY as PF | — PF; for the size of the
last rectangle in each region, the boundary of the region must
be used. For each rectangle R} we also include a decision
variable :Ef that is zero iff the rectangle’s size is zero, enforced
using the constraints

Sk <al.D, SF>ak (5)

We reduce symmetries by enforcing #¥ < z¥ | and make sure
that only Nz RRs are used by imposing the constraint

3 Ng

k=11i=1

(6)

C. Amount of Resources Available

For each RR RF, we need a way to express the amount
of resource R; that is available. Depending on the orientation

and k, we are in one of two situations.

(I) A strip of resource I?; crosses the region B}, orthogonal
to the orientation of the rectangles. For vertical resource
strips, as depicted in Fig. 6, this is the case for regions
By and Bj; for horizontal strips, this is the case for
region Bs. In this situation, resources from the strip are
available in every rectangle in the region, their amount
depending on the size of the rectangle.

A strip of R; crosses the region parallel to the orienta-
tion of the rectangles. For vertical resource strips, this is
the case for region Bs. For horizontal strips, this is the
case for regions B; and Bs. In this situation, resource
R; is only available in rectangles placed in the region in
such a way that they intersect the strip. This introduces

ey



new constraints on the possible placements of module
M; in By,.
In case (I), the amount of resources can be expressed as
follows. Let Ng, (k) be the number of strips of R; that cross
region Bj; regardless of the size of the regions, this number is
known in advance. Then the amount of R;-resources available
in rectangle R is

Sk
w(R;)

R;(RY) := Ng, (k) (7)

We denote the amount of logic space available in RY by
Ro(RE) := I(RF), which is defined as

— > N, (k)SFh(R;). ®)
=1

In case (II), we have to introduce additional auxiliary
variables. In particular, for each rectangle R and each strip
Sﬁj potentially crossing it, we have a Boolean variable zlé‘
indicating whether R is crossed by Sl R, . Analogous variables
zjl ; and z]2 ; model whether the strip S 5%- crosses the rectangles
R1,Ra. We group the rectangles into three regions Uy, Uy, U,.,
where U; contains the rectangles from By and R, U, contains
the rectangles from By and R 1, R, and U, contains the rectan-
gles from Bs and R,. Within each region U € {U;, Uy, U, },
we require each parallel resource strip to cross exactly one

rectangle in U.
VU € {U1, Uy, Up}, S, 0 > 2l =1 9)
RFEU

This prevents strips from being split by a rectangle, which
would be a waste of resources and would complicate the com-
putation of the remaining logic area. The amount of resource
R; available in rectangle R¥ and the available amount of logic
space can then be expressed as

Ri(RE) = 27 - ) | (10)

St )

IRY) = SF-s(Br) = > z7s(Br)h(R;). (1)
j=1 1

For R1,Rs, neither dimension is known in advance. There-
fore, to avoid quadratic constraints, the amount of resources
available has to be modeled differently. Let

o JWRy
SR, ‘=
th )
For each resource strip S! e introduce auxiliary variables
1 2 . . . .
vj;, V5, representing the width (for horizontal resource strips)

or height (for vertical resource strips) of R, R2 crossed by
sl .
J

if resources are horizontal,
otherwise.

}-l <z, D, (12)
Jz < SRy (13)
7,1 >sr, — (1— z]{l) - D. (14)

Again we have analogous constraints for Ry. Using these
variables, the amount of resources and logical space available
in Rq can be expressed as follows.

1

Ri(Ry) =S wq(’g,), (15)
1 J
Ro(Rl) = Z(Rl) = aRr, — ZZU},lh(RJ) (16)
j=1 1

D. Mapping of Modules to Rectangles

For each module M;,1 < ¢ < n, each requested positioning
option M; ;,1 < j < p(M) and each rectangle RY, we add a
decision variable y " that is set to 1 if placement option M; ;
uses rectangle Rk Analogously, for the rectangles R, Ro, we
have decision variables Yi j»Yi ;» indicating whether Ry, Ro
are used by M, ;. Empty rectangles may not be used for
a mapping. This is enforced by setting yZ jk < af. As
merging rectangles is allowed, we have to ensure that the
region allocated to a placement option M ; is contiguous.
This is done by enforcing, for all placement options M; ; and
each pair R%, R} of RRs, that if both are used for the same
placement, all rectangles B (R’C RY 1) between the two regions
must either be empty or used, leadlng to

Z yz] (]‘_xf)

ok he RGEB(RER)
Yij TYi5 — kot
= = |B(RE,RY)|

<1 a7

E. Resource Requirements

Finally, we have to ensure that each module placement
option M; ; satisfies the resource requirements of the module.
Thus, for each module placement option M;; and each
resource R; with R;(M;) > 0, we have to ensure that the
required amount of resource [?; is available to M; ;. To avoid
quadratic constraints, we need auxiliary integer variables RY ’fl
that model the amount of resource R; contributed to the
placement option M ;, i.e.,

RYF, <yt D?, (18)
RIf) < R;(RY), (19)
RyF, >0, (20)
RIT = Ry(RY) — (1—yf}) - D*. @1

The integrality of these variables enforces that RR boundaries
do not split resource cells. Analogous constraints and auxiliary
variables Rg 0 can be used for the logic area. Then sufficient
resources for each module placement can be guaranteed as

ZR”1>RZ ). (22)

F. Objective Functlon

For the objective function, we need another variable o
that models the maximum depth of the overlap we want to
minimize.

1 k
o> — oy (23)
> iy

4,9



VI. EVALUATION

For evaluation of the novel algorithm and comparing the
merging RR size approach to others, we first define benchmark
parameters and then compare the results of an exemplary
robotic space application.

A. Benchmark Parameters

Resource efficiency, scheduling flexibility, and bitstream-/
communication complexity can be measured according to the
following benchmarks, with m being the number of resource
types, n being the number of modules, r being the number of
regions, and p being the number of RM-RR pairs.

Resource efficiency represents the proportion of resources
R required by an RM compared to resources P provided by an
RR. The resource efficiency of each RM-RR pair is weighted
with the corresponding RR size, so the calculated value refers
to the average of the TRA. Furthermore, in this context we
calculate the arithmetic mean of all resource types.

I~ Ri(p;)
R ffici = § § :
esource € Clency m = g Pz (pz)

(24)

For expressing scheduling flexibility, all possible insertion-
only request sequences s of RMs to be placed in the recon-
figurable area are examined (permutations of RMs). For each
sequence, the ratio of successfully placed RMs n,, compared
to the total number of RMs n is calculated. An optimum
scheduling flexibility of 1 allows all modules to run in parallel,
which corresponds to a non-DPR design.

Scheduling flexibility i— - 3
cheduling flexibility := SZ n

i=1

(25)

Bitstream complexity represents the size of the bitstream
repository and required storage. Each RM-RR pair requires a
bitstream of size b, corresponding to its RR (not accounting
for possible compression). For better comparability, bitstream
complexity is normalized to the bitstream size of the TRA.

P

> b(RR;).

i=1

Bitstream complexity := (26)

b(TRA)

A rough estimate for communication channel complexity
is the number of possible interfaces and therefore RRs. This
applies in particular for networks-on-chip that scale well with
the number of nodes.

Communication complexity := 7. 27

B. Exemplary Space Application

The following space-instrument setup currently investigated
at IDA is used for exemplary evaluation. The space instrument
is equipped with a stereo camera system, which will be used
for 1) object recognition and 2) high-quality image acquisition.
Both operation modes can be divided into smaller tasks that
can either be executed in SW or scheduled as an RM in HW.
An exemplary estimate of resource demands for corresponding
RMs is given in Table 1. The estimates represent a typical

30

TABLE I
RESOURCE REQUIREMENTS OF HW TASKS

Mode Reconf. Module Slices | BRAM36 | DSP48
Debayer (2x) 200 2 0
Rectifier (2x) 500 30 10
Object Stereo match 2500 30 10
recogni- Disparity 1000 15 30
tion Flex-SURF! 1000 0 10
Motor Control (3x) 200 0 0
FPN correction? 100 0 1
Image Dark field corr. 200 1 10
acquisi- FFT 800 7 16
tion Bad pixel/spike 100 2 4
CCSDS 122 2500 12 0
Binning 300 4 6
Hough Transform. 1800 14 15
Median Filter 800 0 0

! IP-core for feature detection using the “Speeded-Up Robust Fea-
tures” algorithm.
2 IP-core for Fixed-Pattern Noise suppression.

wide spread of resource demands. Logic resources (slices) are
generously estimated because an overhead of about 10% is
required for successful placement and routing. Some RMs
need to be scheduled concurrently in multiple RRs due to
functional reasons (e.g., running the same algorithm on left
and right image) or safety reasons (critical modules such
as motor control will run in redundant or Triple Modular
Redundancy mode). In this example, a TRA of 5700 slices, 60
BRAMs, and 100 DSP blocks is assumed, which correlates to
available resources of two clock regions in the Zynq XC7Z2020
FPGA. The resource demands of the RMs of each operation
mode exceed the resources provided by the TRA, so DPR
has to be performed. It is assumed that the communication
channel has a resource requirement of 100 slices per interface.
The remaining resources can be divided into at most two
RRs of identical size for the fixed uniform approach. The
fixed non-uniform approach allows a division of the TRA into
multiple RRs. In this example, four RRs have been selected.
For the adaptive approach, the TRA is divided into only two
parts on the first level instead of four. This allows mapping
the large RMs Stereo match and CCSDS 122 for image data
compression to the first level. The second level follows the
quadtree layout again and subdivides the remaining areas into
four parts.

Table II illustrates the average benchmark results of both
operation modes for the different RR size approaches that are
discussed in this paper. As expected, the fixed uniform RR
size approach yields very low resource efficiency. Schedula-
bility is also comparably low in this example, which can be
explained with the low number of RRs. The fixed non-uniform
approach yields better results, in particular the tailored size of
RRs contributes to a relative high resource efficiency. When
choosing adaptive RR size, scheduling flexibility is improved,
but because arithmetic- and memory-type resources cannot be



TABLE II
BENCHMARK RESULTS OF DIFFERENT RR S1ZE CONCEPTS
Reconf. region resource | scheduling | bitstream | comm.
concept efficiency | flexibility compl. compl.
fixed uniform 24% 23% 9 2
fixed non-uniform 44% 24% 2.18 4
adaptive 30% 30% 9 10
merging, 5 RRs 42% 51% 3.14 5
merging, 10 RRs 52% 57% 3.20 10

guaranteed to be part of an RR of deep level, only a low
resource efficiency is achieved.

When dividing the TRA into 5 RRs using the merging RR
size concept introduced in this paper, the algorithm yields a
similar resource efficiency as the fixed non-uniform approach,
but already provides higher scheduling flexibility. Bitstream
complexity and thus the required size for memory is relatively
low, only outperformed by the fixed non-uniform approach.

When increasing the number of defined RRs, the TRA can
be divided into more finely granular areas. Thus, resource
efficiency and scheduling flexibility increases. The results
for the merging RR size approach with 10 RRs confirm
these expectations. However, the price for this improvement
is higher communication complexity. This impacts resource
requirements and possibly speed of the communication chan-
nel. Also, bitstream complexity increases marginally as more
placement options for an RM need to be provided.

For the given example, the new algorithm developed
achieves best scores for scheduling flexibility together with
high resource efficiency results without significantly increasing
bitstream complexity. Communication complexity can easily
be controlled by limiting the number of RRs. Therefore our
new algorithm provides a good approach for the given robotic
space application in particular, and for reconfigurable modules
of diverse resource demands in general.

VII. CONCLUSION

In this paper, we presented a new approach and algorithm
for subdividing a reconfigurable area into regions efficiently.
For a given robotic space application we evaluated the results.
Compared to existing concepts we achieved better results
regarding resource efficiency and schedulability for HW tasks
with diverse resource demands.

The algorithm can be applied for any DPR problem, given
that the underlying FPGA fabric is 1D-homogeneous. So far
we concentrated on the three main resource types of FPGAs
(logic, memory, and arithmetic). Our model does not cover
additional reconfigurable resource types yet, such as clocking-
and I/O-related, which are free to reconfigure in the Xilinx
UltraScale+ architecture. Such an extension is planned for the
future. We also plan to consider correlations between recon-
figurable modules, such as co-occurrence or mutual exclusion,
which allows further optimization.

31

ACKNOWLEDGMENT
This work is part of the DFG Research Group FOR 1800
“Controlling Concurrent Change”. Funding for the Department
of Computer Science was provided under grant number FE
407/17-2, while funding for IDA was provided under grant

number MI 1172/3-1.

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

L. Fossati and J. Ilstad, “The Future of Embedded systems at ESA:
Towards Adaptability and Reconfigurability,” in Proc. 2011 NASA/ESA
Conf. Adaptive Hardware and Systems (AHS), June 2011, pp. 113 —120.
B. Fiethe, F. Bubenhagen, T. Lange, H. Michalik, and H. Michel,
“Dynamically Reconfigurable Processing Module (DRPM) and its Ap-
plication on a Space Science Instrument,” in Proc. 2013 Workshop on
Reconfigurable Computing (WRC), January 2013.

A. Ahmadinia, J. Angermeier, S. P. Fekete, D. Gohringer, T. Kamphans,
D. Koch, M. Majer, N. Schweer, J. Teich, C. Tessars, and J. C. van der
Veen, “ReCoNodes — Optimization methods for module scheduling and
placement on reconfigurable hardware devices,” in Dynamically Re-
configurable Systems: Architectures, Design Methods and Applications.
Springer Netherlands, 2010, pp. 199-221.

A. Al-Wattar, S. Areibi, and F. Saffih, “Efficient on-line hard-
ware/software task scheduling for dynamic run-time reconfigurable
systems,” in 2012 IEEE 26th Int. Parallel and Distributed Processing
Symp. Workshops PhD Forum, May 2012, pp. 401-406.

A. Rodriguez, J. Valverde, E. de la Torre, and T. Riesgo, “Dynamic
management of multikernel multithread accelerators using dynamic
partial reconfiguration,” in Proc. 9th Int. Symp. Reconfigurable and
Comm.-Centric Systems-on-Chip (ReCoSoC), May 2014, pp. 1-7.

A. Lalevée, P. H. Horrein, M. Arzel, M. Hiibner, and S. Vaton,
“AutoReloc: Automated Design Flow for Bitstream Relocation on Xilinx
FPGAs,” in 2016 Euromicro Conference on Digital System Design
(DSD), Aug 2016, pp. 14-21.

Y. Ma, J. Liu, C. Zhang, and W. Luk, “HW/SW partitioning for region-
based dynamic partial reconfigurable FPGAs,” in 2014 IEEE 32nd Int.
Conf. on Computer Design (ICCD), Oct 2014, pp. 470-476.

S. P. Fekete, J. C. van der Veen, A. Ahmadinia, D. Gohringer, F. Hurtado,
and J. Teich, “Offline and online aspects of defragmenting the module
layout of a partially reconfigurable device,” IEEE Trans. VLSI Systems,
vol. 16, no. 9, pp. 1210-1219, 2008.

A. Ahmadinia, C. Bobda, S. P. Fekete, J. Teich, and J. C. van der
Veen, “Optimal free-space management and routing-conscious dynamic
placement for reconfigurable computing,” IEEE Trans. Comput., vol. 56,
pp. 673-680, 2007.

G. Charitopoulos, 1. Koidis, K. Papadimitriou, and D. Pnevmatikatos,
Hardware Task Scheduling for Partially Reconfigurable FPGAs.
Cham: Springer International Publishing, 2015, pp. 487—498. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-16214-0_45

S. Fekete, B. Fiethe, S. Friedrichs, H. Michalik, and C. Orlis, “Efficient
reconfiguration of processing modules on FPGAs for space instruments,”
in Proc. 2014 NASA/ESA Conference on Adaptive Hardware and Systems
(AHS), July 2014, pp. 15-22.

S. P. Fekete, J.-M. Reinhardt, and C. Scheffer, “An efficient data struc-
ture for dynamic two-dimensional reconfiguration,” Journal of Systems
Architecture, vol. 75, pp. 15-25, 2017.

T. Cervero, J. Dondo, A. G6émez, X. Pefia, S. Lopez, F. Rincon,
R. Sarmiento, and J. C. Lopez, “A resource manager for dynamically
reconfigurable FPGA-based embedded systems,” in 2013 Euromicro
Conference on Digital System Design, Sept 2013, pp. 633-640.

Vivado Design Suite User Guide Partial Reconfiguration UG909,
v2016.4 ed., Xilinx, Inc., 2016.

C. Beckhoff, D. Koch, and J. Torresen, “Go Ahead: A Partial Reconfig-
uration Framework,” in 2012 IEEE 20th Int. Symp. Field-Programmable
Custom Computing Machines, April 2012, pp. 37-44.

M. R. Gary and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-completeness. WH Freeman and Company, New
York, 1979.

“IBM ILOG CPLEX Optimizer,” https://www-01.ibm.com/software/
commerce/optimization/cplex-optimizer, accessed: 2017-03-01.

“GNU Linear Programming Kit,” https://www.gnu.org/software/glpk,
accessed: 2017-03-01.



