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Abstract

We present a collection of results for parallel motion
planning, in which the objective is to reconfigure a
swarm of labeled disk-shaped objects into a given
target arrangement. This problem is of significant
importance for a wide range of practical challenges,
with potential applications to coordinated motion plan-
ning of ground robots, self-driving cars, and/or drone
swarms, in addition to air traffic control, and human
team coordination (e.g., in sports, military, or fire
fighting).

We solve an open problem by Overmars dating back
to 2006 by designing a constant-factor approximation
algorithm for minimizing the execution time of a par-
allel motion plan for a rectangular grid of robots, and
a desired permutation of those robots, where, in each
round, every robot can move to any neighboring loca-
tion whose robot is simultaneously leaving to another
location. In fact, our algorithm achieves constant
stretch factor: if all robots ultimately want to move
to a location at most d units away, then the computed
parallel motion plan requires only O(d) rounds.

Furthermore, we provide lower and upper bound
results for the corresponding continuous and unlabeled
versions of the problem setting.

1 Introduction

Since the beginning of computational geometry, robot
motion planning and especially multi-robot coordina-
tion has received a considerable amount of attention.
Even in the groundbreaking work by Schwartz and
Sharir [11] from the early 1980s, one of the challenges
was coordinating the motion of several disk-shaped
objects among obstacles. Their algorithms run in time
polynomial in the complexity of the obstacles, but
exponential in the number of disks; moreover, it was
shown by Hopcroft et al. [5] that the reachability of
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a given target configuration is PSPACE-complete to
decide. This illustrates that a major aspect of the
complexity arises not just from dealing with obstacles,
but from interaction between the individual robots.
In addition, a growing number of applications focus
solely on robot interaction, even in settings in which
obstacles are of minor importance, such as air traffic
control or swarm robotics, where the goal is overall
efficiency, rather than individual navigation.

With the hardness of multi-robot coordination being
well known, there is still a huge demand for positive
results with provable performance guarantees. In this
paper, we provide significant progress in this direction,
with a broad spectrum of results.

1.1 Our Results

For the problem of minimizing the total time needed
to reconfigure a system of labeled circular robots in a
grid environment, we give an O(1)-approximation, i.e.
bounded stretch, for optimal parallel motion planning,
solving an open problem stated by Overmars [9] in
2006. See Theorem 1.

We extend our approach to establish constant
stretch for the generalization of colored case, for which
unlabeled disks are another special case; see Theorem 2.
For the continuous case of N disks and arbitrary den-
sity, we establish a lower bound of Q(N'/*4) and an
upper bound of O(v/N) on the achievable stretch, see
Theorem 3 and Theorem 4.

1.2 Related Work

Multi-object motion planning problems have received a
tremendous amount of attention from a wide spectrum
of areas. Due to limited space, we focus on algorithmic
work with a focus on geometry.

In the presence of obstacles, Aronov et al. [2] demon-
strate that for up to three robots, a path can be
constructed efficiently, if one exists. Schwartz and
Sharir [11] consider the case of several disk-shaped
objects between polygonal obstacles. They give al-
gorithms for deciding reachability of a given target
configuration. The algorithms run in time polynomial
in the complexity of the obstacles, but exponential in
the number of disks. Hopcroft et al. [5] prove that it
is PSPACE-complete to decide reachability of a given
target configuration, even when restricted to rectan-
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gular objects in a rectangular region. Dumitrescu and
Jiang [4] consider minimizing the number of moves of
a set of disks into a target arrangement without obsta-
cles. They prove that the problem remains NP-hard
for congruent disks even when the motion is restricted
to sliding.

In both discrete and continuous variants of the prob-
lem, the objects can be labeled, colored or unlabeled.
In the colored case, the objects are partitioned into k
groups and each target position can only be covered by
an object with the right color. This case was recently
considered by Solovey and Halperin [12], who present
and evaluate a practical sampling-based algorithm. In
the unlabeled case, the objects are indistinguishable
and each target position can be covered by any ob-
ject. This scenario was first considered by Kloder and
Hutchinson [6], who presented a practical sampling-
based algorithm. Turpin et al. [15] prove that it is
possible to find a solution in polynomial time, if one
exists. This solution is optimal with respect to the
longest distance traveled by any one robot. However,
their results only hold for disk-shaped robots under
additional restrictive assumptions on the free space.
For unit disks and simple polygons, Adler et al. [1]
provide a polynomial-time algorithm under the addi-
tional assumption that the start and target positions
have some minimal distance from each other. Under
similar distance assumptions, Solovey et al. [14] pro-
vide a polynomial-time algorithm that produces a set
of paths that is no longer than OPT + 4m, where m is
the number of robots. However, they do not consider
the makespan, but only the total path length. On the
negative side, Solovey and Halperin [13] prove that the
unlabeled multiple-object motion planning problem
is PSPACE-hard, even when restricted to unit square
objects in a polygonal environment.

On grid graphs, approaches for the problem (see
Kunde [8] and Cheung and Lau [3]) typically assume
that at least a constant number of packets can be
held at any processor which means that a constant
number of robots may overlap in the context of our
problem setting. On the other hand, on grid graphs,
the problem resembles the generalization of the 15-
puzzle, for which Wagner [16] and Kornhauser et al. [7]
give an efficient algorithm that decides reachability of a
target configuration and provide both lower and upper
bounds on the number of moves required. Ratner and
Warmuth [10] prove finding a shortest solution for this
puzzle remains NP-hard.

2 Preliminaries

In the grid setting considered in Section 3, robots are
arranged in an nxm-rectangle P which is dual to a grid
graph G = (V| E). A configuration of P is an injective
mapping C : V — {1,...,k, L}, where {1,...,k} are
the labels of the k < |P| robots to be moved, and

C does not have to be injective with respect to the
empty squares denoted by L. The inverse image of a
robot’s label £ is denoted by C~1(¢). d is the maximum
distance between a robot’s start and target position.

A configuration Cy : V. — {1,...,k, L} can be
transformed into another configuration Cy : V. —
{1,...,k, L}, denoted C; — Cy, if C7(0) = C5*(¢)
or (C7(¢),C54(¢) € E holds for all £ € {1,...,k},
i.e., if each robot does not move or moves to one of the
four adjacent squares. Furthermore, two robots can-
not exchange their squares in one transformation step.
The number of steps in a sequence of transformations
is called its makespan. Given a start configuration Cj
and a target configuration Cy, the optimal makespan
is the minimum number of steps in a transformation
sequence starting with Cs and ending with Cj.

For the continuous setting of Section 4, we con-
sider N robots R := {1,...,N} € N. A movement
of a robot r is a curve m, : [0,7,] — R?, such that
[|m.(t)']2 < 1 holds for all points in time ¢ € [0,T}].
Let m; : [0,7;] — R? and m; : [0,T;] — R2
be two movements; m; and m; are compatible if
the corresponding robots do not intersect at any
time.A movement of R is a set of compatible move-

ments {my,...,my}, one for each robot. The (con-
tinuous) makespan of a movement {my,...,my} is
defined as max,er T-. A movement {mi,...,my}

realizes a pair of start and target configurations
S = ({s1,---,sn}, {t1,. .., tn}) if mp(0) = s, and
m,(T;) = t, hold for all » € R. We are searching for
a movement {myq,...,my} realizing S with minimal
makespan.

3 Labeled Grid Permutation

Let n >m > 2, n > 3 and let P be a n x m-rectangle.
By filling possibly empty squares with dummy robots,
we may assume k = |P| = nm.

Our main result is the following:

Theorem 1 There is an algorithm with runtime
O(dmn) that, given an arbitrary pair of start and
target configurations of an n x m-rectangle with maxi-
mum distance d between any start and target position,
computes a schedule of makespan O(d), i.e., an ap-
proximation algorithm with constant stretch.

On a high level, our algorithm first computes the
maximal Manhattan distance d between a robot’s start
and target position. Then we partition P into a set T’
of pairwise disjoint rectangular tiles, where each tile
t € T is an n’ x m/-rectangle for n’,m’ < 24d. We
then use an algorithm based on flows to guarantee
that all robots are in their target tile, see Figure 1.
Once all robots are in the correct tile, we use a sorting
algorithm, rotate sort, for meshes simultaneously on
all tiles to move each robot to the correct position
within its target tile.
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Figure 1: A tiling of an 26 x 32-rectangle into four tiles
with d = 1 and the corresponding dual graph. Robots
not in their target tile are illustrated by small dots.
Their target positions are depicted as white disks.

3.1 Outline of the Approximation Algorithm

We model the movements of robots between tiles as
a flow fr, using the weighted directed graph G =
(T, ET, fr), which is dual to the tiling T' defined in the
previous section. In G, we have an edge (v,w) € Er
if there is at least one robot that has to move from v
into w. Furthermore, we define the weight f((v,w))
of an edge as the number of robots that move from
v to w. As P is fully occupied, fr is a cyclic flow,
i.e., a flow with no sources or sinks, in which flow
conservation has to hold at all vertices. We observe
that G is a grid graph with additional diagonal edges
and thus has degree at most 8. This is due to the fact
that the side lengths of the tiles are larger than d as
enforced by construction of the tiling.

While the maximum edge value of fr may be ©(d?),
only O(d) robots can possibly leave a tile within a
single transformation step. Therefore, we decompose
the flow fr of robots into a partition consisting of
O(d) subflows, where each individual robot’s motion is
modeled by exactly one subflow and each edge in the
subflows has value at most d. Each subflow is then re-
alized in a single transformation step. To facilitate the
decomposition into subflows, we first preprocess Gr.
The algorithm consists of the following subroutines:

Step 1: Compute d, the tiling T and the flow G, see
Figure 1 for the basic idea.

Step 2: Remove intersecting and bidirectional edges
from G, see the Figure below for the basic idea.
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Step 3: Compute a partition of Gr into O(d) sub-
flows with edge flows upper bounded by d.

Step 4: Realize the O(d) subflows using O(d) trans-
formation steps, see Figures 2 and 3 for the basic
ideas.
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Figure 2: Remove diagonal edges (top) and than apply
the main approach (bottom) for realizing a subflow.

Figure 3: Realizing a sequence of subflows by stacking
the rows of robots to be moved onto each other in the
order in which the subflows are realized. Each color
indicates a separate subflow.

Step 5: Simultaneously apply a sorting algorithm,
rotate sort, for meshes to all tiles, moving each
robot to its target position.

4 Variants on Labeling

A different version is the unlabeled variant, in which
all robots are the same. A generalization of both this
and the labeled version arises when robots belong to
one of k color classes, with robots from the same color
class being identical.

Theorem 2 There is an algorithm with running time
O(k(mn)*®log(mn) + dmn) that computes, given
start and target images Ig,I; with maximum dis-
tance d between any start and target position, an
O(1)-approximation of the optimal makespan M and
a corresponding sequence of transformation steps.

The basic idea is to transform the given labeled
problem setting into an unlabeled problem setting by
solving a geometric bottleneck problem.
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5 Continuous Motion

The continuous geometric case considers N unit disks
that have to move into a target configuration in the
plane; the velocity of each robot is bounded by 1,
and we want to minimize the makespan. For dense
arrangements of disks, we can show that constant
stretch can not be achieved.

Theorem 3 There is an instance with optimal
makespan M € Q(N'/*) = Q(dN'/*) where d € O(1),
see Figure 4.

Figure 4: The start and target configurations of our
lower-bound construction.

The basic idea of the proof of Theorem 3 is
the following.  Let {mj,...,muy} be an arbi-
trary movement with makespan M. We show
that there must be a point in time t € [0, M]
where the area of Conv(mq(t),...,mn(t)) is lower-
bounded by ¢N + Q(N?%4), where cN is the area
of Conv(m(0),...,my(0)). Assume M € o (N4)
and consider the area of Conv(mq(t),...,mpy(t))
at some point ¢ € [0,M]. This area is at most
¢N + O(VN) - o (NY/*) which is a contradiction.

On the other hand, we can give a non-trivial but
non-constant upper bound on the possible stretch.

Theorem 4 There is an algorithm that computes
a movement plan with continuous makespan in
O(d + VN). If d € Q1), this implies a O(v/N)-
approximation algorithm.

The approach of Theorem 4 applies an underlying
grid with mesh size 24/2. Our algorithm (1) moves
the robots to vertices of the grid, (2) applies our O(1)-
approximation for the discrete case, and (3) moves the
robots from the vertices of the grid to their targets.

References

[1] A. Adler, M. de Berg, D. Halperin, and K. Solovey.
Efficient multi-robot motion planning for unlabeled
discs in simple polygons. In Algorithmic Foundations
of Robotics XI, pages 1-17. Springer, 2015.

[2] B. Aronov, M. de Berg, A. F. van der Stappen,
P. Svestka, and J. Vleugels. Motion planning for
multiple robots. Discrete & Computational Geometry,
22(4):505-525, 1999.

[3] S. Cheung and F. C. M. Lau. Mesh permutation
routing with locality. Information Processing Letters,
43(2):101-105, 1992.

[4] A. Dumitrescu and M. Jiang. On reconfiguration of
disks in the plane and related problems. Computa-
tional Geometry: Theory and Applications, 46:191—
202, 2013.

[5] J. E. Hopcroft, J. T. Schwartz, and M. Sharir. On
the complexity of motion planning for multiple inde-
pendent objects; PSPACE-hardness of the warehouse-
man’s problem. Int. J. Robotics Research, 3(4):76-88,
1984.

[6] S. Kloder and S. Hutchinson. Path planning for
permutation-invariant multi-robot formations. In
IEEE Trans. Robotics, volume 22, pages 650-665.
IEEE, 2006.

[7] D. Kornhauser, G. Miller, and P. Spirakis. Coor-
dinating pebble motion on graphs, the diameter of
permutation groups, and applications. In Annual Sym-
posium on Foundations of Computer Science, 1984,
SFCS 84, pages 241-250, 1984.

[8] M. Kunde. Routing and sorting on mesh-connected
arrays. In VLSI Algorithms and Architectures: 3rd
Aegean Workshop on Comp. (AWOC 88), pages 423—
433. Springer, 1988.

[9] M. Overmars. Contributed open problem. In
S. P. Fekete, R. Fleischer, R. Klein, and A. Lopez-
Ortiz, editors, Algorithmic Foundations of Pro-
grammable Matter, Dagstuhl Seminar 06421, 2006.
http://www.dagstuhl.de/de/programm /kalender/
semhp/?semnr=06421.

[10] D. Ratner and M. K. Warmuth. Finding a shortest
solution for the N x N extension of the 15-puzzle is in-
tractable. In Proc. AAAI Conf. Artificial Intelligence,
pages 168-172, 1986.

[11] J. T. Schwartz and M. Sharir. On the piano movers’
problem: III. Coordinating the motion of several in-
dependent bodies: the special case of circular bodies
moving amidst polygonal barriers. Int. J. Robotics
Research, 2(3):46-75, 1983.

[12] K. Solovey and D. Halperin. k-color multi-robot mo-
tion planning. Int. J. Robotics Research, 33(1):82-97,
2014.

[13] K. Solovey and D. Halperin. On the hardness of
unlabeled multi-robot motion planning. In Robotics:
Science and Systems (RSS), 2015.

[14] K. Solovey, J. Yu, O. Zamir, and D. Halperin. Motion
planning for unlabeled discs with optimality guaran-
tees. In Robotics: Science and Systems (RSS), 2015.

[15] M. Turpin, N. Michael, and V. Kumar. Trajectory
planning and assignment in multirobot systems. In
Algorithmic foundations of robotics X, pages 175-190.
Springer, 2013.

[16] R. M. Wilson. Graph puzzles, homotopy, and the
alternating group. Journal of Combinatorial Theory,
Series B, 16(1):86-96, 1974.



