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a b s t r a c t 

In the presence of dynamic insertions and deletions into a partially reconfigurable FPGA, fragmentation 

is unavoidable. This poses the challenge of developing efficient approaches to dynamic defragmentation 

and reallocation. One key aspect is to develop efficient algorithms and data structures that exploit the 

two-dimensional geometry of a chip, instead of just one. We propose a new method for this task, based 

on the fractal structure of a quadtree, which allows dynamic segmentation of the chip area, along with 

dynamically adjusting the necessary communication infrastructure. We describe a number of algorithmic 

aspects, and present different solutions. We also provide a number of basic simulations that indicate that 

the theoretical worst-case bound may be pessimistic. 
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. Introduction 

In recent years, a wide range of methodological developments

n FPGAs aim at combining the performance of an ASIC imple-

entation with the flexibility of software realizations. One impor-

ant development is partial runtime reconfiguration, which allows

vercoming significant area overhead, monetary cost, higher power

onsumption, or speed penalties (see e.g. [2] ). As described in [3] ,

he idea is to load a sequence of different modules by partial run-

ime reconfiguration. 

In a general setting, we are faced with a dynamically chang-

ng set of modules, which may be modified by deletions and in-

ertions. Typically, there is no full a-priori knowledge of the ar-

ival or departure of modules, i.e., we have to deal with an on-

ine situation. The challenge is to ensure that arriving modules can

e allocated. Because previously deleted modules may have been

ocated in different areas of the layout, free space may be frag-

ented, making it necessary to relocate existing modules in or-

er to provide sufficient area. In principle, this can be achieved by

ompletely defragmenting the layout when necessary; however, the

ack of control over the module sequence makes it hard to avoid
� This work was supported by the DFG Research Group FOR-1800, “Controlling 

oncurrent Change”, under contract number FE407/17-1 and 17-2. 
� A preliminary extended abstract of this paper appears in ARCS2016 [1] . 
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requent full defragmentation, resulting in expensive operations for

nsertions if a naïve approach is used. 

Dynamic insertion and deletion are classic problems of Com-

uter Science. Many data structures (from simple to sophisticated)

ave been studied that result in low-cost operations and efficient

aintenance of a changing set of objects. These data structures are

ostly one-dimensional (or even dimensionless) by nature, making

t hard to fully exploit the 2D nature of an FPGA. In this paper, we

ropose a 2D data structure based on a quadtree for maintaining

he module layout under partial reconfiguration and reallocation.

he key idea is to control the overall structure of the layout, such

hat future insertions can be performed with a limited amount of

elocation, even when free space is limited. 

Our main contribution is to introduce a 2D approach that is

ble to achieve provable constant-factor efficiency for different

ypes of relocation cost. To this end, we give detailed mathemat-

cal proofs for a slightly simplified setting, along with sketches of

xtensions to the more general cases. We also provide basic simu-

ation runs for various scenarios, indicating the quality of our ap-

roach. 

The rest of this paper is organized as follows. The following

ection 2 provides a survey of related work. For better acces-

iblity of the key ideas and due to limited space, our technical

escription in Section 3, Section 4 , and Section 5 focuses on the

ase of discretized square modules on a quadratic chip area. We

iscuss in Section 6 how general rectangles can be dealt with,

ith corresponding simulations in Section 7 . Along the same lines,

e do not explicitly elaborate on the dynamic maintenance of the

http://dx.doi.org/10.1016/j.sysarc.2017.02.004
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Fig. 1. A quadtree configuration (above) and the corresponding dynamically gener- 

ated quadtree layout below). Gray nodes are occupied, white ones with gray stripes 

fractional, black ones blocked, and white nodes without stripes empty. Maximally 

empty nodes have a circle inscribed. Red lines in the module layout indicate the dy- 

namically produced communication infrastructure, induced by the quadtree struc- 

ture. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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communication infrastructure; see Fig. 1 for the basic idea. Further

details are left to future work, with groundwork laid in [4] . 

2. Related work 

The problem considered in our paper has a resemblance to

one-dimensional dynamic storage allocation , in which a sequence

of storage requests of varying size have to be assigned to a block

of memory cells, such that the length of each block corresponds to

the size of the request. In its classic form (without virtual mem-

ory), this block needs to be contiguous; in our setting, contigu-

ity of two-dimensional allocation is a must, as reconfigurable de-

vices do not provide techniques such as paging and virtual mem-

ory. Once the allocation has been performed, it is static in space:

after a block has been occupied, it will remain fixed until the cor-

responding data is no longer needed and the block is released. As

a consequence, a sequence of allocations and releases can result in

fragmentation of the memory array, making it hard or even impos-

sible to store new data. 

On the practical side, classic buddy systems partition the one-

dimensional storage into a number of standard block sizes and al-

locate a block in a smallest free standard interval to contain it.

Differing only in the choice of the standard size, various systems

have been proposed [5–9] . Newer approaches based on cache-

oblivious structures in memory hierarchies include Bender et al.

[10,11] . Theoretical work on one-dimensional contiguous allocation

includes Bender and Hu [12] , who consider maintaining n ele-

ments in sorted order, with not more than O ( n ) space. Bender et al.

[13] aim at reducing fragmentation when maintaining n objects

that require contiguous space. Fekete et al. [3] study complexity

results and consider practical applications on FPGAs. Reallocations

have also been studied in the context of heap allocation. Bender-

sky and Petrank [14] observe that full compaction, i.e., creating a
ontiguous block of free space on the heap, is prohibitively expen-

ive and consider partial compaction. Cohen and Petrank [15] ex-

end these to practical applications. Bender et al. [16] describe a

trategy that achieves good amortized movement costs for reallo-

ations, where allocated blocks can be moved at a cost to a new

osition that is disjoint from with the old position. Another paper

y the same authors [17] deals with reallocations in the context

f scheduling. Examples for packing problems in applied computer

cience come from allocating FPGAs. Fekete et al. [18] examined a

roblem dealing with the allocation of different types of resources

n an FPGA that had to satisfy additional properties. For example,

o achieve specified clock frequencies diameter restrictions had to

e obeyed by the packing. The authors were able to solve the prob-

em using integer linear programming techniques. 

Over the years, a large variety of methods and results for allo-

ating storage have been proposed. The classical sequential fit al-

orithms, First Fit, Best Fit, Next Fit and Worst Fit can be found in

nuth [19] and Wilson et al. [20] . These are closely related to prob-

ems of offline and online packing of two-dimensional objects. One

f the earliest considered packing variants is the problem of find-

ng a dense packing of a known set of squares for a rectangular

ontainer; see Moser [21] , Moon and Moser [22] and Kleitman and

rieger [23] , as well as more recent work by Novotný [24,25] and

ougardy [26] . There is also a considerable number of other re-

ated work on offline packing squares, cubes, or hypercubes; see

27–29] for prominent examples. The online version of square pack-

ng has been studied by Januszewski and Lassak [30] and Han

t al. [31] , with more recent progress due to Fekete and Hoffmann

32,33] . A different kind of online square packing was considered

y Fekete et al. [34,35] . The container is an unbounded strip, into

hich objects enter from above in a Tetris-like fashion; any new

bject must come to rest on a previously placed object, and the

ath to its final destination must be collision-free. 

There are various ways to generalize the online packing of

quares; see Epstein and van Stee [36–38] for online bin packing

ariants in two and higher dimensions. In this context, also see

arts of Zhang et al. [39] . A natural generalization of online pack-

ng of squares is online packing of rectangles, which have also re-

eived a serious amount of attention. Most notably, online strip

acking has been considered; for prominent examples, see Azar

nd Epstein [40] , who employ shelf packing, and Epstein and van

tee [36] . Offline packing of rectangles into a unit square or rect-

ngle has also been considered in different variants; for examples,

ee [41] , as well as [42] . Particularly interesting for methods for

nline packing into a single container may be the work by Bansal

t al. [43] , who show that for any complicated packing of rectan-

ular items into a rectangular container, there is a simpler packing

ith almost the same value of items. 

From within the FPGA community, there is a huge amount of

elated work dealing with problems related to relocation. Becker

t al. [44] present a method for enhancing the relocability of par-

ial bitstreams for FPGA runtime configuration, with a special fo-

us on heterogeneities. They study the underlying prerequisites

nd technical conditions for dynamic relocation. Gericota et al.

45] present a relocation procedure for Configurable Logic Blocks

CLBs) that is able to carry out online rearrangements, defragment-

ng the available FPGA resources without disturbing functions cur-

ently running. Another relevant approach was given by Compton

t al. [46] , who present a new reconfigurable architecture design

xtension based on the ideas of relocation and defragmentation.

och et al. [47] introduce efficient hardware extensions to typi-

al FPGA architectures in order to allow hardware task preemp-

ion. These papers do not consider the algorithmic implications

nd how the relocation capabilities can be exploited to optimize

odule layout in a fast, practical fashion, which is what we con-

ider in this paper. Koester et al. [48] also address the problem of
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as c (σ ) = . 
efragmentation. Different defragmentation algorithms that mini-

ize different types of costs are analyzed. 

The general concept of defragmentation is well known, and has

een applied to many fields, e.g., it is typically employed for mem-

ry management. Our approach is significantly different from de-

ragmentation techniques which have been conceived so far: these

equire a freeze of the system, followed by a computation of the

ew layout and a complete reconfiguration of all modules at once.

nstead, we just copy one module at a time, and simply switch the

xecution to the new module as soon as the move is complete. This

oncept aims at providing a seamless, dynamic defragmentation of

he module layout, eventually resulting in much better utilization

f the available space for modules. All this makes our work a two-

imensional extension of the one-dimensional approach described

n [3] . 

. Preliminaries 

We are faced with an (online) sequence of configuration re-

uests that are to be carried out on a rectangular chip area. A

equest may consist of deleting an existing module, which simply

eans that the module may be terminated and its occupied area

an be released to free space. On the other hand, a request may

onsist of inserting a new module, requiring an axis-aligned, rect-

ngular module to be allocated to an unoccupied section of the

hip; if necessary, this may require rearranging the allocated mod-

les in order to create free space of the required dimensions, in-

urring some cost. 

Previous work on reallocation problems of this type has focused

n one-dimensional approaches. Using these in a two-dimensional

etting does not result in satisfactory performance. The main con-

ribution of our paper is to demonstrate a two-dimensional ap-

roach that is able to achieve an efficiency that is probably within

 constant factor of the optimum, even in the worst case, which re-

uires a variety of mathematical details. For better accessiblity of

he key ideas, our technical description in the rest of this Section 3 ,

s well as in Section 4 and Section 5 focuses on the case of square

odules on a quadratic chip area. Section 6 addresses how to deal

ith general rectangles. 

The rest of this section provides technical notation and descrip-

ions. A square is called aligned if its edge length equals 2 −r for

ny r ∈ N 0 . It is called an r -square if its size is 2 −r for a specific

 ∈ N 0 . The volume of an r -square Q is | Q| = 4 −r . A quadtree is a

ooted tree in which every node has either four children or none.

s a quadtree can be interpreted as the subdivision of the unit

quare into nested r -squares, we can use quadtrees to describe cer-

ain packings of aligned squares into the unit square. 

efinition 1. A (quadtree) configuration T assigns a set of aligned

quares to the nodes of a quadtree. The nodes with a distance j to

he root of the quadtree form layer j . Nodes are also called pixels

nd pixels in layer j are called j-pixels . Thus, j -squares can only be

ssigned to j -pixels. A pixel p contains a square s if s is assigned

o p or one of the children of p contains s . A j -pixel that has an

ssigned j -square is occupied . For a pixel p that is not occupied,

ith P the unique path from p to the root, we call p 

• blocked if there is a q ∈ P that is occupied, 

• free if it is not blocked, 

• fractional if it is free and contains a square, 

• empty if it is free but not fractional, 

• maximally empty if it is empty but its parent is not. 

The height h ( T ) of a configuration T is defined as 0 if the root of

 is empty. Otherwise, as the maximum i + 1 such that T contains

n i -square. 
bservation 2. Let p � = q be two maximally empty pixels and P

nd Q be the paths from the root to p and q , respectively. Then

 �∈ Q and q �∈ P . 

roof. Without loss of generality, it is sufficient to show p �∈ Q . As-

ume p ∈ Q . Let r ∈ Q be the parent of q . As p is maximally empty

nd r is on the path from p to q, r must be empty. However, that

ould imply that q is not maximally empty, in contradiction to the

ssumption. �

The (remaining) capacity cap( p ) of a j -pixel p is defined as 0

f p is occupied or blocked and as 4 − j if p is empty. Otherwise,

ap (p) := 

∑ 

p ′ ∈ C(p) cap (p ′ ) , where C ( p ) is the set of children of p .

he (remaining) capacity of T , denoted cap( T ), is the remaining ca-

acity of the root of T . 

emma 3. Let p 1 , p 2 , . . . , p k be all maximally empty pixels of a

uadtree configuration T. Then we have cap (T ) = 

∑ k 
i =1 cap (p i ) . 

roof. The claim follows directly from the definition of the capac-

ty, as the only positive capacities considered for cap( T ) are exactly

hose of the maximally empty pixels. �

See Fig. 1 for an example of a quadtree configuration and the

orresponding packing of aligned squares in the unit square. 

Quadtree configurations are transformed using moves ( realloca-

ions ). A j -square s assigned to a j -pixel p can be moved ( reallo-

ated ) to another j -pixel q by creating a new assignment from q to

 and deleting the old assignment from p to s. q must have been

mpty for this to be allowed. 

We allow only one move at a time. For example, two squares

annot change places unless there is a sufficiently large pixel to

emporarily store one of them. Furthermore, we do not put limita-

ions on how to transfer a square from one place to another, i.e.,

e can always move a square even if there is no collision-free path

etween the origin and the destination. 

efinition 4. A fractional pixel is open if at least one of its children

s (maximally) empty. A configuration is called compact if there is

t most one open j -pixel for every j ∈ N 0 . 

In (one-dimensional) storage allocation and scheduling, there

re techniques that avoid reallocations by requiring more space

han the sum of the sizes of the allocated pieces. See Bender et al.

17] for an example. From there we adopt the term underallocation .

n particular, given two squares s 1 and s 2 , s 2 is an x -underallocated

opy of s 1 , if | s 2 | = x · | s 1 | for x > 1. 

efinition 5. A request has one of the forms Insert ( x ) or Delete ( x ),

here x is a unique identifier for a square. Let v ∈ [0, 1] be the

olume of the square x . The volume of a request σ is defined as 

ol (σ ) = 

{
v if r = Insert (x ) , 
−v if r = Delete (x ) . 

efinition 6. A sequence of requests σ1 , σ2 , . . . , σk is valid if
 j 
i =1 

vol (σi ) ≤ 1 holds for every j = 1 , 2 , . . . , k . It is called aligned ,

f | vol (σ j ) | = 4 −� j , � j ∈ N 0 , where |.| denotes the absolute value,

olds for every j = 1 , 2 , . . . , k, i.e., if only aligned squares are

acked. 

Our goal is to minimize the costs of reallocations. Costs can be

easured in different ways, for example in the number of moves

r the reallocated volume. 

efinition 7. Assume we fulfill a request σ and as a consequence

eallocate a set of squares { s 1 , s 2 , . . . , s k } . The movement cost of σ
s defined as c move (σ ) = k, the total volume cost of σ is defined as

 total (σ ) = 

∑ k 
i =1 | s i | , and the (relative) volume cost of σ is defined
c total (σ ) 
vol | vol (σ ) | 
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Fig. 2. Illustration to Lemma 9 . 
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4. Inserting into a given configuration 

In this section we examine the problem of rearranging a given

configuration in such a way that the insertion of a new square is

possible. Before we present our results in mathematical detail, in-

cluding all necessary proofs, we give a short overview of the indi-

vidual propositions and their significance: We first examine prop-

erties of quadtree configurations culminating in Theorem 10 , which

establishes that any configuration with sufficient capacity allows

the insertion of a square. Creating the required contiguous space

for the insertion comes at a cost due to required reallocations. This

cost is analysed in detail in Section 4.2 . There, we present match-

ing upper and lower bounds on the reallocation cost for our three

cost functions – total volume cost ( Theorems 12 and 14 ), (relative)

volume cost ( Corollary 15 ), and movement cost ( Theorems 16 and

17 ). 

4.1. Coping with fragmented allocations 

Our strategy follows one general idea: larger empty pixels can

be built from smaller ones; e.g., four empty i -pixels can be com-

bined into one empty (i − 1) -pixel. This can be iterated to build an

empty pixel of suitable volume. 

Lemma 8. Let p 1 , p 2 , . . . , p k be a sequence of empty pixels

sorted by volume in descending order. Then 
∑ k 

i =1 cap (p i ) ≥ 4 −� >∑ k −1 
i =1 cap (p i ) implies the following properties: 

k < 4 ⇔ k = 1 (1)

k ≥ 4 ⇒ 

k ∑ 

i =1 

cap (p i ) = 4 

−� (2)

k ≥ 4 ⇒ cap (p k ) = cap (p k −1 ) = cap (p k −2 ) = cap (p k −3 ) (3)

Proof. For k ≥ 2, p 1 must be a pixel of smaller capacity than an

� -pixel, because otherwise we would not need p 2 for the sum to

be greater than 4 −� – in contradiction to the assumption. Thus, we

need to add up smaller capacities to at least 4 −� . As we need at

least four (� + 1) -pixels for that, statement (1) holds. 

In the following we assume k ≥ 4. Let x = 

∑ k −1 
i =1 cap (p i ) . We

know from the assumption that x is strictly less than 4 −� , but

x + cap (p k ) is at least 4 −� . Consider the base-4 (quaternary) rep-

resentation of x/ 4 −� : x 4 = (x/ 4 −� ) 4 . It has a zero before the deci-

mal point and a sequence of base-4 digits after. Let n be the right-

most non-zero digit of x 4 . As the sequence is sorted in descending

order and the capacities are all negative powers of four, adding

the capacity of p k can only increase n , or a digit right of n , by

one. Since all digits right of n are zero, increasing one of them by

one does not increase x to at least 4 −� . Therefore, it must increase

n . But if increasing n by one means increasing x to at least 4 −� ,

then every digit of x 4 after the decimal point and up to n must

have been three. Consequently, increasing n by one leads not only

to x + cap (p k ) ≥ 4 −� but also to x + cap (p k ) = 4 −� , which is state-

ment (2) . 

Furthermore, as n must have been three and the sequence is

sorted, the previous three capacities added must have each in-

creased n by exactly one as well. This proves statement (3) . �

Lemma 9. Given a quadtree configuration T with four maximally

empty j-pixels. Then T can be transformed (using a sequence of moves)

into a configuration T ∗ with one more maximally empty ( j − 1) -pixel

and four fewer maximally empty j-pixels than T while retaining all its

maximally empty i-pixels for i < j − 1 . 

Proof. Let p 1 , p 2 , p 3 and p 4 be four maximally empty j -pixels and

q , q , q and q be the parents of p , p , p and p , respectively.
1 2 3 4 1 2 3 4 
hen q i has at most three children that are not empty. Now, we can

ove the at most three non-empty subtrees from one of the q i to

he others, i = 1 , 2 , 3 , 4 . Without loss of generality, we choose q 1 .

et a, b and c be the children of q 1 that are not p 1 . We move a to

 2 , b to p 3 and c to p 4 . See Fig. 2 for an illustration. Thus, we get a

ew configuration T ∗ with the empty ( j − 1) -pixel q 1 and occupied

r fractional pixels q 2 , q 3 , q 4 . Note that p 1 is still empty, but no

onger maximally empty, because its parent q 1 is now empty. The

onstruction does not affect any other maximally empty pixels. �

heorem 10. Given a quadtree configuration T with a remaining ca-

acity of at least 4 − j , you can transform T into a quadtree configura-

ion T ∗ with an empty j-pixel using a sequence of moves. 

roof. Let S = p 1 , p 2 , . . . , p n be the sequence containing all maxi-

ally empty pixels of T sorted by capacity in descending order. If

he capacity of p 1 is at least 4 − j , then there already is an empty

 -pixel in T and we can simply set T ∗ = T . 

Assume cap (p 1 ) < 4 − j . In this case we inductively build an

mpty j -pixel. Let S ′ = p 1 , p 2 , . . . , p k be the shortest prefix of S

atisfying 
∑ k 

i =1 cap (p i ) ≥ 4 − j . Such a prefix has to exist because

f Lemma 3 . Note that due to Observation 2 no pixel p i is con-

ained in another pixel p j , i, j ∈ { 1 , 2 , . . . , k } , i � = j . Lemma 8 tells

s k ≥ 4 and the last four pixels in S ′ , p k −3 , p k −2 , p k −1 and p k , are

rom the same layer, say layer � . Thus, we can apply Lemma 9 to

p k −3 , p k −2 , p k −1 , p k to get a new maximally empty (� − 1) -pixel q .

e remove p k −3 , p k −2 , p k −1 , p k from S ′ and insert q into S ′ accord-

ng to its capacity. The length of the resulting sequence S ′ ′ is three

ess than the length of S ′ . This does not change the sum of the

apacities, since an empty (� − 1) -pixel has the same capacity as

our empty � -pixels. That is, 
∑ 

p∈ S ′ cap (p) = 

∑ 

p∈ S ′′ cap (p) holds. 
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Fig. 3. The worst-case construction for volume cost for s = 6 and i = 3 . Every 3- 

pixel contains three 4-, 5-, and 6-squares with only one remaining empty 6-pixel. 
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We can repeat these steps until k < 4 holds. Then Lemma 8 im-

lies that k = 1 , i.e., the sequence contains only one pixel p 1 , and

ecause cap (p 1 ) = 4 − j , p 1 is an empty j -pixel. �

.2. Reallocation cost 

Reallocation cost is made non-trivial by cascading moves : Real-

ocated squares may cause further reallocations, when there is no

mpty pixel of the required size available. 

bservation 11. In the worst case, reallocating an � -square is not

heaper than reallocating four (� + 1) -squares – using any of the

hree defined cost types. 

roof. It is straightforward to see this for volume costs, total or

elative: Wherever you can move one � -square you can also move

our (� + 1) -squares without causing more cascading moves. 

For movement costs a single move of an � -square is less than

our moves of (� + 1) -squares, but it can cause cascading moves of

hree (� + 1) -squares plus the cascading moves caused by the real-

ocation of an (� + 1) -square and, therefore, does not cause lower

osts in total. �

heorem 12. The maximum total volume cost caused by the inser-

ion of an i-square Q , i ∈ N 0 , into a quadtree configuration T with

ap (T ) ≥ 4 −i is bounded by 

 total , max ≤
3 

4 

· 4 

−i · min { (s − i ) , i } ∈ O (| Q| · h (T )) 

hen the smallest previously inserted square is an s-square. 

roof. For s ≤ i there has to be an empty i -square in T , as cap (T ) ≥
 

−i , and we can insert Q without any moves. In the following, we

ssume s > i . Let Q be the i -square to be inserted. We can assume

hat we do not choose an i -pixel with a remaining capacity of zero

o pack Q – if there were no other pixels, cap( T ) would be zero

s well. Therefore, the chosen pixel, say p , must have a remaining

apacity of at least 4 −s . From Observation 11 follows that the worst

ase for p would be to be filled with 3 k -squares, for every i < k ≤
 . Let v i be the worst-case volume of a reallocated i -pixel. We get

 i ≤
∑ s 

j= i +1 
3 
4 j 

= 4 −i − 4 −s . 

Now we have to consider cascading moves. Whenever we move

n � -square, � > i , to make room for Q , we might have to reallo-

ate a volume of v � to make room for the � -square. Let x i be the

otal volume that is at most reallocated when inserting an i -square.

hen we get the recurrence x i = v i + 

∑ s 
j= i +1 3 · x j with x s = v s = 0 .

his resolves to x i = 3 / 4 · 4 −i · (s − i ) . 

v i cannot get arbitrarily large, as the remaining capacity must

uffice to insert an i -square. Therefore, if all the possible i -pixels

ontain a volume of 4 −s (if some contained more, we would choose

hose and avoid the worst case), we can bound s by 4 i · 4 −s ≥
 

−i ⇔ s ≤ 2 i, which leads to c total , max ≤ 3 
4 · 4 −i · i . 

With | Q| = 4 −i and i < s < h ( T ) we get c total, max ∈ O (| Q | ·
 ( T )). �

orollary 13. Inserting a square into a quadtree configuration has a

otal volume cost of no more than 3 / 16 = 0 . 1875 . 

roof. Looking at Theorem 12 it is easy to see that the worst case

s attained for i = 1 : c total = 3 / 4 · 4 −1 · 1 = 3 / 16 = 0 . 1875 . �

heorem 14. For every i ∈ N 0 there are quadtree configurations T for

hich the insertion of an i-square Q causes a total volume cost of 

 total , max ≥
3 

4 

· 4 

−i · min { (s − i ) , i } ∈ �(| Q| · h (T )) 

hen the smallest previously inserted square is an s-square. 

roof. We build a quadtree configuration to match the upper

ound of Theorem 12 . Let s = 2 i and consider a subtree rooted at
n i -pixel that contains three k -pixels for every i < k ≤ s . They do

ot have to be arranged in such a way that the single free s -pixel

s in the lower right corner, but the nesting structure is important.

ssume all 4 i i -pixels of T are constructed in such a way. Then you

ave to reallocate three k -squares for every i < k ≤ s . However,

very fractional k -pixel in the configuration in turn contains three

 

′ -pixel for every k < k ′ < s , i.e., moving every k -square causes cas-

ading moves. See Fig. 3 for the whole construction for s = 6 and

 = 3 . The reallocated volume without cascading moves adds up to

 i = 

∑ s 
k = i +1 3 · 4 −k . 

Including cascading moves we get x i = v i + 

∑ s 
k = i +1 3 · x k , which

esolves to x i = 3 / 4 · 4 −i · (s − i ) . 

With s = h (T ) − 1 , i = s/ 2 and | Q| = 4 −i we get c total, max ∈
(| Q | · h ( T )). �

As a corollary we get an upper bound for the (relative) volume

ost and a construction matching the bound. 

orollary 15. Inserting an i-square into a quadtree configuration T

ith sufficient capacity cap (T ) ≥ 4 −i causes a (relative) volume cost

f at most 

 vol , max ≤
3 

4 

· min { (s − i ) , i } ∈ �(h (T )) , 

hen the smallest previously inserted square is an s-square, and this

ound is tight, i.e., there are configurations for which the bound is

atched. 

It is important to note that relative volume cost can be arbitrar-

ly bad by increasing the height of the configuration, as opposed

o total volume cost with the upper bound derived in Corollary 13 .

hat is more, large total volume cost is achieved by inserting i -

quares for small i , whereas large relative volume cost is only pos-

ible for large i (and large s − i ). This has an interesting interpreta-

ion with regard to the structure of the quadtree: Large total vol-

me cost can happen when you assign a square to a node close

o the root. To get large relative volume cost you need a high

uadtree and assign a square to a node roughly in the middle (with

espect to height). 
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Fig. 4. The z-order for layer 2 pixels (left); a First Fit allocation and the z-order of 

the occupied pixels – which is not necessarily the insertion order (right). 
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The same methods we used to derive worst case bounds for

volume cost can also be used to establish bounds for move-

ment cost, which results in c move , max ≤ 4 min { s −i,i } − 1 ∈ O (2 h (T ) ) . A

matching construction is the same as the one in the proof of

Theorem 14 . 

Theorem 16. The maximum movement cost caused by the inser-

tion of an i-square Q , i ∈ N 0 , into a quadtree configuration T with

cap (T ) ≥ 4 −i is bounded by 

c move , max ≤ 4 

min { s −i,i } − 1 ∈ O (2 

h (T ) ) 

when the smallest previously inserted square is an s-square. 

Proof. The proof is analogous to the proof of Theorem 12 . We can

use Observation 11 and formulate a new recurrence. The num-

ber of reallocations without cascading moves caused by the inser-

tion of Q can be bounded by v i ≤ 3(s − i ) and including cascading

moves we get x i = v i + 

∑ s 
j= i +1 3 x i , which resolves to x i = 4 s −i − 1 . 

As we need at least 4 −i remaining capacity to insert Q we

can again deduce s ≤ 2 i . With s = h (T ) − 1 we get min { s − i, i } ≤
h (T ) / 2 , which results in the claimed bound. �

Theorem 17. For every i ∈ N 0 there are quadtree configurations T for

which the insertion of an i-square Q causes a movement cost of 

c move , max ≥ 4 

min { s −i,i } ∈ �(2 

h (T ) ) 

when the smallest previously inserted square is an s-square. 

Proof. The example from Theorem 14 works here as well. As every

fractional j -pixel, j < s , contains three ( j + 1) -pixels, you have to

move three squares for every j = i, . . . , s − 1 and account for cas-

cading moves. This results in a number of moves c mov e,max ≥ x i =
3(s − i ) + 

∑ s 
j= i +1 x j = 4 s −i − 1 , where s = 2 i = h (T ) − 1 . �

5. Online packing and reallocation 

Applying Theorem 10 repeatedly to successive configurations

yields a strategy for the dynamic allocation of aligned squares. 

Corollary 18. Starting with an empty square and given a valid,

aligned sequence of requests, there is a strategy that fulfills every re-

quest in the sequence. 

Proof. We only have to deal with aligned squares and can use

quadtree configurations to pack the squares, since the sequence

of requests σ1 , σ2 , . . . , σk is aligned. We start with the empty con-

figuration that contains only one empty 0-pixel. Thus, we have a

configuration with capacity 1. We only have to consider insertions,

because deletions can always be fulfilled by definition. 

As the sequence of requests is valid, whenever a request σ � de-

mands to insert a j -square s , the remaining capacity of the current

quadtree configuration T is at least 1 − ∑ � −1 
i =1 vol (σi ) + 4 − j ≥ 4 − j . 

Therefore, we can use Theorem 10 to transform T into a config-

uration T ∗ with an empty j -pixel p . We assign s to p . �

This strategy may incur the heavy insertion cost derived in the

previous section. However, when we do not have to work with a

given configuration and have the freedom to handle all requests

starting from the empty unit square, we can use the added flex-

ibility to derive a more sophisticated strategy. In particular, we

can use reallocations to clean up a configuration when squares are

deleted. This can make deletions costly operations, but allows us

to eliminate insertion cost entirely. 

5.1. First-Fit packing 

We present an algorithm that fulfills any valid, aligned se-

quence of requests and does not cause any reallocations on inser-

tions. We call it First Fit in imitation of the well-known technique

employed in one-dimensional allocation problems. 
Given a one-dimensional packing and a request to allocate

pace for an additional item, First-fit chooses the first suitable lo-

ation. In one dimension it is trivial to define an order in which to

heck possible locations. For example, assume your resources are

rranged horizontally and proceed from left to right. 

Finding an order in two or more dimensions is not as straight-

orward as it is in 1D. We use space-filling curves to overcome

his impediment. Space-filling curves are of theoretical interest, be-

ause they fill the entire unit square (i.e., their Hausdorff dimen-

ion is 2). More useful to us are the schemes used to create a

pace-filling curve, which employ a recursive construction on the

odes of a quadtree and become space-filling as the height of the

ree approaches infinity. In particular, they provide an order for the

odes of a quadtree. In the following, we make use of the z-order

urve [49] . 

First Fit assigns items to be packed to the next available posi-

ion in z-order. We denote the position of a pixel p in z-order by

 ( p ), i.e., z ( p ) < z ( q ) if and only if p comes before q in z-order. 

In general, the z-order is only a partial order, as it does not

ake sense to compare nodes with their parents or children. How-

ver, there are three important occasions for which the z-order is a

otal order: If you only consider pixels in one layer, if you only con-

ider occupied pixels, and if you only consider maximally empty

ixels. In all three cases pixels are pairwise disjoint, which leads

o a total order. 

First Fit proceeds as follows: A request to insert an i -square Q

s handled by assigning Q to the first empty i -pixel in z-order; see

ig. 4 . Deletions are more complicated. After unassigning a deleted

quare Q from a pixel p the following procedure handles realloca-

ions (an example deletion can be seen in Fig. 5 ): 

1: S ← { p ′ } , where p ′ is the maximally empty pixelcontaining p 

2: while S � = ∅ do 

3: Let a be the element of S that is first in z-order. 

4: S ← S \ { a } 
5: Let b be the last occupied pixel in z-order. 

6: while z(b) > z(a ) do 

7: if the square assigned to b, B , can be packed into a then

8: Assign B to the first suitable descendant of a inz-

order. 

9: Unassign B from b. 

10: Let b ′ be the maximally empty pixel containing b. 

11: S ← S ∪ { b ′ } 
12: S ← S \ { b ′′ : b ′′ is child of b ′ } 
13: end if 

14: Move the pointer z back in z-order to the next occupied-

pixel. 

15: end while 

16: end while 

The general idea is to reallocate squares from the current end

f the z-order to empty spots. As reallocating creates new empty
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Fig. 5. Deleting a square causes several moves. The deleted square is marked with a 

cross. Once it is unassigned, the squares are checked in reverse z-order until square 

1, which fits. Afterwards, there is a now maximally empty pixel into which square 

2 can be moved. Finally, the same happens for square 3. 
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quares, we need to apply the method repeatedly in what can be

onsidered an inverse case of cascading moves. We ensure termi-

ation by always moving the currently considered empty pixel in

ositive z-order and reallocating squares in negative z-order. We

nalyze the strategy in more detail now. 

nvariant 19. For every empty i -pixel p in a quadtree configuration

 there is no occupied i -pixel q with z ( q ) > z ( p ). 

emma 20. Every quadtree configuration T satisfying Invariant 19 is

ompact. 

roof. Assume a quadtree configuration T is not compact. Then

t contains two fractional i -pixels, i ∈ N , p and q with maximally

mpty children p ′ and q ′ , respectively. Without loss of generality,

ssume z ( p ) < z ( q ). As q is fractional, there is a j -square, j > i , as-

igned to some descendant of q , say q ′ ′ . However, p ′ is an empty

(i + 1) -pixel and therefore contains an empty j -pixel, p ′ ′ . As z ( p ) <

 ( q ), we also have z ( p ′ ′ ) < z ( q ′ ′ ) and Invariant 19 does not hold. �

emma 21. In a compact quadtree configuration T there are at most

hree maximally empty j-pixels for every j ∈ N 0 . 

roof. The statement holds for j = 0 , since there is only one 0-pixel.

or j > 0 there is at most one open ( j − 1) -pixel p in T, because T
s compact. Therefore, all other ( j − 1) -pixels except for p either do

ot have an empty child or are maximally empty themselves. Thus,

ll maximally empty j-pixels have to be children of p. Since p is not

mpty, there can be at most three. �

emma 22. Given an � -square s and a compact quadtree configura-

ion T, then s can be assigned to an empty � -pixel in T, if and only if

ap (T ) ≥ 4 −l . 

roof. The direction from left to right is obvious, as there can be

o empty � -pixel if the capacity is less than 4 −l . For the other di-

ection assume there is no empty � -pixel in T . Since there is no

mpty � -pixel, there is also no empty j -pixel for any j < � . Let the

mallest square assigned to a node be an s -square. As T is com-

act, we can use Lemma 21 and Lemma 3 to bound the remain-

ng capacity of T from above: cap (T ) ≤ ∑ s 
k = l+1 3 · 4 −k = 4 −� − 4 −s <

 

−� . �

In other words, packing an � -square in a compact configuration

equires no reallocations. 

heorem 23. The strategy presented above is correct. In particular, 

1. every valid insertion request is fulfilled at zero cost, 

2. every deletion request is fulfilled, 

3. after every request Invariant 19 holds. 

roof. The first part follows from Lemmas 22 and 20 and point 3.

nsertions maintain the invariant, because we assign it to the first

uitable empty pixel in z-order. Deletions can obviously always be

ulfilled. We still need to prove the important part, which is that

he invariant holds after a deletion. 

We show this by proving that whenever the procedure reaches

ine 3 and sets a , the invariant holds for all squares in z-order up

o a . As we only move squares in negative z-order, the sequence

f pixels a refers to is increasing in z-order. Since we have a finite

umber of squares, the procedure terminates after a finite number

f steps when no suitable a is left. At that point the invariant holds

hroughout the configuration. 

Assume we are at step 3 of the procedure and the invariant

olds for all squares up to a . None of the squares considered to

e moved to a fit anywhere before a in z-order – otherwise the

nvariant would not hold for pixels before a . Afterwards, no square

hat has not been moved to a fits into a , because it would have

een moved there otherwise. Once we reach line 3 again, and set

he new a , say a ′ , consider the pixels between a and a ′ in z-order.

f any square after a ′ would fit somewhere into a pixel between a

nd a ′ , then the invariant would not have held before the deletion.

herefore, the invariant holds up to a ′ . �

Comparing our results in Section 4 to those in this section, a

ajor advantage of an empty initial configuration becomes appar-

nt. For all examined cost functions there are configurations into

hich no square can be inserted at zero cost (cf. Theorem 14,

orollary 15, Theorem 17 ). This is in contrast to First-fit, which

chieves insertion at zero cost ( Theorem 23 ). The downside is the

otentially large cost of deletions. The thorough analysis of a strat-

gy with provably low cost for both insertions and deletions is the

ubject of future work. 

. General squares and rectangles 

Due to limited space and for clearer exposition, the description

n the previous three sections considered aligned squares. We can

dapt the technique to general squares and even rectangles at the

xpense of a constant factor. 

To accommodate a non-aligned square, we pack it like an

ligned square of the next larger volume. That is, a square of size
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Fig. 6. Example of a dynamically generated quadtree layout. The solid gray areas 

are packed squares. Shaded areas represent space lost due to rounding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Number of operations ( x -axis) v.s. the inverse value of underallocation ( y - 

axis) for the setting k = 1 , b = 0 . 125 , c = 219 . 

Fig. 8. Number of operations ( x -axis) v.s. the inverse value of underallocation ( y - 

axis) for the setting k = 1 , b = 1 , c = 419 . 

Fig. 9. Number of operations ( x -axis) v.s. the inverse value of underallocation ( y - 

axis) for the setting k = 2 , b = 0 . 125 , c = 232 . 
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s with 2 i −1 < s < 2 i for some i ∈ { 0 , −1 , −2 , . . . } is assigned to an i -

pixel. This approach results in space that cannot be used to assign

squares, even though the remaining capacity would suffice, and we

can no longer guarantee to fit every valid sequence of squares into

the unit square. However, we can guarantee to pack every such se-

quence into a 4-underallocated unit square (i.e., a 2 × 2 square),

as every square is assigned to a pixel that can hold no more than

four times its volume. Most importantly, our reallocation schemes

continue to work in this setting unmodified. An example allocation

is shown in Fig. 6 , where solid gray areas are assigned squares and

shaded areas indicate wasted space. 

Note that a satisfactory reallocation scheme for arbitrary

squares with no or next to no underallocation is unlikely. Even

the problem of handling a sequence of insertions of total vol-

ume at most one, without considering dynamic deletions and re-

allocation, requires underallocation. This problem is known as on-

line square packing and the best known approach results in 5/2-

underallocation [50] . 

Rectangles of bounded aspect ratio k are dealt with in the same

way. Also accounting for intermodule communication, every rect-

angle is padded to the size of the next largest aligned square and

assigned to the node of a quadtree, at a cost not exceeding a factor

of 4 k compared to the one we established for the worst case. As

described in the following section, this theoretical bound is rather

pessimistic: the performance in basic simulation runs is consider-

ably better. 

7. Simulation results 

We carried out a number of simulation runs to get an idea of

the potential performance of our approach. For each test, we gen-

erated a random sequence of 10 0 0 requests that were chosen as

Insert ( ·) (probability 0.7) or Delete ( ·) (probability 0.3). We apply

a larger probability for Insert ( ·) to avoid the (relatively simple)

situation that repeatedly just a few rectangles are inserted and

deleted, and in order to observe the effects of increasing conges-

tion. The individual modules were generated by considering an up-

per bound b ∈ [0, 1] for the side lengths of the considered squares.

For b = 0 . 125 , the value of the current underallocation seems to

be stable except for the range of the first 50 − 150 requests. For

b = 1 , the current underallocation may be unstable, which could

be caused by the following simple observation: A larger b allows

larger rectangles that induce 4 k -underallocations. 
Our simulations indicate the theoretical worst-case bound of

/4 k may be overly pessimistic, see Fig. 7 –12 . In particular, the x -

xis represents the number of operations and the y -axis represents

he inverse value of under allocations. Furthermore, the red curves

llustrate the inverse values of the under allocation and lie be-

ow the worst case values of 4 k . Taking into account that a purely

ne-dimensional approach cannot provide an upper bound on the

chievable underallocation, this provides reason to be optimistic

bout the potential practical performance. 

A simulation of the First-Fit approach for different values of k

nd upper bounds of b = 0 . 125 and b = 1 for the side length of the

onsidered squares is shown in Figs. 7–12 . Each diagram illustrates

he results of an experiment of 10 0 0 requests that are randomly
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Fig. 10. Number of operations ( x -axis) v.s. the inverse value of underallocation ( y - 

axis) for the setting k = 2 , b = 1 , c = 438 . 

Fig. 11. Number of operations ( x -axis) v.s. the inverse value of underallocation ( y - 

axis) for the setting k = 5 , b = 0 . 125 , c = 264 . 

Fig. 12. Number of operations ( x -axis) v.s. the inverse value of underallocation ( y - 

axis) for the setting k = 5 , b = 1 , c = 421 . 
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[  
hosen as Insert ( ·) (probability 0.7) or Delete( ·) (probability 0.3).

e apply a larger probability for Insert ( ·) to avoid the situation

hat repeatedly just a few rectangles are inserted and deleted. The

ed graph shows the total current underallocation after each re-

uest. The green graph shows the average of the total underallo-

ation in the range between the first and the current request. We

enote by c the number of collisions, i.e., the situations in that an

nsert ( ·) cannot be processed. 

. Conclusions 

We have presented a data structure for exploiting the full di-

ensionality of dynamic geometric storage and reallocation tasks,
uch as online maintenance of the module layout for an FPGA.

hese first results indicate that our approach is suitable for making

rogress over purely one-dimensional approaches. There are sev-

ral possible refinements and extensions, including a more sophis-

icated way of handling rectangles inside of square pieces of the

ubdivision, handling heterogeneous chip areas, and advanced al-

orithmic methods. These will be addressed in future work. 

Another aspect of forthcoming work is an explicitly self-refining

ntermodule wiring. As indicated in Section 3 (and illustrated in

ig. 1 ), dynamically maintaining this communication infrastructure

an be envisioned along the subdivision of the recursive quadtree

tructure: making the routing a certain proportion of each cell

rea provides a dynamically adjustable bandwidth, along with

ntersection-free routing, as shown in Fig. 1 First steps in this di-

ection have been taken with an MA thesis [4] , with more work to

ollow; this also addresses the aspect of robustness of communi-

ation in a hostile environment that may cause individual connec-

ions to fail. 
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