
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 4, OCTOBER 2018 3521

Efficient Parallel Self-Assembly Under
Uniform Control Inputs

Arne Schmidt , Sheryl Manzoor , Li Huang , Aaron T. Becker , and Sándor P. Fekete

Abstract—We prove that by successively combining subassem-
blies, we can achieve sublinear construction times for “staged”
assembly of microscale objects from a large number of tiny par-
ticles, for vast classes of shapes; this is a significant advance in
the context of programmable matter and self-assembly for build-
ing high-yield microfactories. The underlying model has particles
moving under the influence of uniform external forces until they hit
an obstacle; particles bond when forced together with a compatible
particle. Previous work considered sequential composition of ob-
jects, resulting in construction time that is linear in the number N
of particles, which is inefficient for large N . Our progress implies
critical speedup for constructible shapes; for convex polyominoes,
even a constant construction time is possible. We also show that
our construction process can be used for pipelining, resulting in an
amortized constant production time.

Index Terms—Computational geometry, underactuated robots,
additive manufacturing.

I. INTRODUCTION

THE new field of programmable matter gives rise to a wide
range of algorithmic questions of geometric flavor. One

of the tasks is designing and running efficient production pro-
cesses for tiny objects with given shape, without being able
to individually handle the potentially huge number of particles
from which it is composed, e.g., building polyominoes from
their tiles without the help of tools.

In this letter we use particles that can be controlled by a
uniform external force, causing all particles to move in a given
direction until they hit an obstacle or another blocked particle,
as shown in Fig. 1.

Recent experimental work by Manzoor et al. [11] showed this
is practical for simple “sticky” particles, enabling assembly by

Manuscript received February 23, 2018; accepted June 30, 2018. Date of
publication July 9, 2018; date of current version August 2, 2018. This letter was
recommended for publication by Associate Editor F. van der Stappen and Editor
N. Amato upon evaluation of the reviewers’ comments. The work of S. Manzoor,
L. Huang, and A. T. Becker was supported by National Science Foundation
under Grants IIS-1553063 and IIS-1619278. (Corresponding author: Aaron T.
Becker.)

A. Schmidt and S. P. Fekete are with the Department of Computer Science,
TU Braunschweig, Braunschweig 38106, Germany (e-mail:,s.fekete@tu-bs.de;
arne.schmidt@tu-bs.de).

S. Manzoor, L. Huang, and A. T. Becker are with the Department of Electrical
and Computer Engineering, University of Houston, Houston, TX 77004-4005
USA (e-mail:,smanzoor2@uh.edu; lhuang21@uh.edu; atbecker@uh.edu).

This letter has supplemental downloadable multimedia material available at
http://ieeexplore.ieee.org, provided by the authors. The Supplementary Materi-
als contain a video starting with animations of parallel, “staged” assembly of
micro-scale objects from tiny particles. The model has particles moving under
the influence of uniform external forces until they hit an obstacle; particles bond
when forced together with a compatible particle. This material is 8.58 MB in
size.

Digital Object Identifier 10.1109/LRA.2018.2853758

Fig. 1. Convex polyominoes can be assembled in six movement steps. A copy
of the polyomino P is released every five steps after the first copy. See video
attachment for animation: https://youtu.be/_R_puO0smPs.

sequentially attaching particles emanating from different depots
within the workspace or supply channels from the outside to the
existing subassembly, as shown in Fig. 1.

The algorithmic challenge is to design the surrounding
“maze” environment and movement sequence to produce a de-
sired shape.

A recent paper by Becker et al. [3] showed that the decision
problem of whether a simple polyomino can be built or not is
solvable in polynomial time. However, this relies on sequential
construction in which one particle at a time is added, resulting
in alinear number of assembly steps, i.e., a time that grows
proportional to the number N of particles, which is inefficient
for large N . In this letter we provide substantial progress by
developing methods that can achievesublinear and in some cases
evenconstant construction times. Our approaches are based on
hierarchical, “staged” processes, in which we allow multi-tile
subassemblies to combine at each construction step.

A. Contribution

We provide a number of contributions to achieving sublin-
ear construction times for polyomino shapes consisting of N
pixels (“tiles”), which is critical for the efficient assembly of
large objects. Many of these results are the outcome of decom-
posing the shape into simpler pieces; as a consequence, we can

2377-3766 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on March 04,2020 at 07:02:03 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8950-3963
https://orcid.org/0000-0003-1436-9071
https://orcid.org/0000-0001-9559-7724
https://orcid.org/0000-0001-7614-6282
https://orcid.org/0000-0002-9062-4241
mailto:s.fekete@tu-bs.de
mailto:arne.schmidt@tu-bs.de
mailto:smanzoor2@uh.edu
mailto:lhuang21@uh.edu
mailto:atbecker@uh.edu

3522 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 4, OCTOBER 2018

describe the construction time in geometric parameters that may
be considerably smaller than N .

� We show that we can decide if a given polyomino P can
be recursively constructed from simple subpieces that are
glued together along simple straight cuts (“2-cuts”) in poly-
nomial time. The resulting production time depends on the
number r(P) oflocally reflex tiles of P , which is bounded
by N , but may be much smaller.

� We show that building a convex polyomino takes O(1)
steps.

� For a monotone polyomino P , we need O(log d(P)) steps,
where d(P) ≤ N is the number of cuts needed to decom-
pose P into convex subpolyominoes.

� For polyominoes with convex holes, we show that O(r)
steps suffice to build the polyomino.

� All methods we describe can be pipelined resulting in an
amortized constant construction time.

We also elaborate the running time for efficiently computing
aspects of the decomposition, as follows. Finding cuts for a
decomposition needs O(N) time for monotone polyominoes.
Simple polyominoes require O(N + r2 log r) time to find a
straight cut and O(r2N log N) time to find an arbitrary cut.
Allowing convex holes increases the time to O(N + r3 log r)
and O(r3N log N), respectively.

For all these constructions, we show that N · (CP +
√

D)
obstacles suffice to construct D copies of an N -tile polyomino
that requires CP steps to build.

B. Related Work

In recent years, the problem of assembling a polyomino has
been studied intensively using various theoretical models. Win-
free [14] introduced the abstract tile self-assembly model in
which tiles with glues on their side can attach to each other
if their glue type matches. Then, starting with a seed-tile, the
tiles continuously attach to the partial assembly. If no further
tile can attach, the process stops. Several years later, Cannon
et al. [5] introduced the 2-handed tile self-assembling model
(2HAM) in which sub-assemblies can attach to each other pro-
vided that the sum of glue strengths is at least a threshold τ .
Chen and Doty [7] introduced a similar model: the hierarchical
tile self-assembling model. In 2008, Demaine et al. [8] intro-
duced the staged tile self-assembly model which is based on the
2HAM. Here, sub-assemblies grow in various bins which can
then poured together to gain new assemblies. This model was
then further analyzed by Demaine et al. [9] and Chalk et al. [6].
An interesting aspect in all models is that the third dimension
can be used to reach specific positions within partial assemblies.
In our paper however, the challenge is to use two dimensions,
i.e., an assembly can only bond to another polyomino if the
bonding site is completely visible.

All these models have in common that particles, e.g., DNA-
strands, self-assemble to bigger structures. In this letter, how-
ever, the particles can only move by global controls and have
one glue type on all four sides. This concept has been studied
in practice using biological cells controlled by magnetic fields,
see [10]. In addition, see [1]. Recent work by Zhang et al. [15]
shows there exists a workspace a constant factor larger than the
number of agents that enables complete rearrangement for a
rectangle of agents.

A more related paper is the work by Manzoor et al. [11].
They assemble polyominoes in a pipelined fashion using global
control, i.e., by completing a polyomino after each small control
sequence the amortized construction time of a polyomino is con-
stant. To find a construction sequence building the polyomino
only heuristics are used. Becker et al. [3] show that it is possible
to decide in polynomial time if a hole-free polyomino can be
constructed. However, both papers consider adding one tile at
a time. In this letter, we allow combining partial assemblies at
each step. We are also able to pipeline this process to achieve
an amortized constant production time.

The complexity of controlling robots using a global control
has been studied. Becker et al. [2] show that it is NP-hard to
decide if an initial configuration of a robot swarm in a given
environment can be transformed into another configuration by
only using global control but becomes more tractable if it is
allowed to design the environment. Finding an optimal control
sequence is even harder. Related work for reconfiguration of
robots with local movement control include work by Walter
et al. [13], Vassilvitskii et al. [12], and Butler et al. [4].

II. PRELIMINARIES

Workspace: A workspace W is a planar grid filled with unit-
square particles and fixed unit square blocks (obstacles). Each
cell of the workspace contains either a particle, an obstacle, or
the cell is free.

Movement step: A movement step is one of the four directions
up, right, down, left. One movement step forces every tile or as-
sembly to move to the specified direction until the tile/assembly
is blocked by an obstacle.

Polyomino: For a set P ⊂ Z2 of N grid points in the plane,
the graph GP is the induced grid graph, in which two vertices
p1 , p2 ∈ P are connected if they are at unit distance. Any set
P with connected grid graph GP gives rise to a polyomino
by replacing each point p ∈ P by a unit square centered at p,
which is called a tile; for simplicity, we also use P to denote
the polyomino when the context is clear, and refer to GP as the
dual graph of the polyomino. A polyomino is called hole-free or
simple if and only if the grid graph induced by Z2 \ P is con-
nected. A polyomino P is column convex (row convex, resp.)
if the intersection of any vertical (horizontal, resp.) line and P
is connected, i.e., the polyomino is x-monotone (y-monotone,
resp.). Furthermore, a polyomino P is called (orthogonal) con-
vex if P is column and row convex.

Tiles: A tile t is an unit-square of a polyomino and also
represent particles in the workspace. There are two kinds of
tiles: blue and red tiles. Two tiles stick together if their color
differs.

Constructibility: A polyomino P is constructible if there ex-
ists a workspace W and a sequence σ of movement steps that
produce P .

Cuts: A cut is an orthogonal curve moving between points of
Z2 . If any intersection of a cut with the polyomino P has no
turn, the cut is called straight. A p-cut is a cut that splits a poly-
omino P into p subpolyominoes. Furthermore, a cut is called
valid if all induced subpolyominoes can be pulled apart into
opposite directions without blocking each other. A polyomino
P is called (straight) 2-cuttable if there is a sequence of valid
(straight) 2-cuts that subdivide P into monotone subpolyomi-

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on March 04,2020 at 07:02:03 UTC from IEEE Xplore. Restrictions apply.

SCHMIDT et al.: EFFICIENT PARALLEL SELF-ASSEMBLY UNDER UNIFORM CONTROL INPUTS 3523

Fig. 2. Left: (Counter-)Examples for straight 2-cuts: �1 is not a 2-cut because
we cannot move the left component to the right or left without getting blocked by
the other component. �2 is not a 2-cut because we get more than two components.
�3 is a 2-cut because we get two components which can be pulled apart. �4 is not
a straight cut. Right: Decomposition tree with straight 2-cuts where the leaves
are convex polyominoes.

Fig. 3. A polyomino P . Light grey tiles define Pup, dark grey tiles define
Plo. Blue framed rows are minima in Pup, red framed rows are maxima in Plo.
Decomposition number d(P) = 3, because three vertical lines suffice and three
line are necessary because every line hits a maxima/minima.

noes. If the subpolyominoes can be pulled apart in horizontal
(vertical) directions, we call the cut vertical (horizontal) An
example for 2-cuts can be seen in Fig. 2. In the following we
only consider 2-cuts for non-convex polyominoes.

III. MONOTONE ASSEMBLIES

This section focuses on convex and monotone polyominoes.
Lemma 1: Any convex polyomino P can be assembled in

six movement steps.
Proof: The idea of this proof is simple: Subdivide P into

vertical lines of width one, build the lines in two steps (see
Fig. 1.1 and 1.2), and connect these lines with a right and left
movement (see Fig. 1.3 and 1.4). With two more movements we
can flush P out of the labyrinth (see Fig. 1.5 and 1.6).

Assembling a column: To construct a column of length n, we
build n containers, each below the previous. Each container
releases a new tile after each left, down, right movement
combination. After the right movement all n tiles move to
a wall and then have the same x-coordinate. With an up
movement all n tiles stick to a column once the first tile hits
the top wall.

Assembling the polyomino: Assume we have built each column
of the polyomino in parallel. With obstacles we can stop each
column at the appropriate respective heights. A right move-
ment combines all columns left of the column with the maxi-
mum height, and a left movement completes the assembly of
P . To remove the polyomino from the assembly area we use
a down, right movement. Note that the last three movements
are left, down, and right, by which we start the next copy
of P .

Without further precautions, a polyomino could get stuck in
narrow corridors. This problem can be avoided with a simple
case analysis. First, observe that the leftmost of the topmost tiles
of the polyomino is blocked by an obstacle. Let t be this tile
and let xt be the corresponding x-coordinate. Also, let s be a
tile stuck in a corridor having x-coordinate xs . Only two cases
can occur. (a) xs < xt : We place an additional obstacle directly
where t was blocked. This forces the polyomino to stop one
position earlier. (b) xs > xt : We shift every obstacle with x-
coordinate higher than the corridor one unit to the right and we
add an additional obstacle at the corridor end. The polyomino
is then stopped by this obstacle. �

Definition 1: Let P be an x-monotone polyomino. The de-
composition number d(P) is the minimum number of vertical
cuts required to obtain subpolyominoes that are all convex.

The upper envelope Pup ⊂ P consists of (1) all tiles T on
the boundary that have no tiles above, and (2) tiles connecting
T along the boundary. Analogously define the lower envelope
Plo ⊂ P .

We call a straight row M = {m1 , . . . , mk} ⊂ Pup a minimum
of Pup if there are two tiles t1 and t2 , for which t1 is connected
to the top side of m1 and t2 is connected to the top side of mk .
Analogously define maximum for Plo.

To construct an x-monotone polyomino make vertical cuts
through the maxima/minima of Pup and Plo, respectively. There
are at most d(P) many cuts. We now can choose a cut, such that
on both subpolyominoes P ′ and P ′′ the decomposition num-
ber d(P ′) ≤ d(P ′′) ≤ 1

2 d(P); this can be done with a median
search. Repeating this procedure on each resulting subpoly-
omino yields a decomposition tree with depth log d(P) whose
leafs are convex polyominoes.

Lemma 2: Let P be a polyomino. For each minimum and
maximum M there must be a vertical cut � going through M in
order to decompose P into convex subpolyominoes.

Proof: Suppose we do not need such line �. Let P ′ be a
subpolyomino having a minimum M ′, through which no cut
is made. Consider the two tiles t1 and t2 as defined above.
Both t1 and t2 must be in the same subpolyomino (because
there is no cut through M ′). Then, a horizontal line through t1
and t2 enters P ′ twice and therefore, P ′ cannot be an convex
polyomino. �

Lemma 3: Let P be an x-monotone polyomino. The decom-
position number d(P) and the corresponding cuts can be com-
puted in O(N) time.

Proof: Finding the minima and maxima of Pup and Plo,
respectively, can be found in O(N) time by sweeping from the
left boundary to the right boundary. Having the minima Mup

and maxima Mlo, both in sorted order from left to right, we
repeat the following procedure:

� Let M0 ∈ Mup and M ′
0 ∈ Mlo be the leftmost min-

ima/maxima, resp.
� If the projection of M0 and M ′

0 to the x-axis overlaps with
at least two tiles, then output a vertical line going through
M0 and M ′

0 , and remove both from Mup and Mlo, resp.
� If this is not the case, output a vertical line going through

the minima/maxima that ends first, and remove this min-
ima/maxima from Mup or Mlo, resp.

This procedure costs O(d(P)) time. In total, this is O(N)
time. The correctness follows from Lemma 2. �

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on March 04,2020 at 07:02:03 UTC from IEEE Xplore. Restrictions apply.

3524 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 4, OCTOBER 2018

Fig. 4. Assembling two subpolyominoes P1 and P2 , where the topmost tile
of P1 lies above the topmost tile of P2 . These are the same movements as seen
in Fig. 1 for convex polyominoes. Thus, we can combine two subpolyominoes
while constructing the next convex subpolyomino. (a) Up. (b) Right. (c) Left.
(d) Down. (e) Right. (f) Up.

Fig. 5. Assembling two subpolyominoes P1 and P2 , where the topmost tile
of P2 lies above the topmost tile of P1 . These are the same movements as seen
in Fig. 1 for convex polyominoes. Thus, we can combine two subpolyominoes
while constructing the next convex subpolyomino. (a) Up. (b) Right. (c) Left.
(d) Down. (e) Right. (f) Up.

Theorem 1: Any x-monotone polyomino P with decom-
position number d(P) > 0 can be assembled in O(�log(1 +
d(P))�) unit steps. Furthermore, this process can be pipelined
yielding a construction time of amortized O(1) unit steps.

Proof: As a first step we search for the vertical cuts as de-
scribed above. Having this subdivision into convex subpoly-
ominoes, we can use Lemma 1 to create all subpolyominoes in
parallel. We now can use the combining gadget seen in Figs. 4
and 5 to combine two adjacent subpolyominoes in each cycle.
Thus, for each cycle the number of subpolyominoes decreases
by a factor of two and we have at most �log(1 + d(P))� cycles
to combine all subpolyominoes to obtain P .

As already described in Lemma 1, we start a new copy after
every cycle. Thus, to create D copies of P we need O(�log(1 +
d(P))� + D) cycles. This is an amortized constant time per
copy if we create Ω(log d(P)) copies. Note that d(P) is in Ω(1)
and O(N). �

IV. ASSEMBLING NON-MONOTONE SHAPES

In this section we show how to decide constructibility for
special classes of polyominoes, namely simple polyominoes

Fig. 6. A complete example constructing P with d(P) = 3. State shown is
after an up-movement and its previous state in translucent colors. Top-left box:
A polyomino P with locally convex tiles (red), locally reflex tiles (blue), and
tiles that are both locally convex and locally reflex (orange, striped).

and polyominoes with convex holes. We end this section by
showing how much space is needed for the workspace in which
we can assemble the polyominoes.

A. Simple Polyominoes

To prove if a simple polyomino can be constructed we look
at the converse process: a decomposition. As defined in the
preliminary section we use 2-cuts to decompose a polyomino.
If the polyomino cannot be decomposed by 2-cuts then the
polyomino cannot be constructed by successively putting two
subpolyominoes together. We show with the next lemma that
we can greedily pick any valid straight 2-cut.

Lemma 4: Any valid straight 2-cut preserves decomposabil-
ity.

Proof: Consider a straight 2-cut � and a sequence σ =
(�1 , . . . , �m) of cuts, decomposing P into single tiles. Assume
� is part of the cut sequence but not the first cut in σ. Then, there
is a 2-cut �′ being made directly before � in a polyomino P ∗
induced by cuts before �′. We can now swap �′ and � preserving
their property of being 2-cuts: for � we assume it is a 2-cut in
P , which is also true in any subpolyomino induced by 2-cuts;
the same holds for �′, it is a 2-cut in P ∗ and thus, also in any
subpolyomino induced by 2-cuts. After swapping both cuts we
have the same decomposition yielding a valid decomposition of
P . We can now repeat this procedure until � is the first cut in P .

However, � may not be in the cut sequence σ. We now show
that we can use � as a cut by exchanging cuts. Let �k be the last
cut intersecting �. This cut separates two cuts �′ and �′′ which
lie on �. Because � is a 2-cut, also �′ ∪ �′′ must be a 2-cut in
the polyomino where we use cut �k . Therefore, we can first use
the cut �′ ∪ �′′ and then the two cuts �′k and �′′k induced by the
intersection of � and �k . By repeating this procedure, we get �
as part of the cut sequence σ. �

Definition 2: A tile t of a polyomino P is said to be locally
convex if there exists a 2 × 2 square solely containing t. If the
square only contains t and its two neighbors, then we call t
locally reflex. Note that a tile can be locally convex and locally
reflex at the same time (see Box in Fig. 6).

Lemma 5: Any non-convex, straight 2-cuttable polyomino P
can be decomposed into convex subpolyominoes by only using
straight 2-cuts cutting along a locally reflex tile.

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on March 04,2020 at 07:02:03 UTC from IEEE Xplore. Restrictions apply.

SCHMIDT et al.: EFFICIENT PARALLEL SELF-ASSEMBLY UNDER UNIFORM CONTROL INPUTS 3525

Fig. 7. The original cut � and its shifted copy �′, which together split the
polyomino into three parts P1 , P2 , P3 .

Fig. 8. A not locally convex tile t (red) in P1 (gray area) blocked by q1 and
q2 (purple). If the path q2 q1 exists, there is at least one blocked locally convex
tile above the black bold line. If q1 q2 exists, we proceed analogously.

Proof: W.l.o.g., consider a vertical straight 2-cut � that may
not cut along a locally reflex tile. Then we can move a cut �′ to
the left starting at � until we reach a locally reflex tile t such that
the cut goes through the corner of t that lies on the boundary
of P (if we cannot reach a locally reflex tile we move �′ to the
right). We obtain three subpolyominoes: P1 to the right of �, P2
to the left of �′, and P3 between �′ and � (see Fig. 7).

Assume �′ is not a valid 2-cut, i.e., a tile is blocked in P2 or
P3 . (If there is a blocked tile in P1 , then also � would not be a
2-cut.) Consider the first case, where P2 has a blocked tile t.
Then, t has an y-coordinate which is at most as high as the
highest tile in P3 plus 1 and at least as high as the lowest tile
in P3 minus one (or else both blocking tiles must be in P1
and thus, � would be no 2-cut). Let q1 ∈ P3 to the right of t
and q2 ∈ P1 ∪ P3 to the left of t be the two tiles blocking t.
By replacing q1 with its right neighbor we still have two tiles
blocking t. Because � is a 2-cut we can repeat this procedure
until q1 ∈ P1 . We can repeat the procedure for q2 if q2 ∈ P3 .
Thus, both blocking tiles are in P1 and � cannot be a 2-cut.

For the second case the blocked tile t lies in P3 . Then, also
the right neighbor t′ of t is blocked. This is also true for t′.
Therefore, we can go to the right until we reach P1 and thus,
there is a tile in P1 which is blocked. This means, also � cannot
be a valid 2-cut, which is a contradiction to � being a valid 2-cut.

As each cut �′ reduces the number of locally reflex tiles by
at least one, the remaining polyominoes will be convex after a
limited number of cuts. �

Lemma 6: It is sufficient to consider locally convex tiles for
checking if a cut � is a valid straight 2-cut.

Proof: Assume w.l.o.g. � is a vertical cut splitting the poly-
omino in two subpolyominoes P1 and P2 . W.l.o.g., consider a
not locally convex tile t ∈ P1 blocked by two tiles q1 , q2 ∈ P2 .
Because � is a 2-cut and P is simple, there must be a path from
q1 to q2 within P2 . This path must go around P1 either above or
beneath t (see Fig. 8).

In case the path moves above t, consider a horizontal cut
directly above t (see Fig. 8). This cut splits P1 into components.
In each component there are at least four locally convex tiles
from which at most two became locally convex through the cut.
Thus, two of these locally convex tiles were also locally convex
in P1 . It is easy to see in the figure that both locally convex tiles
are also blocked by tiles on the path from q1 to q2 .

In the second case we proceed analogously with the difference
that we use a horizontal cut directly below t. We conclude that in
any case there is a locally convex tile in P1 that is being blocked
if there is a blocked, not locally convex tile. Note that the other
direction may not be true. �

Lemma 7: Checking if a 2-cut � is valid can be done in
O(N + r log r) time, where r is the number of locally reflex
tiles.

Proof: W.l.o.g. assume � to be a vertical straight cut and
also assume that we are checking blue tiles only. As a first
step we scan through the polyomino and search for all tiles
that represent a corner, i.e., the tile is locally convex or locally
reflex. Additionally, we can store the neighbor corner tiles of
each corner tile (these are up to four tiles). Both steps can be
done with one scan, and thus in O(N) time.

Now, consider the cut � splitting the polyomino into subpoly-
ominoes P1 and P2 . Finding the corner tiles in P1 and P2 can
be done in O(r) time by a breadth-first search. We proceed with
the following procedure for P1 (analogously for P2):

1) Get all vertical lines connecting two corner tiles in P2
and stretch this line by one tile if a corner tile is red (this
checks if a blue tile would pass a red tile).

2) Sort the set Cr of corner tiles in P2 lexicographically by
y-coordinate and then by x-coordinate.

3) Start a sweep line from bottom to top having the tiles in
Cr as event points.

4) On each event point p do the following update:
� If p is a start point of a vertical line but lies left of the

current vertical line, remove p from Cr .
� If p is a start point and lies to the right of the current

line add the tile of the current line to Cr and jump to
the new vertical line.

� If p is an end point of the current vertical line, then
jump to the nearest vertical line to the left and add the
tile of this line to Cr .

� If p is an end point but not of the current vertical line,
remove p from Cr .

5) Repeat steps 1–4, switching left and right, to get Cl .
6) For each locally convex tile t in P1 :

� find q1 ∈ Cr having highest y-coordinate below t, and
q2 ∈ Cr having lowest y-coordinate above t. (Both
shall be the left-most tile in case of ties.)

� find q′1 ∈ Cl having highest y-coordinate below t, and
q′2 ∈ Cl having lowest y-coordinate above t. (Both
shall be the left-most tile in case of ties.)

� If t lies to the left of segment q1q2 and to the right of
segment q′1q

′
2 return false.

This computes a left and right envelope of vertical lines in P1
and P2 , respectively. This allows an easy check if there is a tile
on the left/right blocking a tile from P1 in this direction (for an
example, see Fig. 9).

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on March 04,2020 at 07:02:03 UTC from IEEE Xplore. Restrictions apply.

3526 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 4, OCTOBER 2018

Fig. 9. Example for the data structure used in Lemma 7. We observe that t1 is always on the wrong side of the red line and is thus blocked in both directions.
Vertical lines are part of P2 .

The runtime is in O(r log r): Step 1 needs O(r) time because
there are O(r) corner tiles and at most two vertical lines per
corner tile. Sorting a set lexicographically in two dimensions
can be done in O(r log r). With a careful view on step 4, we can
observe that each update of the O(r) event points costs O(log r)
and thus in total O(r log r) time. Step 6 can be done in O(log r)
time for each locally convex tile. Therefore, we need O(r log r)
time in total. �

The next theorem is straightforward to prove.
Theorem 2: Let r be the number of locally reflex tiles. We

can find a valid straight 2-cut in O(N + r2 log r) time.
Theorem 3: A decomposition tree of valid 2-cuts for a poly-

omino P can be used to build a labyrinth constructing P . This
labyrinth can also be used for pipelining.

Proof: Consider a cycle of the seven unit steps right, up,
down, up, right, left, down. This is the movement sequence
which was already seen for convex and monotone polyominoes
but with two more movements. This cycle preserves the ability to
construct monotone polyominoes in the labyrinth above. Also
observe that turning the gadgets seen in Figs. 4 and 5 by 90
degrees clockwise yields gadgets that put two polyominoes on
top of each other.

Transforming a decomposition tree of 2-cuts for a polyomino
P can easily be done: Consider the layers of the decomposition
tree, with the root being layer zero, its children being layer one,
and so on. In each vertex in one layer either a horizontal or
vertical cut is made. Corresponding to this cut we construct a
gadget putting the two children of this vertex together. At some
point only monotone subpolyominoes exist. These can be build
using the methods described above.

The length of a root-leaf-path may vary. In this case we can
build loops so we can put two polyominoes together at the right
time. �

Theorem 4: Any straight 2-cuttable polyomino P can be
build within O(r) unit steps, where r is the number of locally
reflex tiles in P . D copies require O(r + D) unit steps.

Proof: Doing cuts along locally reflex tiles reduces the num-
ber of locally reflex tiles by at least one. This implies a maximum
depth of O(r) of the decomposition tree and thus, O(r) cycles
to produce P . As seen before, pipelining yields a construction
time of (r + D) unit steps, which is an amortized constant con-
struction time if D ∈ Ω(N). �

Unfortunately, the number of locally reflex tiles r can be in
Ω(N) and thus, we may need Ω(N) cuts to build the polyomino.
In particular, Fig. 10 left shows an example which needs Ω(N)

Fig. 10. Left: A polyomino needing Ω(N) steps to build as we cannot separate
the green nor the orange part efficiently from the grey part. Right: Polyomino
which is not 2-cuttable. Any cut splits the polyomino either in two subpolyomi-
noes which cannot be pulled apart or into more than two subpolyominoes.

Fig. 11. A polyomino P (grey tiles) and the graph DP (right). The vertices
in VB are shown as squares, the vertices in VI are shown as disks. Red bold
line in P is a 2-cut. Red path in the graph represents this cut.

cycles to build. Even scaling by some factor k, i.e., replacing
each tile by an k × k supertile, seems not to help. Moreover,
there are also polyominoes we cannot build by putting two
subpolyominoes together at the same time (see Fig. 10 right).

B. Non-Straight Cuts

Considering any 2-cut makes it more difficult to find cuts, as
there are exponential many possible cuts. However, we do not
need to consider all cuts. For a given start s and end e on the
boundary of a polyomino P , we can show that it is sufficient to
consider only one cut connecting s and e. The proof is similar
to the one of Lemma 5.

Theorem 5: Given a 2-cuttable polyomino P , we can find a
2-cut in time O(r2N log N), where r is the number of locally
reflex tiles in P .

Proof: The idea of this proof is to find O(r2) 2-cuts which
are then tested if they are valid. One necessary criterion is that
no cut moves three units to the left or right in case of vertical
cuts. This can be achieved with a directed graph DP . As seen
in Fig. 11, we add a set of O(r) vertices that correspond to

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on March 04,2020 at 07:02:03 UTC from IEEE Xplore. Restrictions apply.

SCHMIDT et al.: EFFICIENT PARALLEL SELF-ASSEMBLY UNDER UNIFORM CONTROL INPUTS 3527

Fig. 12. Block diagram of the workspace to construct a monotone polyomino.

corners of tiles lying on the boundary of P (giving rise to the set
VB), or that correspond to corner tiles not lying on the boundary
(resulting in the set VI). We add edges betweenadjacent vertices
with weight 1

2N if both vertices are in VI . If both vertices are in
VB , then the edge has weight 2, otherwise 1.

A 2-cut is represented by a shortest path of weight at most
2.5 containing exactly two vertices of VB . If we have at least
three vertices of VB in the shortest path, it has length at least
3. Thus, paths from one vertex in VB to another vertex of VB

define cuts going through P . Finding all shortest paths from one
vertex in VB lasts O(N log N) time, as there are O(N) edges
in DP . This implies a total time of O(rN log N) for finding all
shortest paths of length at most 2.5.

Because one cut can make O(N) turns, checking whether the
cut is valid takes time O(N log N). Thus, checking all O(r2)
cuts if they are valid needs time O(r2N log N). �

All techniques can be generalized for polyominoes with con-
vex holes. However, this increases the number of possible cuts
to be checked. In particular, there can be O(r3

h) possible ways
to go through a hole h with rh locally reflex tiles. Thus, the
time to find a cut takes O(N + r3 log r) using straight cuts and
O(r3N log N) using non-straight cuts.

C. Workspace Size and Number of Obstacles

Theorem 6: Let P be a polyomino. Then, the workspace
needed to assemble D copies of P can be put into a rectan-
gle of width O(wP LP · (CP +

√
D)) and height O(hP · (CP +√

D)), where wP and hP are the width and height of P , CP

is the number of movement steps needed, and LP is the num-
ber of cuts made to decompose P into convex subpolyominoes.
Furthermore, we only need O(N(LP +

√
D)) obstacles in the

workspace.
Proof: Represent each gadget as a block. An example block

diagram shown in Fig. 12 illustrates the structure of the
workspace with width and height of each stage.

Consider the decomposition tree T of P induced by cuts
whose leafs are convex polyominoes. For convex polyominoes
we can use the construction from Lemma 6 and for each inner
node of T we use the gadgets used in Theorem 1 to combine two
subpolyominoes. Let P1 , . . . , Pk be the convex polyominoes in
the leafs of T with width w1 , . . . , wk and height h1 , . . . , hk .
To construct one Pi , we need O(

√
Dwi) × O(

√
Dh∗

0) space,
where h∗

0 is the maximum height of all Pi .
Now consider the j-th stage with j ≤ CP where some

polyominoes are combined. Let P ′
1 and P ′

2 be two such

Fig. 13. Gadgets assembling two subpolyominoes. Left: With unnecessary
obstacles. Right: Without unnecessary obstacles.

Fig. 14. (a) Magnetic manipulation workspace (b) frames from an assembly
of one column of a polyomino. (c) frames from combining two polyominoes.

polyominoes. After assembling these polyominoes the width of
the polyomino P ′′

1 increases to w′′
1 ≤ w′

1 + w′
2 . Thus, the width

of the workspace increases by at most w′
1 + w′

2 . We observe
that any width of P1 , . . . , Pk appears at most CP + 1 times.
With wi ≤ wP and k ∈ O(LP), this results in a total width of
∑LP

i=1 wP (
√

D + CP + 1) ∈ O(wP LP (
√

D + CP)).
For the total height consider the maximum height h∗

j of all
polyominoes in stage j ≤ CP . Because we need O(h∗

j) space in
the vertical direction for stage j, we have have a total height of
hP

√
D +

∑CP

j=1 h∗
j ∈ O(hP (

√
D + CP)) resulting in a rectan-

gle of size O(wP (
√

D + CP)) × O(hP (
√

D + CP)) enclosing
the workspace.

Although the workspace may be large, the number of obsta-
cles needed is smaller. First, ignore any obstacle not needed as
a stopper (see Fig. 13). This reduces the number of obstacles to
O(wP + hP). Because wP , hP ≤ N this is O(N). The same
can be done for building the convex polyominoes. However, to
keep the D tiles in a container we need all O(

√
D) obstacles.

Thus, we have O(N
√

D) obstacles to build all convex polyomi-
noes and O(LP N) obstacles for the gadgets which is in total
O(N(LP +

√
D)). �

V. EXPERIMENTAL DEMONSTRATION

We implemented the algorithms for staged assembly at micro
and milli scale. A customized setup was used to generate a
magnetic field to manipulate the magnetic particles.

1) Experimental Platform: The magnetic setup used for the
experiments is shown in Fig. 14, consisting of three orthog-
onal pairs of coils with separation distance equivalent to the
outer diameter (127.5 mm) of a coil. The coils (18 AWG, 1200
turns, Custom Coils, Inc) are actuated by six SyRen10-25 mo-
tor drivers, and a Tekpower HY3020E is used for the DC power

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on March 04,2020 at 07:02:03 UTC from IEEE Xplore. Restrictions apply.

3528 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 4, OCTOBER 2018

Fig. 15. Results from assembly of a micro-scale three-tile column polyomino.
There are 10 trials per data point. (a) Success rate as a function of the duration
control inputs were applied in each of the four directions on a workspace with
1 mm width channels. (b) Success rate as a function of channel widths using
control inputs applied for 3 s in each direction.

supply. The electromagnetic platform can provide uniform mag-
netic fields of up to 101 G, and gradient fields up to 150 mT/m
along any horizontal direction in the center of the workspace.
With flux concentration cores, up to 900 mT/m gradient fields
are observed in the experiment. Each flux concentration core is
a solid iron cylinder 73.1 mm in diameter.

The workspaces used to demonstrate the sublinear assembly
algorithms were designed to replicate the column assembly in
Fig. 1 and the subpolyomino assembly in Fig. 4. Each workspace
is made up of two layers of acrylic cut using a Universal Laser
Cutter. The base layer is fabricated from 2 mm thick transparent
acrylic, and it is glued to 5.5 mm thick acrylic, which acts as an
obstacle layout. In each experiment, the workspace is placed in
the center of our electromagnetic platform. The particle tiles are
composed of nickel-plated neodymium cube-shaped magnets
(supermagnetman.com C0010). The magnet cubes have edge
lengths of 0.5 mm for micro-scale and 2.88 mm for milli-scale
demonstrations. An Arduino Mega 2560 was used to control the
current in the coils and the workspaces were observed with a
IEEE 1394 camera, captured at 60 fps.

2) Experimental Results: In micro-scale experiments, we
filled the workspaces with vegetable oil and placed a magnet
cube with 0.5 mm edge length in each of the three hoppers.
The workspace used in these experiments was 18 mm wide and
30 mm long. To assemble the column polyomino, a gradient
magnetic field of 900 mT/m was applied in the direction se-
quence 〈d, r, u, l〉. Each direction input was applied for a fixed
amount of time specified by a MATLAB program. A successful
trial requires that all three components are joined and delivered
to the top right of the workspace. Fig. 14(b) shows the com-
pleted three-tile polyomino and Fig. 15 shows representative
experimental results for the assembly of the column polyomino.
Successful assembly depends on the channel widths and the du-
ration of the control inputs. Larger channel widths and longer
control durations led to high success rates. Trials were always
successful when the magnetic field was applied at least 3 s in
each direction and when the channel width was at least 1 mm.

For milli-scale demonstrations we assembled two polyomi-
noes, as shown in Fig. 14(c). Each polyomino is composed of
four magnet cubes glued together to form a square shape. The

43 mm × 62 mm workspace was placed in a uniform, 101 G
magnetic field to control the orientation of the polyominoes and
then manually tilted in the direction sequence 〈u, l, d, r, u〉. See
video attachment for experimental demonstrations.

VI. CONCLUSION AND FUTURE WORK

A spectrum of future work remains, most notably issues of
robustness in the presence of inaccuracies, as well as the ex-
tension of our results to three-dimensional shapes. Questions in
2D include the following. Can we guarantee sublinear produc-
tion times if the polyomino can be scaled by a constant? Are
straight cuts sufficient, i.e., if a polyomino P is 2-cuttable, is P
also straight 2-cuttable? How hard is it to decide if a polyomino
cannot be built at all? Can we efficiently assemble polyomino
P ′ that approximates P ?

REFERENCES

[1] D. Arbuckle and A. A. Requicha, “Self-assembly and self-repair of arbi-
trary shapes by a swarm of reactive robots: Algorithms and simulations,”
Auton. Robots, vol. 28, no. 2, pp. 197–211, 2010.

[2] A. T. Becker, E. D. Demaine, S. P. Fekete, G. Habibi, and J. McLurkin,
“Reconfiguring massive particle swarms with limited, global control,” in
Proc. Int. Symp. Algorithms Exp. Sensor Syst., Wireless Netw. Distrib.
Robot., 2013, pp. 51–66.

[3] A. T. Becker et al., “Tilt assembly: Algorithms for micro-factories that
build objects with uniform external forces,” in Proc. 28th Int. Symp. Al-
gorithms Comput., 2017, vol. 92, pp. 11:1–11:13.

[4] Z. Butler, K. Kotay, D. Rus, and K. Tomita, “Generic decentralized control
for lattice-based self-reconfigurable robots,” Int. J. Robot. Res., vol. 23,
no. 9, pp. 919–937, 2004.

[5] S. Cannon et al., “Two hands are better than one (up to constant factors),”
in Proc. Int. Symp. Theor. Aspects Comput. Sci., 2013, pp. 172–184.

[6] C. Chalk, E. Martinez, R. Schweller, L. Vega, A. Winslow, and T. Wylie,
“Optimal staged self-assembly of general shapes,” Algorithmica, vol. 80,
pp. 1383–1409, 2016.

[7] H.-L. Chen and D. Doty, “Parallelism and time in hierarchical self-
assembly,” SIAM J. Comput., vol. 46, no. 2, pp. 661–709, 2017.

[8] E. D. Demaine et al., “Staged self-assembly: nanomanufacture of arbitrary
shapes with O(1) glues,” Natural Comput., vol. 7, no. 3, pp. 347–370, 2008.

[9] E. D. Demaine, S. P. Fekete, C. Scheffer, and A. Schmidt, “New geometric
algorithms for fully connected staged self-assembly,” Theor. Comput. Sci.,
vol. 671, pp. 4–18, 2017.

[10] P. S. S. Kim, A. T. Becker, Y. Ou, A. A. Julius, and M. J. Kim, “Imparting
magnetic dipole heterogeneity to internalized iron oxide nanoparticles
for microorganism swarm control,” J. Nanoparticle Res., vol. 17, no. 3,
pp. 1–15, 2015.

[11] S. Manzoor, S. Sheckman, J. Lonsford, H. Kim, M. J. Kim, and A. T.
Becker, “Parallel self-assembly of polyominoes under uniform control
inputs,” IEEE Robot. Autom. Lett., vol. 2, no. 4, pp. 2040–2047, Oct.
2017.

[12] S. Vassilvitskii, J. Kubica, E. Rieffel, J. Suh, and M. Yim, “On
the general reconfiguration problem for expanding cube style modu-
lar robots,” in Proc. IEEE Int. Conf. Robot. Autom., 2002, vol. 1,
pp. 801–808.

[13] J. E. Walter, J. L. Welch, and N. M. Amato, “Distributed reconfiguration
of metamorphic robot chains,” Distrib. Comput., vol. 17, no. 2, pp. 171–
189, Aug. 2004. [Online]. Available: https://doi.org/10.1007/s00446-003-
0103-y

[14] E. Winfree, “Algorithmic self-assembly of DNA,” Ph.D. dissertation,
California Institute of Technology, Pasadena, CA, USA, 1998. [Online].
Available: http://cba.mit.edu/events/03.11.ASE/docs/Winfree.pdf

[15] Y. Zhang, X. Chen, H. Qi, and D. Balkcom, “Rearranging agents in a small
space using global controls,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., Sep. 2017, pp. 3576–3582.

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on March 04,2020 at 07:02:03 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

