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Covering Tours with Turn Cost:

Variants, Approximation and Practical Solution

Sándor P. Fekete∗ Dominik Krupke∗

Abstract

For a given set P of points in the plane, the Angular-
Metric Traveling Salesman Problem (AM-TSP) asks
for a tour on P that minimizes the total turn along
the tour. While there exists a PTAS for the Euclidean
TSP, for the AM-TSP only a O(log n) approxima-
tion algorithm is known. We introduce a number of
generalizations and provide approximation algorithms
whose performance depend on the angular resolution.
We also develop exact methods for computing prov-
ably optimal solutions, and present an array of exper-
imental results.

1 Introduction

Consider an outdoor setting with a number of obsta-
cles. Swarms of mosquitos populate the area, with
a number of known hotspots. How can we lower the
danger of diseases by zapping the mosquitos with a
flying drone, such as the one shown in Figure 1?
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Figure 1: A drone equipped with an electrical lattice
to hunt mosquitoes. Images by Aaron Becker.

Visiting a set of points by an optimal tour is a natu-
ral and important problem, both in theory and prac-
tice. If we are only concerned with minimizing the
total distance traveled for visiting all points this is
the classic Traveling Salesman Problem (TSP). How-
ever, for path planning by a flying robot, we also in-
cur a cost for changing direction; this is related to the
Angular-Metric TSP (AM-TSP), in which the objec-
tive is to minimize the total turn. In addition, we
may want to focus on a subset of the points in order
to provide better coverage, incurring a penalty for the
uncovered ones.
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Figure 2: An example instance with obstacles and
individual penalty costs for the points in P .

Related Work. Angle-restriced tour problems were
studied by Fekete and Woeginger [4]. Touring points
in the plane with minimal turn cost was considered
by Aggarwal et al. [1], who provide a O(log n) ap-
proximation algorithm, but also show that already
the cycle cover version is NP-hard. Arkin et al. [3]
consider different grid-based versions of covering with
turn cost, and provide a spectrum of approximation
algorithms. Minimizing the total turn cost can be
modeled as a special case of the quadratic TSP, which
has received a fair amount of attention; see [5, 6, 9, 8]
for research in optimal solutions and heuristics.

Our Results. We consider a number of variants for
AM-TSP, motivated by practical applications. In par-
ticular, we consider the setting in which the set of
possible headings at visited points is discretized; this
also allows it to easily add polygonal obstacles into
the environment. We also provide approximation al-
gorithms for the generalization in which a penalty can
be paid instead of covering a point. In addition, we
present computational results.

2 Preliminaries and Problems

Preliminaries. We are given a set of points P ⊂ R2

in a polygonal environment with the obstacles O. For
every point p ∈ P a set of ω angles δ(p) ∈ [0,π)ω

that describe possible headings when covering p; each
angle corresponds to two possible, opposite headings.
A pose consists of a position and a heading. The re-
spective set of poses results in an undirected weighted
graph. There is weighted edge between any two poses
that represents the cheapest collision-free polygonal
path connecting them. The travel cost is a linear com-
bination of the sum of turn angles (with coefficient τ)
and the length (with coefficient κ).
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Problems. The Full Cycle Cover Problem (FCCP)
asks for a set of non-trivial cycles of minimum to-
tal cost, such that every point is covered. The Full
Tour Problem (FTP) asks for a single cycle of min-
imum total cost that covers all points. The Penalty
Cycle Cover Problem (PCCP) and the Penalty Tour
Problem (PTP) are defined analogously, but points
may be left uncovered by paying an individual penalty
ρ(p) ∈ R

+
0 for every omitted point p ∈ P .

All problem variants are NP-hard. The hardness of
the Full Tour Problem is implied by the hardness of
the Euclidean TSP; the Full Cycle Cover Problem is
NP-hard with ω ≥ 2 by a straightforward adaption
of the NP-hardness proof for the angular metric cycle
cover problem by Aggarwal et al. [1]. Clearly, this
implies hardness for the penalty variants. For ω = 1,
the problem can be solved using a minimum weight
perfect matching on an appropriate auxiliary graph.
A subproblem is to calculate the cheapest transi-

tion between two poses around polygonal obstacles. If
there are only distance costs, this problem equals the
Euclidean shortest path, for which only the visibilty
graph needs to be considered. It can easily be shown
that this is also true with turn costs and the graph
can easily be transformed such that the turn costs are
integrated in edge weights resulting in a complexity
of O(|VO|2 ∗ log |VO|) for the calculation of a cheapest
transition, where VO are the vertices of the obstacles.

3 Approximation Algorithms

We now propose approximation techniques for all four
problems. Due to limited space, we only outline the
main ideas; details are left to the full paper.
Note that for all the proposed approximation al-

gorithms, the approximation factor and the runtime
both depend linearly on the maximum number of ori-
entations ω, which is assumed to be constant.

3.1 Full Coverage

Theorem 1 For a fixed ω, there is a 2 ∗ ω approxi-
mation algorithm for the FCCP. In case ω = 1, the
solution is optimal.

Proof. Solve the LP-relaxation of the integer pro-
gram (IP); select for each point the orientation of
highest variable value. Do a minimum weight perfect
matching on the vertices associated with these points.
Both takes polynomial time, with the LP-relaxation
being the dominant part.
Because every point has at most ω orientations, at

least one orientation of each point is used with a frac-
tional weight of at least 1/ω. Multiplying the solution
by ω and applying some local modifications that do
not increase the cost (like skipping a point) yields a
half-integral solution. This can be multiplied by two

to obtain an integral solution. By further local modifi-
cations that do not increase the cost (possibly even de-
crease it), we obtain a perfect matching with at most
2 ∗ ω times the cost of the LP-relaxation. This (not
minimal) perfect matching is an upper bound. !

To connect the cycles provided by Theorem 1, we
simply use a minimum spanning tree (MST). Dou-
bling the edges results in cycles with u-turns on the
original cycles, which can be connected with no addi-
tional cost (but the u-turns from the doubling involve
an extra cost).

Theorem 2 For a fixed ω, there is a 4 ∗ ω + 2 ap-
proximation algorithm for the FTP. In case of ω = 1,
there is a 4-approximation algorithm.

Proof. We compute a 2 ∗ω-approximation of the cy-
cle cover using Theorem 1, then connect these cycles
via an MST. The MST provides m − 1 edges for a
cycle cover with m cycles. An edge between two cy-
cles corresponds to the cheapest connection between
two of it points (∈ P ), ignoring the headings at the
end. These m− 1 edges are doubled to create a valid
tour. The minimum spanning tree is a lower bound on
the optimal value. Connecting the edges to the cycles
involves additional turn costs (360◦ for each doubled
edge), but these can be charged to the cycles, because
every cycle has a turn angle sum of at least 360◦. !

3.2 Penalty Coverage

The adaption of the approximation algorithms to the
penalty variants is surprisingly simple.

Theorem 3 For a fixed ω, there is a 2 ∗ (ω + 1) ap-
proximation algorithm for a PCCP.

Proof. We proceed as in Theorem 1, but we add an
artificial orientation that allows a single artificial cycle
with the cost of the penalty. !

From this penalty cycle cover we use the prize-
collecting Steiner tree to select and connect good cy-
cles. The connecting of the selected cycles via the
edges of the tree is identical to full coverage. Only
the analysis is slightly more difficult.

Theorem 4 For a fixed ω, there is a 4 ∗ (ω + 1) + 4
approximation algorithm for the PTP.

Proof. We first compute a penalty cycle cover ap-
proximation with a factor of 2 ∗ (ω + 1), using Theo-
rem 3. We remove all points for which the penalty
in the cycle cover has been paid. Next we com-
pute a 2-approximation of the prize-collecting Steiner
tree, using the approximation algorithm of Goemans
and Williamson [7] that has a time complexity of
O(n2 log n). This is done on a graph that contains
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all remaining points, with edge costs corresponding
to shortest paths with turn costs but arbitrary start
and goal headings. For two points that are in the
same cycle, we set the cost to zero. We remove all
cycles for which no point is in the resulting prize-
collecting Steiner tree. All other components we con-
nect by selecting edges from the tree (i.e., m−1 edges
for m cycles). This can be done by iterating over all
edges in the tree, adding an edge if it connects two
different components. Clearly, the cost of an opti-
mal prize-collecting Steiner tree is a lower bound for
the tour. Due to the 2-approximation, the sum of all
edge weights and penalties is at most twice the cost
of the optimal penalty tour. The selected edges are
transformed to cycles by doubling them and adding
180◦ turns at the ends. We can merge the cycles with
no additional cost, as in Theorem 2. This results in
at most four times the cost of the optimal tour plus
2 ∗ (m − 1) × 180◦ turns for m cycles in the cycle
cover. As every cycle in the cycle cover has also at
least 360◦, we can charge the 180◦ turns to the cy-
cles, which leads to 2 ∗ 2 ∗ (ω + 1) ∗OPT. Combined,
this results in 2 ∗ 2 ∗ (ω + 1) ∗ OPT + 2 ∗ 2 ∗ OPT =
(4 ∗ (ω + 1) + 4) ∗OPT. !

4 Integer Programming

We work on an auxiliary graph G(V,E): For every
point p ∈ P with orientations δ(p), we create the
vertices V (p) =

⋃
α∈δ(p){vp,α, vp,α+π} representing

the two poses by which a point can be left/entered
through one of its orientations. Furthermore, there is
an edge e = {v, v′} between any two v = vp,α ∈ V (p)
and v′ = vp′,α′ ∈ V (p′) with the cost c(e) representing
the minimum cost path from the pose of being at p
and heading α to the pose of being at p′ and heading
α′+π (this cost is symmetric). Entering on the vertex
for the pose of being at p′ and heading α′ + π implies
leaving through the vertex for the pose of being at p′

with the heading α′.

For the cycle cover variant, there is also an edge
e = {vp,α, vp,α+π} for every p ∈ P with the cost of
the cheapest cycle (covering it and at least one other
point). cycle cover, points can be in two unconnected
cycles even in an optimal solution. The additional
edge is used to implicitly represent this kind of cycle.

The integer programming formulation for cycle
cover can be given as follows:

min
∑

e∈E

c(e) ∗ xe (1)

s.t.
∑

e∈E(vp,α)

xe =
∑

e∈E(vp,α+π)

xe
∀p ∈ P

∀α ∈ δ(v)
(2)

∑

α∈δ(p)

∑

e∈E(vp,α)

xe = 1 ∀p ∈ P (3)
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Figure 3: Percentage of tour instances solved to op-
timum within 15min. 10 instances for each size
50, 100, . . . , 350. The cycle cover variant is only
slightly better. i

xe ∈ {0, 1} ∀e ∈ E (4)

Eq. 2 states that if and only if there is an incoming
edge on one side, there has to be an outgoing edge
on the opposite site. Eq. 3 states that there have
to be exactly two edges entering/leaving (using the
symmetry induced by the previous equation). E(v)
represents the set of edges incident to v.
The subcycle elimination constraints for obtaining

a tour can be adapted directly from the TSP.

∑

e∈E(V (C),V (P\C))

xe ≥ 2 ∀C ! P,C ̸= ∅ (5)

Hence, the IP for tours is given by adding Eq. 5 to
the cycle cover formulation. The penalty versions are
omitted due to space constraints.

5 Experiments

For the full coverage problem variants, we imple-
mented the integer programs and the approximation
algorithms for tour and cycle cover without obstacles.
In this section we discuss the experimental results
for these implementations. Experiments were exe-
cuted on modern desktop computers equipped with
an Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz
and 64GB of RAM. The used CPLEX version was
12.5.0.0 with the parameters EpInt=0, EpGap=0,
EpOpt=1× 10−9, and EpAGap=0. No further opti-
mizations were performed. As cost parameters we
used τ = 1,κ = 0, with one additional run with
ω = 2, τ = 1,κ = 0.5. Experiments were run
for 10 random instances in the unit square per size
50, 100, . . . , 350. As passing orientations {i ∗ π

ω
|i =

0, . . . ,ω − 1} were chosen for all points equally.
Fig. 3 shows the percentage of instances solved to

optimum within 15min via the integer program for
tours. The cycle cover variant is only slightly better.
It can be seen that we can solve 50% of the instance of
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Figure 4: Average runtime of the approximation algo-
rithm for cycle cover and tour (with nearly identical
runtime). For each size 50, 100, . . . , 350,10 instances
were tested.

size up to 200 points for ω = 2. Already for ω = 3 the
performance drops strongly such that the maximum
instance size becomes 100. For ω = 4 only the small-
est instances (50 points) have been solved in time.
Hence, with our formulation only for ω = 2 there is a
serious advantage compared with the angular metric
cycle cover and traveling salesman problem (using the
work of Aichholzer et al. [2] as reference point).

The average runtime of the approximation algo-
rithm is shown in Fig. 4. Here we do not differentiate
between cycle cover and tour because they have nearly
the same runtime. It can be seen that ω also has a
lot of influence on the runtime of the approximation
algorithm and the runtime for ω = 4 grows signifi-
cantly stronger than for ω = 2. However, the runtime
is much shorter than for the integer programs. The
run with ω = 2, τ = 1,κ = 0.5 is nearly identical to
the run with ω = 2, τ = 1,κ = 0

The objective value of the approximation algorithm
for cycle cover differs only slightly from the opti-
mum. For ω = 2 the difference is on average less
than 5%, with a maximum difference of 7.3%. The
differences are higher for ω = 3 and ω = 4, with a
maximum difference of 17.8%, but there are too few
instances solved for a reliable statement. The differ-
ence is higher for the tour version, but still close to the
optimum and far better than the proven bounds. The
maximum difference found is 1.485 times the optimal
value for ω = 4. It has to be noted that the imple-
mentation does not do a local optimization of the cy-
cle connections, i.e., the points of the connection are
visited multiple times. A removal of the redundant
visits could further improve the ratio.

We further considered random instances with ω =
2, τ = 1, and κ = 0 up to a size of 2000 points. For
instances with 1700 points and more, the memory con-
sumption of the linear program becomes problematic.
The average runtime at this point is roughly 8min.

6 Conclusion

The assumption that the discretization makes the an-
gular metric traveling salesman problem simpler is
only partially true. Surprisingly, the integer program
becomes very slow already for low resolutions, which
is also true for the cycle cover variant. Experiments
for the penalty variants are still to be performed. The
approximation algorithm is only practical for very low
resolutions. The experimental quality of the solutions
of the approximation algorithm is considerably bet-
ter than the worst-case ratio, but this evaluation is
only based on few and relatively small instances. It
would also be interesting to evaluate the quality of
the solutions compared to the optimal solutions of the
AM-TSP. The bottleneck of the approximation algo-
rithm is solving the linear program, but often there
are possibilities of replacing the blackbox LP-solver
by a more direct approach.
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