
38

Cost-Oblivious Storage Reallocation

MICHAEL A. BENDER, Stony Brook University
MARTÍN FARACH-COlTON, Rutgers University
SÁNDOR P. FEKETE, TU Braunschweig
JEREMY T. FINEMAN, Georgetown University
SETH GILBERT, National University of Singapore

Databases allocate and free blocks of storage on disk. Freed blocks introduce holes where no data is stored.
Allocation systems attempt to reuse such deallocated regions in order to minimize the footprint on disk.
When previously allocated blocks cannot be moved, this problem is called the memory allocation problem.
The competitive ratio for this problem has matching upper and lower bounds that are logarithmic in the
number of requests and in the ratio of the largest to smallest requests.

This article defines the storage reallocation problem, where previously allocated blocks can be moved,
or reallocated, but at some cost. This cost is determined by the allocation/reallocation cost function.

The objective is to minimize the storage footprint, that is, the largest memory address containing an
allocated object, while simultaneously minimizing the reallocation costs. This article gives asymptotically
optimal algorithms for storage reallocation, in which the storage footprint is at most (1+ε) times optimal, and
the reallocation cost is O((1/ε) log(1/ε)) times the original allocation cost, that is, it is within a constant factor
of optimal when ε is a constant. The algorithms are cost oblivious, which means they achieve these bounds
with no knowledge of the allocation/reallocation cost function, as long as the cost function is subadditive.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems—Sequencing and scheduling

General Terms: Algorithms

Additional Key Words and Phrases: Reallocation, storage allocation, scheduling, physical layout, cost
oblivious

A previous extended abstract version appears in the Proceedings of the 33rd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS ’14 [Bender et al. 2014]. This research was
supported in part by NSF grants IIS 1247726, CCF 1217708, CCF 1114809, CCF 0937822, and CCF 1617618,
and Sandia National Laboratories (Michael A. Bender), NSF grants IIS 1247750 and CCF 1114930 (Martı́n
Farach-Colton), by DFG grant FE407/17-1 and 17-2, as part of the Research Group FOR 1800, “Controlling
Concurrent Change” (Sándor P. Fekete), by NSF grant CCF 1218188 (Jeremy T. Fineman), by MOE Tier 2
Grant MOE2014-T2-1-157 (Seth Gilbert).
Authors’ addresses: M. A. Bender, Department of Computer Science, Stony Brook University, Stony Brook,
NY 11794-2424, USA; email: bender@cs.stonybrook.edu; M. Farach-Colton, Department of Computer Sci-
ence, Rutgers University, Piscataway, NJ 08854, USA; email: farach@cs.rutgers.edu; S. P. Fekete, Depart-
ment of Computer Science, TU Braunschweig, Mühlenpfordtstraße 23, 38106 Braunschweig, Germany;
email: s.fekete@tu-bs.de; J. T. Fineman, Department of Computer Science, Georgetown University, 37th
and O Streets NW, Washington, DC 20057-1232, USA; email: jfineman@cs.georgetown.edu; S. Gilbert,
School of Computing, 13 Computing Drive, National University of Singapore, Singapore 117417; email:
seth.gilbert@comp.nus.edu.sg.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1549-6325/2017/05-ART38 $15.00
DOI: http://dx.doi.org/10.1145/3070693

ACM Transactions on Algorithms, Vol. 13, No. 3, Article 38, Publication date: May 2017.

http://dx.doi.org/10.1145/3070693

38:2 M. E. Bender et al.

ACM Reference Format:
Michael A. Bender, Martı́n Farach-Colton, Śandor P. Fekete, Jeremy T. Fineman, and Seth Gilbert. 2017.
Cost-Oblivious Storage Reallocation. ACM Trans. Algorithms 13, 3, Article 38 (May 2017), 20 pages.
DOI: http://dx.doi.org/10.1145/3070693

1. INTRODUCTION

Databases and, more generally, storage systems need to allocate and free blocks of
storage on disk. Freed data introduces holes where no data is stored. Allocation systems
attempt to reuse such deallocated regions to minimize the footprint on disk.

The problem of allocating and freeing storage is well studied as the memory alloca-
tion problem. In that formulation, allocated objects cannot be moved. The competitive
ratio is defined to be the maximum possible ratio of the allocated memory (largest allo-
cated memory address) to the sum of the sizes of allocated segments [Knuth 1997; Luby
et al. 1996; Naor et al. 2000]. The lower bound on the competitive ratio is logarithmic
in the number of requests and in the ratio of the largest to smallest request [Luby et al.
1996].

The logarithmic lower bound renders traditional memory allocation too blunt a the-
oretical tool for understanding storage in many settings. Furthermore, as we show,
this lower bound is a consequence of the requirement that allocated storage cannot be
moved. But many actual systems have no such restriction.

Storage reallocation. This article generalizes memory allocation by allowing the
allocator to move previously allocated objects. We call this generalization storage re-
allocation. Storage reallocation can take place on any physical medium for allocating
objects, for example, main memory, rotating disks, or flash memory. See Figure 1.

Thus, garbage collection [Jones et al. 2011] is a type of in-core storage reallocation.
More generally, systems that introduce a layer of indirection between logical addresses
and physical addresses, such as virtual memory, make reallocation transparent to
processes that request storage.

Our own interest in memory reallocation stems from our experience in building
the TokuDB [Percona, Inc. 2016a] and TokuMX [Percona, Inc. 2016b] databases, in
which memory segments are accessed via a so-called “block translation layer,” which
translates between the block name, which is immutable, and the block address in
storage, which may change. (While TokuDB often reallocates storage, its reallocator
does not enjoy the extra property of cost-oblivousness addressed in this article.)

Cost-oblivious storage reallocation. An algorithm for storage reallocation must
contend with the tradeoff between storage footprint size and the amount (and cost) of
reallocation. It should come as no surprise that a storage reallocator that is designed
for main memory is unlikely to work well if the objects are allocated on a rotating
device instead—and vice versa. This is because the cost model depends on where the
objects are stored.

The question is, therefore, how to model the cost of reallocating memory objects.
Faithful cost models are hard to come by, in part because the memory hierarchy has
a hard-to-quantify impact on run time. In RAM, moving an object is roughly propor-
tional to the object size. On disk, moving a small object may be dominated by the seek
time, while moving a large object may be dominated by the disk bandwidth. In both
cases, there are cache effects, both in memory and in storage and in their interac-
tion. The performance characteristics for each aspect of memory vary by brand and
model.

Rather than model these complex interactions, this article specifies a class of cost
functions that subsumes them. We give universal reallocators, independent of the
particulars of the reallocation cost. We say that a universal reallocator is cost oblivious

ACM Transactions on Algorithms, Vol. 13, No. 3, Article 38, Publication date: May 2017.

http://dx.doi.org/10.1145/3070693

Cost-Oblivious Storage Reallocation 38:3

Fig. 1. Moving previously allocated blocks into holes left by deallocations can reduce the footprint of the
data in storage.

with respect to a class of cost functions if its execution does not depend on the specific
choice of cost function from the class. Our reallocation algorithms are cost oblivious
with respect to the class of cost functions that are subadditive, monotonically increasing
functions of the object size. (A (monotonically increasing) function f (x) is subadditive,
if f (x + y) ≤ f (x)+ f (y) for any positive x and y. Note that all monotonically increasing
concave functions are subadditive.) The restriction to subadditivity is not severe. While
there exist corner cases where a storage system is temporarily superadditive, most
mechanisms employed by operating systems, such as prefetching for latency hiding,
rely on the subadditivity of costs.

To summarize, in storage reallocation, there is an online sequence of insert (memory
allocation, i.e., function malloc) and delete (memory release, i.e., function free) requests.
Objects are allocated to locations in an arbitrarily large array (address space). The cost
of allocating or moving (reallocating) a size-w object is some unknown (monotonically
increasing) subadditive function f (w).

Storage reallocation is thus a bicriteria optimization problem. The first objective is
to store objects in an array so the largest allocated memory address—which we call
the footprint—is approximately minimized. The second objective is to minimize the
amortized reallocation cost per new request. In this article, we consider the problem of
minimizing the amortized reallocation cost, while using a memory footprint that is at
most a constant factor larger than optimal.

Storage reallocation in a database. Databases have many moving parts, and any
system that changes the way that storage is allocated needs to interact gracefully with
the other requirements of the storage system.

A common constraint in storage (re)allocation is that updates be nonoverlapping,
that is, when an object is moved, its new location must be disjoint from its old location.
In databases, object writes are not atomic, so nonoverlapping reallocation is necessary
for durability. This is also relevant in other contexts: In solid-state drives (SSDs), the
nonoverlapping constraint is enforced by the hardware, because memory locations
must be erased between writes. In field-programmable gate arrays (FPGAs), satisfying
this constraint allows interruption-free reallocations of modules [Fekete et al. 2012].

The nonoverlapping constraint is only part of the mechanism for durability. Another
consideration is that when an object is moved, the translation table between logical and
physical addresses needs to be updated. It is then written to disk during a checkpoint.
Only then are blocks that have been freed since the last checkpoint available for reuse.
Therefore, the allocator may not write to a location that has been freed after the last
checkpoint.

Finally, new memory requests arrive at unpredictable times. It is undesirable for
an allocation request to block on a long sequence of reallocations, even if the average
throughput is high. A good reallocation algorithm should provide some guarantee on

ACM Transactions on Algorithms, Vol. 13, No. 3, Article 38, Publication date: May 2017.

38:4 M. E. Bender et al.

the worst-case cost of individual operations, while still maintaining (near) optimal
throughput.

Formalization. An online execution is a sequence of requests of the form
〈INSERTOBJECT, name, length〉 and 〈DELETEOBJECT, name〉. After each request, the re-
allocator outputs an allocation for the objects in the system. We say that an object is
active at time t if it has been inserted by one of the first t requests, but not deleted
by the end of request t. (Note that an object being deleted remains active until the
reallocator completes the delete request.)

If S and S ′ are the allocations immediately before and after request p, then the
reallocation cost of pis the sum of the reallocation costs of all objects moved between
S and S ′.

A reallocator A is (f, a, b)-competitive for cost function f (), if (1) the footprint size
is always optimized to within an a-factor of optimal, and (2) the reallocation cost is at
most b times the sum of the allocation costs of every object inserted so far (including
those that have subsequently been deleted). Since every object must be allocated at
least once, the cost of such a reallocator is within a factor of b of optimal.

Let C be a set of cost functions. A reallocation algorithm A is cost oblivious if it
does not depend on f (). This means not only that f () is not a parameter to algorithm
A, but also A learns nothing about f () as A executes. A cost-oblivious reallocator A
is (C, a, b)-competitive if it is (f, a, b)-competitive for every f ∈ C; we abbreviate to
(a, b)-competitive if the set C is unambiguous. In the remainder of this article, we
take C = Fsa, the class of monotonically increasing, subadditive functions.

Results. Our reallocation algorithms are tunable to achieve an arbitrarily good com-
petitive ratio 1+ ε (0 < ε ≤ 1/2) with respect to the footprint size. All objects have inte-
gral length, and � denotes the length of the longest object. We establish the following:

—We give a cost-oblivious algorithm for storage reallocation that is (Fsa, 1 +
ε, O((1/ε) log(1/ε))-competitive. This allocator is amortized in the sense that it might
reallocate every existing object between servicing two requests.

—As a corollary, we give a defragmenter that is cost oblivious with respect to Fsa.
The defragmenter takes as input a comparison function, a set of objects having total
length V and consuming space (1 + ε)V . The defragmenter sorts the objects using
(1 + ε)V + � working space, moving each object O((1/ε) log(1/ε)) times, amortized.

—We extend the storage reallocator to support checkpointing. With an additional O(�)
space, we guarantee that each operation completes within O(1/ε) checkpoints.

—We also partially deamortize the storage reallocator so the worst-case reallocation
cost (and therefore the worst-case time blocking for a new size-w allocation) is reduced
to O((1/ε)w f (1) + f (�)).

There is a variety of possible extensions to this concept. One such direction is to con-
sider the sum of allocation costs; we address this in a related followup article [Bender
et al. 2015].

Related work. We now review the related work.

Dynamic memory allocation. There is an extensive literature on memory alloca-
tion [Knuth 1997; Robson 1971, 1974, 1977; Luby et al. 1996; Naor et al. 2000; Woodall
1974], where object reallocation is disallowed. There are upper and lower bounds on the
competitive ratio of the memory footprint that are roughly logarithmic in the number
of requests and in the ratio of the largest to smallest request. These articles gener-
ally analyze traditional strategies such as Best Fit, First Fit, and the Buddy System
[Knowlton 1965], but they also propose alternatives. Traditional memory-allocation
strategies often have analogs in bin-packing [Coffman, Jr. et al. 1983, 1993, 1997,

ACM Transactions on Algorithms, Vol. 13, No. 3, Article 38, Publication date: May 2017.

Cost-Oblivious Storage Reallocation 38:5

1997; Galambos and Woeginger 1995], but an enumeration of such results lies beyond
the scope of this article.

Memory allocation where reallocation is allowed appears often in the literature on
garbage collection [Jones et al. 2011]. There is a long and important line of literature
studying dynamic memory allocation with differing compaction mechanisms, exploring
the time/space trade-off between the amount of compaction performed and the total
memory used. Ting [1976] develops a mathematical model for examining this trade-off
for different compaction algorithms; Błażewicz and Nawrocki [1985] develop a “partial”
compaction algorithm for segments of two different sizes that reallocates only a limited
number of segments per compaction. More recently, Bendersky and Petrank [2012] and
Cohen and Petrank [2013] have more fully explored the trade-offs inherent in partial
compaction.

These articles on dynamic memory allocation with compaction are instances of stor-
age reallocation, as addressed in this article, where the reallocation cost is (typically)
linear: the cost of compaction is directly proportional to the amount of memory that is
moved. (These articles often address other problems that arise in garbage collection,
such as how to update pointers to memory that has moved.) For example, Bendersky
and Petrank [2012] show that when the cost function is linear, one can achieve con-
stant amortized reallocation cost with memory size that is within a constant-factor of
optimal.

In this article, by contrast, we focus on cost-oblivious algorithms that tolerate the
range of cost functions found in external storage systems. Cost obliviousness bears
a passing resemblance to similar notions in the memory hierarchy, particularly the
cache-oblivious/ideal-cache [Frigo et al. 1999; Prokop 1999], hierarchical memory
[Aggarwal et al. 1987], and cache-adaptive [Bender et al. 2014, 2016] models. With the
exception of the underlying paging [Sleator and Tarjan 1985], work in these models is
about writing algorithms that are memory-hierarchy universal rather than analyzing
resource allocation. Although we consider an online setting, even finding optimal
offline algorithms seems nontrivial.

Other related work. Storage reallocation has other applications besides databases.
For example, Fekete et al. [2012] address the storage reallocation problem in the context
of FPGAs, and Bender et al. [2009] give (not cost-oblivious) algorithms for constant
reallocation cost.

Sparse table data structures [Itai et al. 1981; Willard 1982, 1986, 1992; Katriel
2002; Bender et al. 2005; Itai and Katriel 2007; Bender et al. 2002; Bulánek et al.
2012; Bender and Hu 2007, 2006; Bender et al. 2016, 2016, 2006, 2017] also solve the
storage reallocation problem and are easily adapted to deal with different-sized objects
and linear reallocation cost. But they do so while maintaining the constraint that the
object order does not change, which makes the problem harder and the reallocation
cost correspondingly larger.

Scheduling/planning interpretation. The storage reallocation problem can be viewed
as a reallocation problem in scheduling/planning. In this interpretation, we have an
online sequence of requests to insert a new job j into the schedule or to delete an exiting
job j. Each job has a length w j and the rescheduling cost is f (w j). The goal is to main-
tain a uniprocessor schedule that (approximately) minimizes the makespan (latest
completion time of any job), while simultaneously guaranteeing the overall realloca-
tion cost is approximately minimized. We can abbreviate this scheduling problem as
1| f (w) realloc |Cmax, generalizing standard scheduling notation [Graham et al. 1979].
The goal is actually not to run the schedule but rather to plan a schedule subject to an
online sequence of changes to the scheduling instance.

We thus review related work in scheduling and combinatorial optimization. Several
articles explore related notions of scheduling reallocation (although to the best of our

ACM Transactions on Algorithms, Vol. 13, No. 3, Article 38, Publication date: May 2017.

38:6 M. E. Bender et al.

knowledge, not cost-universal scheduling reallocation). Bender et al. [2013] study re-
allocation scheduling with unit-length jobs having release times and deadlines. Their
reallocator maintains a feasible multiprocessor schedule while servicing inserts and
deletes.

In the area of robust optimization, the goal is to develop solutions for combinatorial
optimization problems that are (near) optimal, and that can be readily updated if
the instance changes. In this context, many articles have looked at the problem of
minimizing reallocation costs for specific optimization problems (e.g., Hall and Potts
[2004], Tamer Unal et al. [1997], and Fekete et al. [2012]). For example, Davis et al.
[2006] study a reallocation problem, where an allocator divides resources among a
set of users, updating the allocation as the users’ constraints change. The goal is to
minimize the number of changes to the allocation. As another example, Sanders et al.
[2009] look at the problem of assigning jobs to processors, minimizing the reallocation
as new jobs arrive. Jansen and Klein [2013] look at robust algorithms for online bin
packing that minimize migration costs. See Verschae [2012] for more details on robust
optimization.

Shachnai et al. [2012] explore a slightly different notion of reallocation for combi-
natorial problems. Given an input, an optimal solution for that input, and a modified
version of the input, they develop algorithms that find the minimum-cost modification
of the optimal solution to the modified input. A difference between their setting and
ours is that we measure the ratio of reallocation cost to allocation cost, whereas they
measure the ratio of the actual transition cost to the optimal transition cost, resulting
in a good solution. Also, we focus on a sequence of changes, which means we amortize
the expensive changes against a sequence of updates.

There also exist reoptimization problems, which address the goal of minimizing
the computational cost for incrementally updating the schedule [Ausiello et al. 2011;
Archetti et al. 2010; Ausiello et al. 2009; Archetti et al. 2003; Böckenhauer et al. 2006].
By contrast, in reallocation, we focus on the cost of reallocating resources rather than
the computational cost of generating the allocation.

2. FOOTPRINT MINIMIZATION

In this section, we give a cost-oblivious algorithm for footprint minimization in storage
reallocation. The footprint always has size at most (1 + ε)Vt, where Vt denotes the
volume, or total size, of all allocated objects at time t, that is, of the active objects
after the tth operation completes. A size-w object has an amortized reallocation cost
of O

(
f (w) · (1/ε) log(1/ε)

)
, where f (w) is the (unknown) cost for allocating an object of

size w.

THEOREM 2.1. For any constant ε with 0 < ε ≤ 1/2, there exists a cost-oblivious
storage-reallocation algorithm that is (1 + ε, O((1/ε) log(1/ε)))-competitive with respect
to Fsa, the class of monotonically increasing, subadditive cost functions.

Thus, the storage reallocation algorithm is within a constant factor of optimal for
any constant ε < 1/2.

Intuition and cost-function-specific algorithms. We begin by considering some
simple cases where the cost function is known in advance. First, suppose that the
reallocation cost is linear in the object size, that is, f (w) = w. A simple logging-and-
compressing strategy attains a (2, 2)-competitive algorithm for linear cost functions.
Specifically, allocate objects from left to right. Upon a deletion, leave a hole where the
object used to be. Whenever a deallocation causes the footprint to reach 2Vt, remove
all holes by compacting. The cost to reallocate the entire volume Vt is paid for by the
Vt ’s worth of elements that were deallocated since the last compaction.

ACM Transactions on Algorithms, Vol. 13, No. 3, Article 38, Publication date: May 2017.

Cost-Oblivious Storage Reallocation 38:7

Fig. 2. The layout of the data structure when the buffer segments are empty, with ε′ = 1/2. The light-gray
areas are the payload segments, and the dark-gray areas are the buffer segments. The orange rectangles are
objects currently in the data structure.

Logging and compressing does not work well for constant reallocation cost, that is,
f (w) = 1. To see why, suppose the deleted objects have size �, and the reallocated
elements have size 1. We may need to spend amortized �(�) reallocation cost per
deletion.

There do exist good reallocators for constant reallocation cost [Bender et al. 2009].
Conceptually, round the object sizes up to the next power of 2 to form size classes,
where objects have size 2i for i = 0, . . . , log �. Now group the objects by increasing
size. Between the ith and (i + 1)th size class, there is either a gap of size 2i or no gap.
To insert an object of size 2i, put the object into the gap after the ith size class, if one
exists, or displace a larger object to make space, otherwise. Then recursively reinsert
the larger object. The amortized reallocation cost is O(1), because the costs per unit
volume to displace the recursively larger objects form a geometric series.

It can be shown, however, that with linear reallocation cost this strategy is only
(2,�(log �))-competitive.

This section gives a single algorithm that works for f (w) = w, f (w) = 1, and all
other subadditive cost functions. The algorithm keeps the objects partially sorted by
size. Since the cost function is subadditive, small objects are the most expensive to
move per unit size. We therefore want to guarantee that when an object is inserted or
deleted, it can only trigger the movement of larger (less expensive per unit size) objects.
Specifically, small objects with total volume W will be able to cause the movements of
big objects with total volume O(W), but not the other way around. At the same time,
we need to avoid cascading reinserts, which can happen with the algorithm for unit
cost described above.

Overview and invariants. Objects are categorized into size classes; the ith size
class contains objects of size w, where 2i−1 ≤ w < 2i. Thus, there are �log �� + 1 size
classes. The value of � need not be known in advance. For size class i, Vt(i) denotes
the volume (total size) of all objects active at time t in size class i. If t is understood,
then we use V (i).

Intuitively, these size classes allow us to order objects by approximate size, which
helps make efficient deletes possible. To maintain our target makespan, we need to
reallocate an object when too many objects to its left are deleted. If objects to the right
are small and objects to the left are large, then reallocations are too expensive for most
cost functions. Within a size class, the ordering does not matter, since it only affects
the reallocation cost by a constant factor. We next explain that, in fact, we can even
further relax our ordering.

The array (address space) is divided into �log �� + 1 regions, as illustrated in
Figure 2. The ith region is dedicated to the ith size class and comprises two subre-
gions, a payload segment followed by a buffer segment. The ith payload segment
contains only objects belonging to the ith size class, whereas the ith buffer segment
may contain objects that are in the ith size class or smaller size classes.

ACM Transactions on Algorithms, Vol. 13, No. 3, Article 38, Publication date: May 2017.

38:8 M. E. Bender et al.

Fig. 3. Example of a flush, starting from Figure 2. The lavender rectangles are updates to the data structure,
with parentheses and light shading denoting a delete or delete record. (i) The state after insert A, delete B,
insert C, insert D, and delete E in that order. (ii)–(v) show a flush that occurs when inserting F. The heavy
outline shows the region affected by the flush, that is, size classes 2 and 3. (ii) The new boundaries for the
2nd and 3rd size class. (iii) The state after moving buffered objects out of the way and dropping deleted
objects. (iv) The state after rearranging the payload segments. (v) The state after putting all buffered objects
to their proper locations. Observe that for the flushed classes, the buffers are now empty.

Whenever (potentially large) reallocations are taking place, an overflow segment is
used for temporarily rearranging the objects, as described later. The overflow segment
is placed at the end of the array.

INVARIANT 2.2. The following properties are maintained throughout the execution of
the algorithm:

(1) The ith region (i = 1, . . . , �log �� + 1) comprises the ith payload and ith buffer
segment.

(2) The (�log ��+2)th region, the overflow segment, stores elements temporarily during
reallocation.

(3) The ith payload segment only stores elements from the ith size class.
(4) The ith buffer segment only stores elements from size classes � ≤ i.

Allocating and deallocating. When a new size-w object that belongs to a size class
i is allocated, it is stored at the end of the earliest buffer j ≥ i that has sufficient un-
occupied space. (Recall that this object cannot be inserted into any buffer in a segment
less than i.)

When there is not enough available space in any of these buffers, a buffer flush
operation is triggered (see Figure 3), after which the object is inserted. During a buffer
flush, all objects in some suffix of buffers get moved to their proper payload segments
and the segment and region boundaries get redefined.

If the new size-w object belongs to a larger size class than any other active object,
then we instead create a new payload segment and buffer segment for the new size
class located immediately after the last size class’s segment, increasing the total space
used by at most an additive w + ε′w, for some constant ε′. (The overflow segment is
empty, because it is only used during a buffer flush, and hence implicitly resides after
the new size class.)

ACM Transactions on Algorithms, Vol. 13, No. 3, Article 38, Publication date: May 2017.

Cost-Oblivious Storage Reallocation 38:9

When a size-w object is deleted, it leaves a hole until the next buffer flush occurs.
A dummy deletion request is added to the buffer and forced to consume w space. This
buffered dummy request is not freed until the next buffer flush. Since both inserting
and deleting a job of size w reduces the space in the buffer by w, we can analyze
insertions and deletions together.

INVARIANT 2.3. The overflow segment is empty except during buffer flush operations.

INVARIANT 2.4. When a flush of the ith buffer segment occurs at time t, the object and
segment boundaries move so:

(1) the space occupied by the ith payload segment after the buffer flush completes is
exactly Vt(i), and

(2) the space occupied by the ith buffer segment after the buffer flush completes is
�ε′Vt(i)�, for ε′ = �(ε).

Immediately following this flush, the size-�ε′Vt(i)� buffer contains no objects.

As described in this section, Vt(i) immediately increases to count the new object,
but the object is not yet placed in the array. Next, the flush occurs, and finally the
new object is placed in the array. Our extension in Section 3 places the object before
performing the flush; this extension requires an additive � working space during the
flush procedure.

Buffer flush. A buffer flush updates the segment boundaries in a suffix of regions,
moving all objects to their proper payload segments, and leaving all buffer segments
empty to accommodate future insertions.

To execute a buffer flush, first determine the boundary size class b and then flush
all buffers for size classes i ≥ b. The value b is defined as the maximum value such that
all objects in buffers i ≥ b and the object being inserted/deleted belong to size classes at
least b. To determine b, iterate from the largest to the smallest region, examining every
object in the region’s buffer. If any object belongs to a size class s < b, then update b
with the size class s. This continues until reaching a size class b, where no object from
a smaller size class has been encountered.

To flush the size classes i ≥ b at time t, first calculate Vt(i) for all i ≥ b. The goal is
to redistribute these size classes to take space at most S = (1 + ε′)

∑
i≥b Vt(i), that is,

space Vt(i) for the ith payload segment and �ε′Vt(i)� for the ith buffer, while moving all
objects from buffers into payload segments.

A flush can be implemented to include at most two moves per object in the flushed
size classes.

(1) First, identify the new array suffix of size S to accommodate payload and buffer
segments. Temporarily move all objects from buffer segments to empty space im-
mediately after this suffix (or after the current suffix, if the current suffix is longer
due to deletes), removing any dummy delete records from buffers. These objects
make up the overflow segment. This first step increases space usage by at most∑

i≥b ε′Vt(i).
(2) Next, iterate over payload segments from smallest to largest, moving objects as

early as possible, thus removing any gaps left by deleted objects or emptied buffers.
At the end of this step, all the objects are packed as far left as possible with no
gaps, beginning at the start of region b.

(3) Then, iterate over payload segments from largest to smallest, moving each object
to its final destination in the redistributed array (which is no earlier than its
current location). The final destination can be determined by looking at the values

ACM Transactions on Algorithms, Vol. 13, No. 3, Article 38, Publication date: May 2017.

38:10 M. E. Bender et al.

{Vt(i)}; this step reintroduces gaps to accommodate any not-yet-placed objects in
the overflow segment and the empty size-�ε′Vt(i)� buffers.

(4) Finally, iterate over all objects in the overflow segment, placing them in their final
destinations at the end of the appropriate payload segments.

Analysis. The proof of Theorem 2.1 follows from Lemmas 2.5 and 2.6 given below, by
fixing ε′ = �(ε) appropriately. Lemma 2.5 states that the space used is 1 + O(ε′) times
the optimal space usage. Lemma 2.6 states that the reallocation cost is no worse than
O((1/ε′) log(1/ε′)) times the optimal reallocation cost.

LEMMA 2.5. After processing the first t allocation/deallocation requests, the space
used by the storage-reallocation algorithm is (1 + O(ε′))V , where V = ∑

i Vt(i).

PROOF. Let fi ≤ t be the previous time the ith buffer was flushed. The space used
by the buffers and payload segments is at most (1 + ε′)

∑
i V fi (i) by construction, and it

may grow to (1 + O(ε′))
∑

i V fi (i) during the present buffer flush.
To prove the lemma, we need only bound the difference between

∑
i V fi (i) and∑

i Vt(i). The difference is accounted for by those objects in buffers (including delete
records), which amount to at most an ε′ ∑

i V fi (i) total volume of objects. Thus, we have
‖∑i Vt(i) − ∑

i V fi (i)‖ ≤ ε′ ∑
i V fi (i).

The worst-case-ratio overhead occurs when all buffered objects are deletions, in which
case

∑
i Vt(i) ≥ (1 − ε′)

∑
i V fi (i).

Thus, at most (1 + O(ε′))
∑

i V fi (i) space stores at least (1 − ε′)
∑

i V fi (i) active ob-
jects. Observing that (1 + O(ε′))/(1 − ε′) = 1 + O(ε′) for ε′ ≤ 1/2 completes the
proof.

LEMMA 2.6. For monotonically increasing, subadditive cost functions f , the amortized
cost of inserting or deleting an object of size w is O(f (w) · (1/ε) log(1/ε)).

PROOF. Consider a buffer-flush operation, and let b be the boundary size class (i.e.,
all size classes i ≥ b have their buffers flushed). There are two cases:

Case 1: The ith buffer contains �(ε′V (i)) volume of objects, for concreteness, say at
least ε′V (i)/2 volume.

Case 2: The ith buffer is underfull, that is, contains less than ε′V (i)/2 volume. Case 2
occurs because of roundoff. Specifically, ε′V (i) may not be large enough to accommodate
even one object in size-class i.

We first deal with Case 1. We need to show that the initial allocation cost of objects
in the buffer is sufficient to pay for the reallocation cost of objects in the payload
segment. Since the objects in the buffer belong to the ith or earlier size classes, they
can each have size at most 2i. The cost per unit size, f (x)/x, is nonincreasing, so the
cost of allocating the objects in the buffer is at least �((f (2i)/2i)(ε′V (i))). Since f is
subadditive, we have f (2i) = O(f (2i−1)), which implies that this buffer cost is at least
�((f (2i−1)/2i−1)(ε′V (i))). If we charge each buffered object for �(1/ε′) reallocations, then
it follows that we can afford the total cost of at most (f (2i−1)/2i−1)V (i) to reallocate all
objects in the payload segment. This case is completed by observing that each object is
only flushed once: after an object moves to the payload segment, it stays there until it
is deallocated.

We next deal with Case 2, where buffer i is underfull. Buffer i participates in the
buffer-flush operation, because some object belonging to size class i′ ≤ i is placed in
some buffer for size class j > i. We charge that object for flushing any underfull buffers
between size class i′ and size class j. (There may be many such objects, which only
decreases the cost per object—we pessimistically charge only a single object.)

The main question, then, is: what is the maximum reallocation cost due to underfull
buffers that can be charged against an object in size-class i′? Size-class i may only

ACM Transactions on Algorithms, Vol. 13, No. 3, Article 38, Publication date: May 2017.

Cost-Oblivious Storage Reallocation 38:11

be charged against the object if 2i′
> ε′V (i)/2. This implies that V (i) = O(2i′

/ε′), and
hence the cost of moving every object in size-class i is at most O(1/ε′) times the cost
of allocating a single object in size-class i′. Because each successive size class doubles
in size, and a size class only has a payload segment (and buffer segment) if there is at
least one object in the size class, only the O(log(1/ε′)) nearest size classes may satisfy
2i′

> ε′V (i)/2—in particular, ε′2i′+�log(1/ε′)�+1/2 ≥ 2i′
, and hence if any larger size-class

is underfull, it will not be “skipped over” by an object in size-class i′.
To conclude, buffered objects in size-class i′ may be charged for O(1/ε′) reallocations

in O(log(1/ε′)) different size classes, for a total cost of O((1/ε′) log(1/ε′)) allocations.

Corollary: Defragmenting/Sorting

A corollary of cost-oblivious storage reallocation is a cost-oblivious defragmentation al-
gorithm, that is, a cost-oblivious algorithm for sorting the objects while simultaneously
respecting constraints on the space usage.

We first compare with naı̈ve defragmentation. If 2V working space is allowed, then
defragmentation is trivial with two movements per object. First pack the objects into
the rightmost V space, using one move per object. Then place each object directly in its
final destination within the leftmost V region of space.

The following theorem shows that defragmentation is possible even using (1+ε)V +�
space by applying cost-oblivious storage reallocation as a black box.

THEOREM 2.7. For any 0 < ε ≤ 1/2, there exists a cost-oblivious defragmentation
algorithm that takes as input (1) an arbitrary comparison function, (2) a set of objects
with volume V , and (3) a current allocation of the objects using space at most (1 + ε)V .
The algorithm sorts the objects according to the comparison function, subject to:

—the total space usage at any time never exceeds (1 + ε)V + � space, and
—the total cost is at most O((1/ε) log(1/ε)) times the cost to allocate all of the objects.

PROOF. First crunch the objects into the rightmost V space, leaving a size-�εV � prefix
of the array empty. We reserve this prefix to run the cost-universal storage-reallocation
algorithm. Starting with the leftmost object in the suffix, remove it from the suffix,
store it temporarily in the � additional space, and then insert it into the prefix using
cost-universal storage reallocation. Since the storage reallocation guarantees at most
(1 + ε)W space usage, for W total volume of objects in the prefix, at no point does the
prefix of size at most (1 + ε)W overlap the suffix of size (V − W). When this process
completes, the suffix is empty and all objects are in the cost-universal-storage data
structure.

Next, move elements back to the suffix in reverse sorted order. Specifically, delete
each object from the prefix (using the cost-universal storage-reallocation algorithm),
which compacts the space used, and place the object just before its successor in
the suffix. Again, at any time, if W is the remaining volume of objects in the
prefix, the prefix uses at most (1 + ε)W space, and the suffix uses exactly V − W
space, so the prefix does not overlap the suffix.

Note that the additional � working space is unavoidable when reallocating large
objects. To see this, consider a single size-� object. This object cannot be moved unless
the target location is not overlapping with the original location. That is, if we have less
than 2� space to work with, the object can never be moved as every target location
overlaps its current location.

ACM Transactions on Algorithms, Vol. 13, No. 3, Article 38, Publication date: May 2017.

38:12 M. E. Bender et al.

3. FOOTPRINT MINIMIZATION IN A DATABASE CONTEXT

This section extends the storage-reallocation algorithm to take into account issues that
arise in databases: durability and blocking. To provide durability, we extend the algo-
rithm to work with a checkpointing mechanism. Specifically, we show how to complete
a buffer flush in O(1/ε) checkpoints. During a flush, the memory footprint increases by
an additive � term, up to (1 + ε)V + �, where V is the total length of all active objects,
and � is the length of the longest object. The additive � is unavoidable due to the fact
that when a large object is moved, its new location cannot overlap its old location.

To prevent updates from blocking for too long, we present a (partially) deamortized
version. The deamortized data structure has the same amortized reallocation cost
and memory footprint as the original, but it also has a worst-case reallocation cost of
O((1/ε)w f (1) + f (�)) for inserting/deleting a size-w object. That is, on each update, the
total length of jobs reallocated is roughly proportional to the size of the object being
inserted/deleted. Viewed differently, the deamortized bound shows that the desired
footprint bound can be maintained with nonblocking updates, as long as the updates
arrive infrequently enough that the previous update has been handled, that is, as long
as the previous update of size w is followed by a gap of size �((1/ε)w f (1) + f (�)).

3.1. Overview of the Checkpointing Model

Recall that moving an object updates the map that is maintained between logical and
physical addresses. From time to time, and specifically during a checkpoint, this map
is written to disk, so a database that is recovering from a crash has access to the
updated map. Suppose an object is reallocated. Then the map must be updated. But
if a crash occurs before the next checkpoint, the updated map will not be available to
the database on recovery. Therefore, we must maintain two copies of the data—at the
old and new locations—until the next checkpoint has completed. Only then is it safe to
assume that the database knows, in a durable fashion, the new location of the data.

The consequence for designing a reallocator is that from time to time, the database
will perform a checkpoint, and all the space that was freed since the last checkpoint
will become available. The requirement that moved data reside in two locations until
the next checkpoint means that the system needs an enforcement mechanism. This
mechanism guarantees that if our algorithm would like to write to a freed but not
checkpointed location it will block. Therefore, a reallocation algorithm is better if it
requires fewer checkpoints to compete. For example, if we were to write the data to
completely new locations, the algorithm would not block on any checkpoints, because we
would not be reusing any space. However, the competitive ratio of the footprint would
be at least two. We show below that we can achieve our bound of (1 + ε) competitive
ratio while blocking on at most O(1/ε) checkpoints.

The timing of checkpoints is dependent on many considerations beyond the needs for
reallocation, so we assume that checkpoints are initiated by the system, rather than
our algorithm. There are other models of checkpointing, such as log-trimming through
incremental checkpointing. A complete treatment of checkpointing is beyond the scope
of this article, though it would be interesting to see how different types of checkpointing
interact with reallocation.

3.2. Flushing with Checkpoints

The goal of the flush here is identical to that in Section 2, but the implementation details
differ to accommodate the checkpointing model. Namely, the space used increases by an
additive �, and the flush itself proceeds in several rounds with checkpoints in between.
Another improvement here is that an inserted element gets inserted before the flush
completes, whereas in Section 2 we assumed for simplicity that the insert blocks until

ACM Transactions on Algorithms, Vol. 13, No. 3, Article 38, Publication date: May 2017.

Cost-Oblivious Storage Reallocation 38:13

the flush completes. The memory footprint at the end of the flush is identical to that of
the previous algorithm.

Inserting (allocating) and deleting (deallocating). Since objects only move dur-
ing a buffer flush, the insert and delete procedure is almost identical to Section 2. The
only difference here is that we insert the object before triggering a flush.

To insert an object, place it in the appropriate buffer segment as before. If there is
insufficient space to place the object in any following buffer segment, then place it at
the end of the last buffer segment (filling and exceeding the buffer capacity) and trigger
a flush. When deleting an object, insert a dummy delete request as in Section 2. If this
delete request would overflow the last buffer, then trigger the flush without using space
for the dummy delete request.

Buffer flush. A flush proceeds as follows. First, identify the boundary size class b as
before. Recall that the flush proceeds on size classes i ≥ b. Let L denote the endpoint
of the last object before the insert/delete that triggers the flush, that is, if the total
space is S including a newly inserted size-w object, then L = S − w. (Note that this
detail of subtracting off the newly inserted object is important to obtain a space usage
of (1 + ε)V +� throughout the flush rather than (1 + ε)V + O(�).) Let L′ be the desired
memory footprint after the flush, but subtracting off the size of any flush-triggering
insert; similar to the procedure for “S” discussed in Section 2, L′ can be calculated by
first computing

∑
i≥b(Vt(i)+�ε′Vt(i)�). That is, if the final data structure should take S′

space after the flush, then L′ = S′ − w, where w is the size of the last insert if the flush
was triggered by an insert. Let B be the total space occupied by the buffers involved in
the flush. Move all objects from buffer segments i ≥ b to the end of the array, starting
from location (max{L, L′}+B+�). The important observation here is that L+� exceeds
the location of the newly inserted object, so none of the target locations overlap any of
the current objects. Hence, all of these movements can be performed within a single
checkpoint. The order in which the buffered objects are moved does not matter. This
step of the flush is similar to Section 2, except the starting location is up to B+ � slots
later in the array.

Next, iterate over payload segments from largest to smallest, moving objects as late
as possible in the array ending at location (max{L, L′} + B+�). After this step, flushed
payload segments are packed as late as possible before location (max{L, L′} + B + �),
and flushed buffer segments (including the newly inserted object) are packed as early
as possible after (max{L, L′} + B+ �).

This payload-packing step, however, moves objects to locations in the array that may
have previously been occupied, which would violate the checkpointing model. Instead,
break these movements into phases with checkpoints between each phase. Move as
many objects as possible before exceeding B + � volume in each phase. Since the
largest object has size �, the minimum amount moved is B+ 1. As we shall prove, the
movements within a phase do not overlap, and the total number of phases is O(1/ε′).
Aside from checkpointing, this step differs from the version in Section 2 in that objects
are packed later in the array rather than earlier, and hence the movements iterate
from largest-to-smallest size class rather than smallest-to-largest. The reason for this
change is to take advantage of the B + � working space available at the end of the
region.

Next, iterate over payload segments from smallest to largest, moving the objects
exactly where they should go in the array. This step, again, may move objects to space
that was previously occupied, so we again break it into phases consisting of the next
B+ 1 to B+ � target locations with a checkpoint following each phase.

Finally, move the buffered elements to their target locations. Since all buffered el-
ements are currently located after (max{L, L′} + B + �), and all target locations are

ACM Transactions on Algorithms, Vol. 13, No. 3, Article 38, Publication date: May 2017.

38:14 M. E. Bender et al.

before L′ + �, none of these movements overlap, and they can be performed within a
single checkpoint.

Analysis. Note that the number of reallocations is similar to that in Section 2, with
the only difference being one reallocation for the flush-triggering item. Hence, the
reallocation cost of Lemma 2.6 holds for this version of the algorithm. The space used
after a flush completes is also identical to Section 2. It remains to prove three facts:
(1) the space used during a flush is (1 + O(ε′))V + �, where V is the total volume
of active jobs, (2) the object movements between checkpoints only move objects to
nonoverlapping locations, and (3) the number of checkpoints is O(1/ε′) per flush.

LEMMA 3.1. While processing any allocation/deallocation request, the total footprint
used by the algorithm is at most (1 + O(ε′))V + �, where V denotes the total volume of
all currently active objects.

PROOF. Let Vbefore and Vafter denote the total volume of objects before and after
the operation, respectively. Let Sbefore and Safter denote the total space of the data
structure before and after the operation, respectively. According to Lemma 2.5, we
have Sbefore ≤ (1 + O(ε′))Vbefore and Safter ≤ (1 + O(ε′))Vafter. The question is what
happens during the operation, notably during a flush operation.

Suppose the flush is triggered by a size-w insertion. The volume during the flush is,
thus, V = Vbefore +w = Vafter. The space used to store all buffered objects, including the
newly inserted object, is at most w + B, where B is the total amount of space devoted to
buffers before the flush. Note that since the buffers are sized to less than an ε′ fraction
of the total space, we have B ≤ ε′Sbefore.

Case 1: Sbefore ≥ Safter. Then these objects are written at an offset of (Sbefore + B+ �),
meaning that the total space during the flush is at most

(Sbefore + B+ �) + (w + B)
≤ (1 + 2ε′)Sbefore + w + � // upper bound on B
≤ (1 + 2ε′)

[
(1 + O(ε′))Vbefore

] + w + � // Lemma 2.5

≤ (1 + O(ε′))Vbefore + w + � // larger const in big-O
≤ (1 + O(ε′))(Vbefore + w) + �

= (1 + O(ε′))V + �.

Case 2: Sbefore < Safter. Then these objects are written at an offset of (Safter −w)+ B+�.
And the total space during the flush is at most Safter + 2B+ � ≤ (1 + O(ε′))Vafter + � =
(1 + O(ε′))V + �, where the steps follow from analogous steps in Case 1.

In the case of a deletion, the argument is similar, except w becomes 0 in all the ex-
pressions, and V = Vbefore throughout the flush. That is, the deleted object is considered
active until the flush completes.

LEMMA 3.2. During a single phase of object movements between two checkpoints, all
object starting locations are disjoint from all object ending locations.

PROOF. First, consider the payload-packing step, where payload segments are packed
to the right. At the start of the jth phase, let � j denote the last cell occupied by the
payload segments that have yet to be packed, and let rj denote the first occupied cell
later than � j . We claim that at the start of each phase rj ≥ � j + B+ �, which we shall
prove by induction. If true, then the claim implies disjointness: if the space between
rj and � j is at least B + �, then we can pack up to B + � volume of jobs in front of rj
during the jth phase before overlapping the ending position of jobs at � j .

We prove the claim by induction. The claim holds initially, because �0 ≤ L and
r0 ≥ L+ B+ �. For the inductive step, observe that if X volume of objects are moved in

ACM Transactions on Algorithms, Vol. 13, No. 3, Article 38, Publication date: May 2017.

Cost-Oblivious Storage Reallocation 38:15

phase j, then � j+1 ≤ � j − X and rj+1 = rj − X. Combined with the inductive assumption
that rj ≥ � j +B+�, we get rj+1 ≥ (� j +B+�)−X ≥ ((� j+1+X)+B+�)−X = � j+1+B+�.

We next consider the unpacking step, where the payload segments are moved to their
final positions. Let � j denote the last cell occupied by unpacked payload segments at
the start of the jth phase of movements, and let rj denote the first cell occupied by the
yet-to-be unpacked payload objects. We claim that � j + B + � ≤ rj (but this time, we
shall prove it by contradiction). If the claim holds, then we can afford to increase � j by
B+ � in each phase without violating the disjointness.

To prove the claim, suppose for the sake of contradiction that � j > rj − B−�, and let
X be the total volume remaining in the packed region. Then the final position of the last
payload segment can end no earlier than � j + X > rj + X − B− � after the unpacking,
and hence the space desired by these payload segments is at least L′ > (rj + X)− B−�.
We also have rj + X = max{L′, L} + B + � as the offset at which the buffered objects
were moved, which we simplify to rj + X ≥ L′ + B + �. Combining these two facts, we
get L′ > (rj + X) − B − � ≥ (L′ + B + �) − B − � = L′, that is, L′ > L′, which is a
contradiction.

LEMMA 3.3. The number of checkpoints occurring during a flush is O(1/ε′).

PROOF. The checkpoints are dominated by the packing and unpacking steps. Let P(i)
denote the total space of the ith payload segment at the time of the flush, that is, the
volume of jobs that were in this size class the last time a flush occurred. Then, the
total size of flushed buffers is B = ∑

i≥b�ε′ P(i)�, and the total space of the region being
flushed is S = ∑

i≥b(P(i) + �ε′ P(i)�). Since each movement phase does more than B
work, showing that B = �(ε′S) would be sufficient. The only difficulty is the floor in
the expression, so we shall consider the case of large P(i) and small P(i) separately.

Case 1: sufficiently large P. More precisely, suppose B = ∑
i≥b�ε′ P(i)� ≥∑

i≥b ε′ P(i)/2. Then B = �(ε′S), since
∑

i≥b P(i) ≥ S/2 for ε < 1.
Case 2: small P. Suppose B <

∑
i≥b ε′ P(i)/2. Note that B = ∑

i≥b�ε′ P(i)� ≥∑
i≥b ε′ P(i) − �(log �), since there are only �(log �) size classes. It follows that

B <
∑

i≥b ε′ P(i)/2 implies
∑

i≥b ε′ P(i) = O(log �), and hence S = O((1/ε′) log �). The al-
gorithm tries to move as many objects as it can until exceeding B+� volume, and hence
every consecutive pair of phases moves at least �/2 = �(log �) = �(ε′S) volume.

3.3. Deamortizing the Data Structure

As described so far, the data structure is amortized—the average reallocation cost per
update is low, but on some updates every active object may need to be reallocated
(i.e., when all size classes are involved in a flush). This section improves the worst-
case reallocation cost of a size-w update to O((1/ε)w f (1) + f (�)), without hurting the
amortized update cost or the maximum footprint.

Note that the deamortization described here builds on the checkpointing modifica-
tion, yielding a worst-case O(1/ε) checkpoints per operation.

Modifications to the algorithm. The main idea of our deamortization is that if
a buffer flush performs a total of X reallocations by volume, then this work is spread
across the subsequent ε′X updates by volume. The question, however, is where to place
new objects that are inserted during a flush. If, for example, an insert could trigger
a smaller flush while a larger flush is ongoing, then that would present even more
challenges. We tackle these problems by adding two more buffers to the data structure
and modifying the flush, which serve to avoid the issue of nested flushes.

Augment the data structure to include one size-�ε′V f � buffer, called the tail buffer,
following all the size-class segments, where V f is the total volume of all jobs active at

ACM Transactions on Algorithms, Vol. 13, No. 3, Article 38, Publication date: May 2017.

38:16 M. E. Bender et al.

the start of the previous buffer flush. The tail buffer is like any other buffer: objects
are only placed in the tail buffer if all earlier buffers are too full, and a buffer flush is
only triggered once the tail buffer becomes full. The point of the large tail buffer is to
enable the flush to complete before triggering another flush.

When a flush is triggered, calculate the desired space and the temporary working
space as before; however, the space is slightly larger now due to the �ε′V � space neces-
sary for the tail buffer. We treat all space immediately following the temporary working
space as another buffer called the log.

The flush process resembles the previous flush process (with or without checkpoint-
ing), except that:

(1) Objects may be inserted/deleted during a flush. These updates are placed at the
end of the log.

(2) The work of the flush is spread across these subsequent updates. Specifically, on
an insertion/deletion of a size-w object, perform (just over) the next (4/ε′)w steps
of the flush by volume. Since a fractional object cannot be moved, the amount of
volume processed may be as high as (4/ε′)w + �.

(3) There is an extra phase at the end. During this phase, all objects in the log are
moved to their appropriate buffers, that is, they are re-inserted/re-deleted. This
phase proceeds in order from the beginning of the log. Updates may continue to
be recorded at the end of the log during this phase. Since the volume moved is
significantly larger than the size of the update, the re-insertion/re-deletion will
eventually “catch up” to the end of the log, at which point the flush terminates and
the log disappears.

Analysis. To show correctness of the new flush protocol, we argue that the log is
drained completely before another flush gets triggered, that is, before the tail buffer
fills. Note that if the last update during a flush involves a large object, that update may
finish the previous flush and trigger the next one. The point is only that the tail buffer
cannot overflow before that time.

LEMMA 3.4. Let V f be the total volume of active objects at the time a flush is triggered.
For any ε′ < 1, the flush completes by the time the subsequent volume of updates first
exceeds ε′V f .

PROOF. In the worst case, a flush may move every object twice. Specifically, the
buffered elements are moved out of the buffers temporarily, then to their final location.
Similarly, the payload segments are packed once and then unpacked to their final
location. The total volume of reallocations of preexisting elements is thus at most 2V f .
(Any delete records do not have to be reallocated; these are just destroyed.)

It follows that by the time (ε′/2)V f volume of updates are logged, all preexisting
elements have been moved to their final locations. But this analysis does not take into
account the elements logged during the flush. The next (ε′/2)V f volume of updates
more than suffice to move all objects from the log to a buffer.

The following lemmas bound the space and reallocation costs of the updated algo-
rithm.

LEMMA 3.5. After each allocation/deallocation request is processed, the total space
used by the data structure is at most (1+ O(ε′))V +�, where V denotes the total volume
of all currently active objects. If a flush is not in progress, then this space improves to
(1 + O(ε′))V .

ACM Transactions on Algorithms, Vol. 13, No. 3, Article 38, Publication date: May 2017.

Cost-Oblivious Storage Reallocation 38:17

PROOF. The only significant difference in space between this algorithm and the
amortized one is the tail buffer and the log. The tail buffer has size at most ε′V f , where
V f was the volume at the last flush. According to Lemma 3.4, the log also has size at
most ε′V f . Combined, the total increase to space is an additive O(ε′)V f . To complete
the argument, we need only argue that V f = �(V), where V is the current volume of
active jobs, which is done in the proof of Lemma 2.5.

LEMMA 3.6. For subadditive cost function f , the amortized cost of inserting or deleting
a size-w object is O(f (w) · (1/ε′) log(1/ε′)). Moreover, the worst-case cost of an insert or
delete is O((1/ε′)w f (1) + f (�)).

PROOF. The worst-case upper bound follows by construction. The algorithm only
reallocates (4/ε′)w volume of objects per update, plus up to one last object to exceed
this volume. In the worst case, these objects are size-1 objects except the last, which is
size-�, for a total cost of O((1/ε)w f (1) + f (�)).

As for the amortized bound, adding a larger buffer to the data structure only improves
the amortized cost. Specifically, the proof of Lemma 2.6 relied on lower bounding the
volume of buffered objects, so the same analysis applies once an object is placed in a
buffer. The deamortized data structure has an additional reallocation for each object
that is placed in the log, moving it from the log to a buffer, but this only occurs once
per object.

Lower bound on worst-case cost. Note that �(f (�)) is a lower bound on the worst-
case reallocation cost when maintaining a (1 + ε)V footprint size, as exhibited by the
following lemma. It is not obvious whether �(w f (1)) is also a lower bound on the
worst-case reallocation cost of any algorithm. If so, then our deamortized structure’s
worst-case cost would be asymptotically optimal for constant ε. Although not a general
lower bound, an �(w f (1)) worst-case cost appears to be unavoidable for any algorithm
that stores “enough” small objects after large objects. (And storing objects out of order
in this way seems crucial for obtaining a cost-oblivious algorithm.) Informally, deleting
a size-w object leaves a large hole in the array. To maintain the desired footprint, this
hole must be filled by later objects. If all later objects are small (size-1), then a size-w
delete may cause �(w) size-1 objects to move.

LEMMA 3.7. For any reallocation algorithm that maintains a footprint of (1 + 1/2)V
and subadditive cost function f , there exists an update sequence such that at least
one update has a reallocation cost of �(f (�)). This lower bound applies even if the
reallocation algorithm knows f and the full update sequence.

PROOF. Here is the sequence. First insert one size-� object. Then insert � size-1
objects. Then delete the size-� object. There are two cases to show the lower bound.

Case 1: some small-object insertion causes the large object to be reallocated. Then
that insert has a reallocation cost of at least f (�).

Case 2: the large object does not get reallocated. Then the large object must end
before position (3/2)� to achieve the footprint bound, and hence there must be at
least �/2 small objects appearing after the large one. When deleting the large object,
those small objects must move to restore the (3/2)� footprint bound. Hence, the cost of
deleting the large objects is �(� · f (1)) ⊂ �(f (�)) for subadditive f .

REFERENCES

Alok Aggarwal, Bowen Alpern, Ashok K. Chandra, and Marc Snir. 1987. A model for hierarchical memory.
In Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC’87). 305–314.

Claudia Archetti, Luca Bertazzi, and Maria Grazia Speranza. 2003. Reoptimizing the Traveling Salesman
Problem. Networks 42, 3 (2003), 154–159.

ACM Transactions on Algorithms, Vol. 13, No. 3, Article 38, Publication date: May 2017.

38:18 M. E. Bender et al.

Claudia Archetti, Luca Bertazzi, and M. Grazia Speranza. 2010. Reoptimizing the 0-1 knapsack problem.
Disc. Appl. Math. 158, 17 (2010), 1879–1887.

Giorgio Ausiello, Vincenzo Bonifaci, and Bruno Escoffier. 2011. Complexity and approximation in reopti-
mization. In Computability in Context: Computation and Logic in the Real World, S. Barry Cooper and
Andrea Sorbi (Eds.). World Scientific, Singapore, 101–129.

Giorgio Ausiello, Bruno Escoffier, Jérôme Monnot, and Vangelis Th. Paschos. 2009. Reoptimization of mini-
mum and maximum traveling salesman’s tours. J. Disc. Alg. 7, 4 (2009), 453–463.

Michael A. Bender, Jon Berry, Rob Johnson, Thomas M. Kroeger, Samuel McCauley, Cynthia A. Phillips,
Bertrand Simon, Shikha Singh, and David Zage. 2016. Anti-persistence on persistent storage: History-
independent sparse tables and dictionaries. In Proceedings of the 35th ACM Symposium on Principles
of Database Systems (PODS’16). 289–302.

Michael A. Bender, Richard Cole, Erik D. Demaine, and Martin Farach-Colton. 2002. Scanning and travers-
ing: Maintaining data for traversals in a memory hierarchy. In Proceedings of the 10th European Sym-
posium on Algorithms (ESA’02). 139–151.

Michael A. Bender, Erik D. Demaine, Roozbeh Ebrahimi, Jeremy T. Fineman, Rob Johnson, Andrea Lincoln,
Jayson Lynch, and Samuel McCauley. 2016. Cache-adaptive analysis. In Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA’16). 135–144.

Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. 2005. Cache-oblivious B-Trees. SIAM J.
Comp. 35, 2 (2005), 341–358.

Michael A. Bender, Roozbeh Ebrahimi, Jeremy T. Fineman, Golnaz Ghasemiesfeh, Rob Johnson, and Samuel
McCauley. 2014. Cache-adaptive algorithms. In Proceedings of the 25th ACM-SIAM Symposium on
Discrete Algorithms (SODA’14). 958–971.

Michael A. Bender, Martin Farach-Colton, Sándor P. Fekete, Jeremy T. Fineman, and Seth Gilbert. 2013.
Reallocation problems in scheduling. In Proceedings of the 25th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA’13). 271–279.

Michael A. Bender, Martin Farach-Colton, Sándor P. Fekete, Jeremy T. Fineman, and Seth Gilbert. 2014. Cost-
oblivious storage reallocation. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (PODS’14). 278–288.

Michael A. Bender, Martin Farach-Colton, and Miguel A. Mosteiro. 2006. Insertion sort is O(n log n). Th.
Comp. Syst. 39, 3 (2006), 391–397.

Michael A. Bender, Sándor P. Fekete, Tom Kamphans, and Nils Schweer. 2009. Maintaining arrays of con-
tiguous objects. In Proceedings of the 17th International Symposium on Fundamentals of Computation
Theory (FCT’09). 14–25.

Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, Tsvi Kopelowitz, and Pablo Montes. 2017. File main-
tenance: When in doubt, change the layout!. In Proceedings of the 28th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’17). 1503–1522.

Michael A. Bender and Haodong Hu. 2006. An adaptive packed-memory array. In Proceedings of the 25th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS’06). 20–29.

Michael A. Bender and Haodong Hu. 2007. An adaptive packed-memory array. ACM Trans. Database Syst.
32, 4 (Nov. 2007), 26:1–26:43.

Michael E. Bender, M. Farach-Colton, Sándor P. Fekete, J. Fineman, and S. Gilbert. 2015. Cost-oblivious
reallocation for sum of completion times. In Proceedings of the 27th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA’15). 143–154.

Anna Bendersky and Erez Petrank. 2012. Space overhead bounds for dynamic memory management with
partial compaction. ACM Trans. Program. Lang. Syst. 34, 3 (2012), 13.

Jacek Błażewicz and Jerzy R. Nawrocki. 1985. Dynamic storage allocation with limited compaction-
complexity and some practical implications. Discr. Appl. Math. 10, 3 (1985), 241–253.

Hans-Joachim Böckenhauer, Luca Forlizzi, Juraj Hromkovic, Joachim Kneis, Joachim Kupke, Guido Proietti,
and Peter Widmayer. 2006. Reusing optimal TSP solutions for locally modified input instances. In
Proceedings of the 4th IFIP International Conference on Theoretical Computer Science (TCS’06). 251–
270.

Jan Bulánek, Michal Koucký, and Michael Saks. 2012. Tight lower bounds for the online labeling problem.
In Proceedings of the 44th Symposium on Theory of Computing (STOC’12). 1185–1198.

Edward G. Coffman, Jr., M. R. Garey, and David S. Johnson. 1983. Dynamic bin packing. SIAM J. Comput.
12, 2 (1983), 227–258.

Edward G. Coffman, Jr., M. R. Garey, and D. S. Johnson. 1997. Approximation Algorithms for NP-
hard Problems. PWS Publishing Co., Chapter Approximation Algorithms for Bin Packing: A Survey,
46–93.

ACM Transactions on Algorithms, Vol. 13, No. 3, Article 38, Publication date: May 2017.

Cost-Oblivious Storage Reallocation 38:19

Edward G. Coffman, Jr., David S. Johnson, Peter W. Shor, and Richard R. Weber. 1993. Markov chains,
computer proofs, and average-case analysis of best fit bin packing. In Proceedings of the 25th Annual
ACM Symposium on Theory of Computing (STOC’93). 412–421.

Edward G. Coffman, Jr., David S. Johnson, Peter W. Shor, and Richard R. Weber. 1997. Bin packing with
discrete item sizes, part II: Tight bounds on first fit. Rand. Struct. Algor. 10, 1–2 (1997), 69–101.

Nachshon Cohen and Erez Petrank. 2013. Limitations of partial compaction: Towards practical bounds. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’13). 309–320.

Sashka Davis, Jeff Edmonds, and Russell Impagliazzo. 2006. Online algorithms to minimize resource reallo-
cations and network communication. In Proceedings of the 9th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX’06). 104–115.

Sándor P. Fekete, Tom Kamphans, Nils Schweer, Christopher Tessars, Jan C. van der Veen, Josef Angermeier,
Dirk Koch, and Jürgen Teich. 2012. Dynamic defragmentation of reconfigurable devices. ACM Trans.
Reconf. Technol. Syst. 5, 2, Article 8 (June 2012), 20 pages.

Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. 1999. Cache-oblivious algo-
rithms. In Proceedings of the 40th Annual Symposium on Foundations of Computer Science (FOCS’99).
285–297.

Gábor Galambos and Gerhard J. Woeginger. 1995. On-line bin packing—A restricted survey. Math. Meth.
OR 42, 1 (1995), 25–45.

Ronald L. Graham, Eugene L. Lawler, Jan Karel Lenstra, and Alexander H.G. Rinnooy Kan. 1979. Opti-
mization and approximation in deterministic sequencing and scheduling: A survey. Ann. Disc. Math. 5
(1979), 287–326.

Nicholas G. Hall and Chris N. Potts. 2004. Rescheduling for new orders. Oper. Res. 52, 3 (2004), 440–453.
Alon Itai and Irit Katriel. 2007. Canonical density control. Inf. Process. Lett. 104, 6 (2007), 200–204.
Alon Itai, Alan G. Konheim, and Michael Rodeh. 1981. A sparse table implementation of priority queues. In

Proceedings of the International Colloquium on Automata, Languages, and Programming (ICALP’81).
417–431.

Klaus Jansen and Kim-Manuel Klein. 2013. A robust AFPTAS for online bin packing with polynomial migra-
tion,. In Proceedings of the 40th International Colloquium on Automata, Languages, and Programming
(ICALP’13). 589–600.

Richard Jones, Antony Hosking, and Eliot Moss. 2011. The Garbage Collection Handbook: The Art of Auto-
matic Memory Management. Chapman and Hall/CRC.

Irit Katriel. 2002. Implicit Data Structures Based on Local Reorganizations. Master’s thesis. Technion–Isreal
Inst. of Tech., Haifa.

Kenneth C. Knowlton. 1965. A fast storage allocator. Commun. ACM 8, 10 (Oct. 1965), 623–624. Retrieved
from http://doi.acm.org/10.1145/365628.365655

Donald E. Knuth. 1997. The Art of Computer Programming: Fundamental Algorithms (3rd ed.). Vol. 1.
Addison-Wesley. 435–425.

Michael G. Luby, Joseph (Seffi) Naor, and Ariel Orda. 1996. Tight bounds for dynamic storage allocation.
SIAM J. Discr. Math. 9, 1 (1996), 155–166.

Joseph (Seffi) Naor, Ariel Orda, and Yael Petruschka. 2000. Dynamic storage allocation with known durations.
Discr. Appl. Math. 3 (2000), 203–213.

Percona, Inc. 2016a. Percona TokuDB. Retrieved from https://www.percona.com/software/mysql-database/
percona-tokudb. (2016).

Percona, Inc. 2016b. Percona TokuMX. Retrieved from https://www.percona.com/software/mongo-database/
percona-tokumx. (2016).

Harald Prokop. 1999. Cache-Oblivious Algorithms. Master’s thesis. Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology.

John M. Robson. 1971. An estimate of the store size necessary for dynamic storage allocation. J. ACM 18, 3
(July 1971), 416–423.

John M. Robson. 1974. Bounds for some functions concerning dynamic storage allocation. J. ACM 21, 3 (July
1974), 491–499.

John M. Robson. 1977. Worst case fragmentation of first fit and best fit storage allocation strategies. Comput.
J. 20, 3 (1977), 242–244.

Peter Sanders, Naveen Sivadasan, and Martin Skutella. 2009. Online scheduling with bounded migration.
Math. Oper. Res. 34, 2 (2009), 481–498.

Hadas Shachnai, Gal Tamir, and Tami Tamir. 2012. A theory and algorithms for combinatorial reopti-
mization. In Proceedings of the 10th Latin American Theoretical INformatics Symposium (LATIN’12).
618–630.

ACM Transactions on Algorithms, Vol. 13, No. 3, Article 38, Publication date: May 2017.

http://doi.acm.org/10.1145/365628.365655
https://www.percona.com/software/mysql-database/percona-tokudb
https://www.percona.com/software/mysql-database/percona-tokudb
https://www.percona.com/software/mongo-database/percona-tokumx
https://www.percona.com/software/mongo-database/percona-tokumx

38:20 M. E. Bender et al.

Daniel D. Sleator and Robert E. Tarjan. 1985. Amortized efficiency of list update and paging rules. Commun.
ACM 28, 2 (February 1985), 202–208.

Ali Tamer Unal, Reha Uzsoy, and Ali S. Kiran. 1997. Rescheduling on a single machine with part-type
dependent setup times and deadlines. Ann. Oper. Res. 70, 0 (1997), 93–113.

Dennis W. Ting. 1976. Allocation and compaction - a mathematical model for memory management. In
Proceedings of the ACM SIGMETRICS Conference on Computer Performance Modeling Measurement
and Evaluation (SIGMETRICS’76). 311–317.

José C. Verschae. 2012. The Power of Recourse in Online Optimization Robust Solutions for Scheduling, Ma-
troid and MST Problems The Power of Recourse in Online Optimization: Robust Solutions for Scheduling,
Matroid and MST Problems. Ph.D. Dissertation. Technischen Universität Berlin.

Dan E. Willard. 1982. Maintaining dense sequential files in a dynamic environment (extended abstract). In
Proceedings of the 14th ACM Symposium on Theory of Computing (STOC’82). 114–121.

Dan E. Willard. 1986. Good worst-case algorithms for inserting and deleting records in dense sequential
files. In Proceedings of the ACM SIGMOD International Conference on Management of Data. 251–260.

Dan E. Willard. 1992. A density control algorithm for doing insertions and deletions in a sequentially ordered
file in good worst-case time. Inf. Comput. 97, 2 (1992), 150–204.

DR Woodall. 1974. The bay restaurant—a linear storage problem. Am. Math. Monthly 81, 3 (1974), 240–246.

Received August 2016; revised March 2017; accepted March 2017

ACM Transactions on Algorithms, Vol. 13, No. 3, Article 38, Publication date: May 2017.

