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Conflict-Free Coloring of Intersection Graphs
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Abstract

A conflict-free k-coloring of a graph G = (V,E) as-
signs one of k different colors to some of the vertices
such that, for every vertex v, there is a color that is as-
signed to exactly one vertex among v and v’s neighbors.
Such colorings have applications in wireless network-
ing, robotics, and geometry, and are well studied in
graph theory. Here we study the conflict-free coloring
of geometric intersection graphs. We demonstrate that
geometric objects without fatness properties and size
restrictions have intersection graphs with unbounded
conflict-free chromatic number. For unit-disk intersec-
tion graphs, we prove that it is NP-complete to decide
the existence of a conflict-free coloring with one color;
we also show that six colors always suffice, using an
algorithm that colors unit disk graphs of restricted
height with two colors. We conjecture that four colors
are sufficient, which we prove for unit squares instead
of unit disks.

1 Introduction

Coloring the vertices of a graph is one of the fundamen-
tal problems in graph theory, both scientifically and
historically. The notion of proper graph coloring can
be generalized to hypergraphs in several ways. One
natural generalization is conflict-free coloring, which
asks to color the vertices of a hypergraph such that
every hyperedge has at least one uniquely colored ver-
tex. This has applications in wireless communication,
where “colors” correspond to different frequencies. The
notion can be transported back to simple graphs by
considering hypergraphs induced by the neighborhoods
of vertices.

In current work with Abel et al. [2], we prove a
conflict-free variant of Hadwiger’s conjecture, which
implies planar graphs have conflict-free chromatic num-
ber at most 3; see that paper for a more detailed
overview of related work. In the geometric context, mo-
tivated by frequency assignment problems, the study
of conflict-free coloring of hypergraphs was initiated by
Even et al. [5] and Smorodinsky [11]. For disk intersec-
tion hypergraphs, Even et al. [5] prove that O(log n)
colors suffice. For disk intersection hypergraphs with
degree at most k, Alon and Smorodinsky [3] show that
O(log3 k) colors are sufficient. If every edge of a disk
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intersection hypergraph must have k distinct unique
colors, Horev et al. [8] prove that O(k log n) suffice.
Moreover, for unit disks, Lev-Tov and Peleg [9] present
an O(1)-approximation algorithm for the conflict-free
chromatic number. Abam et al. [1] consider the prob-
lem of making a conflict-free coloring robust against
removal of a certain number of vertices, and prove
worst-case bounds for the number of colors required.

Conflict-free coloring also arises in the context of
the conflict-free variant of the chromatic art gallery
problem, where a simple polygon P has to be guarded
by colored guards such that each point in P sees at
least one uniquely colored guard. Regarding complex-
ity, Fekete et al. [6] prove that computing the chro-
matic number is NP-hard in this context. On the pos-
itive side, Hoffman et al. [7] give tight bounds for the
conflict-free chromatic art gallery problem under rect-
angular visibility in orthogonal polygons: Θ(log log n)
colors are sometimes necessary and always sufficient.
For the more common straight-line visibility, Bärtschi
et al. [4] prove that O(log n) colors always suffice.

2 Preliminaries

In the following, G = (V,E) will denote a graph on
n := |V | vertices. For a vertex v, N(v) denotes its
open neighborhood and N [v] = N(v) ∪ {v} denotes its
closed neighborhood. A conflict-free k-coloring of a
graph G = (V,E) is a coloring χC : V ′ → {1, . . . , k}
of a subset V ′ ⊆ V of the vertices of G, such that
each vertex v has at least one conflict-free neighbor
u ∈ N [v], i.e., a neighbor u whose color χC(u) occurs
only once in N [v]. The conflict-free chromatic number
χC(G) is the minimum number of colors required for
a conflict-free coloring of G.

A graph G is called disk graph iff G is the intersection
graph of disks in the plane. A disk graph G is a unit
disk graph iff G is the intersection graph of disks with
fixed radius r = 1 in the plane. A graph G is a unit
square graph iff G is the intersection graph of axis-
aligned squares with side length 2 in the plane. A unit
disk (square) graph is of height h iff G can be modeled
by the intersection of unit disks (squares) with center
points in (−∞,∞) × [0, h]. In the following, when
dealing with intersection graphs, we assume that we
are given a geometric model. In the case of unit disk
and unit square graphs, we identify the vertices of
the graph with the center points of the corresponding
geometric objects in this model.

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a
journal.
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Figure 1: The graph G5, shown as an intersection
graph of ellipses, requires 5 colors.

3 General Objects

For general objects like freely scalable ellipses or rect-
angles, it is possible to model a complete graph Kn of
arbitrary size n such that the following conditions hold:
(1) For every object v, there is some non-empty area of
v not intersecting any other objects. (2) For every pair
of objects v, w, there is a non-empty area common to
these objects disjoint from all other objects.

In this case, the conflict-free chromatic number is
unbounded, because we can inductively build a family
Gn of intersection graphs with χC(Gn) = n as follows.
Starting with G1 = ({v}, ∅) and G2 = C4, we con-
struct Gn by starting with a Kn modeled according
to conditions (1) and (2). For every object v, we place
two scaled-down non-intersecting copies of Gn−1 into
an area covered only by v. For every pair of objects
v, w, we place two scaled-down non-intersecting copies
of Gn−2 into an area covered only by v and w. The
resulting graph requires n colors, as every vertex of the
underlying Kn has to receive a unique color. Figure 1
depicts the construction of G5 for ellipses.

4 Unit-Disk Graphs

4.1 Complexity: One Color

While it is trivial to decide whether a graph has a
regular chromatic number of 1 and straightforward
to check a chromatic number of 2, it is already NP-
complete to decide whether a conflict-free coloring with
a single color exists, even for unit-disk intersection
graphs with maximum degree 3. This is a refinement
of Theorem 4.1 in Abel et al. [2], which shows the
same results for general planar graphs.

Theorem 1 It is NP-complete to decide whether a
unit-disk intersection graph G = (V,E) has a conflict-
free coloring with one color.
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Figure 2: (Left) A variable gadget; note that the
central disk must be part of any solution, leaving
only the choices labeled true and false for the other
disks. (Right) The overall construction for the instance
(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4).

Proof. We sketch a reduction from Planar 1-in-3-

SAT, see Mulzer and Rote [10]. For a given instance
I, we build a unit disk intersection graph GI , in which
variables xi are represented by the gadget shown in
Figure 2 (Left), consisting of an exterior cycle of 3ni

vertices, for some number ni ∈ N, and an auxiliary
internal tree. A clause cj is represented by a single
unit disk; we connect it to each of the three involved
variable gadget with 3nℓ unit disks, as shown in Fig-
ure 2 (Right).

Now a satisfying truth assignment for I induces a
conflict-free coloring of GI with a single color in a
straightforward manner. Conversely, in a conflict-free
coloring of G with one color, the set S ⊆ V of colored
disks is both an independent and a dominating set in
G, so any two disks in S must have distance at least 3.
This implies that for each exterior cycle in a variable,
every third vertex must belong to S, inducing a truth
assignment. Similarly, along each connecting path,
every third disk must belong to S. As it turns out, no
clause disk can be picked, implying that precisely one
of its neighbors must be in S; this requires a solution
for I. Full details are omitted for lack of space. !

4.2 A Worst-Case Upper Bound: Six Colors

On the positive side, we show that the conflict-free
chromatic number of unit disk graphs is bounded by 6.
We do not believe this result to be tight. In particular,
we conjecture that the number is bounded by 4; in fact,
we do not even know an example where two colors are
insufficient. One of the major obstacles towards ob-
taining tighter bounds is the fact that a simple graph-
theoretic characterization of unit disk graphs is not
available, as recognizing unit disk graphs is complete
for the existential theory of the reals. This makes
it hard to find unit disk graphs with high conflict-
free chromatic number, especially considering the size
such a graph would require: The smallest graph with
conflict-free chromatic number 3 we know has 30 ver-
tices, and by enumerating all graphs on 12 vertices
one can show that at least 13 vertices are necessary,
even without the restriction to unit disk graphs.
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Figure 3: Every colored point c induces a vertical strip
of width 2 (dashed lines); all points v within this strip
are adjacent to c.

One approach to conflict-free coloring of unit disk
graphs is by subdividing the plane into strips, coloring
each strip independently. We conjecture the following.

Conjecture 2 Unit disk graphs of height 2 are
conflict-free 2-colorable.

If this conjecture holds, every unit disk graph is
conflict-free 4-colorable. In this case, one can sub-
divide the plane into strips of height 2, and then color
the subgraphs in all even strips using colors {1, 2} and
the subgraphs in odd strips using colors {3, 4}. Instead
of Conjecture 2, we prove the following weaker result.

Theorem 3 Unit disk graphs G of height
√
3 are

conflict-free 2-colorable.

Proof. Given a realization of G consisting of unit
disks with center points with y-coordinate in [0,

√
3],

we compute a conflict-free 2-coloring of G using the
following greedy approach. We iterate through the
disk centers in lexicographical order, choosing a set
C of points to be colored. At every iteration, let c
be the current and n be the next point. Let C be
the set of selected colored points and let S = N [C]
be the points that already have a colored neighbor.
We select c to be colored iff coloring n instead of c
would leave a previous point uncovered, i.e., iff there
is a point c′ /∈ S, c′ ≤ c adjacent to c but not to n.
Thus, starting from the leftmost point, we always color
the rightmost point that does not leave any previous
points without a colored neighbor. We alternatingly
assign colors 1 and 2 to the selected points.

In this procedure, any point v is assigned a colored
neighbor w ∈ N [v]. This leaves the following three
cases. (1) a colored point v is adjacent to another
point w of the same color, (2) an uncolored point is
adjacent to two or more points of one color and none
of the other color, (3) an uncolored point is adjacent
to two or more points of both colors.

To this end, we use the following. Each colored point
c induces a closed vertical strip of width 2 centered
around c. As shown in Figure 3, every point v in this
strip is adjacent to c. Thus, the horizontal distance
between two colored points must be greater than 1.
For case (1), assume there was a point v of color 1
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Figure 4: The configuration in case (2); there must be
a point x of color 2 adjacent to v.
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Figure 5: The configuration in case (3); the algorithm
would have chosen v or a larger point instead of x′.

adjacent to a point w > v of color 1. This cannot occur,
because between v and w, there must be a point x of
color 2; therefore, the horizontal distance between v
and w must be greater than 2, a contradiction.

Regarding case (2), assume there was an uncolored
point v adjacent to two points w′ < v < w of color
1. Between points w′ and w, there must be a point
x of color 2, and v must not be adjacent to x. There
are two possible orderings: w′ < v < x < w and
w′ < x < v < w. W.l.o.g., let v < x; the other case is
symmetric. In this situation, the x-coordinates of the
points have to satisfy x(v) < x(x)−1, x(x) < x(w)−1,
and thus x(v) < x(w) − 2 in contradiction to the
assumption that v and w are adjacent.

Regarding case (3), assume there was an uncolored
point v adjacent to two points w′ < v < w of color
1 and two points x′ < v < x of color 2. W.l.o.g.,
assume w′ < x′ < v < w < x as depicted in Figure 5;
the case x′ < w′ is symmetric. Because w′ and v are
adjacent, the vertical strip induced by v intersects the
strip induced by w′. Thus, there cannot be a point
y with w′ < y < v not adjacent to w′ or v. This is a
contradiction to the choice of x′: The algorithm would
have chosen v or a larger point instead of x′. !

The next Corollary 4 follows by subdividing the plane
into strips of height

√
3; Moreover, applying the proof

of Theorem 3 to unit square graphs of height 2 instead
of

√
3 yields Corollary 5.

Corollary 4 Unit disk graphs are conflict-free 6-
colorable.

Corollary 5 Unit square graphs of height 2 are
conflict-free 2-colorable. Unit square graphs are
conflict-free 4-colorable.

Unfortunately, the proof of Theorem 3 does not ap-
pear to have a straightforward generalization to strips
of larger height. Further reducing the height to find
strips that are colorable with one color is also impossi-
ble, because unit interval graphs, which correspond to
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Figure 6: Left: A vertex-minimal graph satisfying (1)
and (2). Right: In any unit disk graph G embeddable
in a 2× 2-square with γ(G) = 3, no points lie in the
depicted area.

unit disk graphs with all centers lying on a line, already
may require two colors in a conflict-free coloring; the
Bull Graph is such an example. In this case, the bound
of 2 is tight: By Theorem 3, unit interval graphs are
conflict-free 2-colorable. By adapting the algorithm
used in the proof to always choose the interval extend-
ing as far as possible to the right without leaving a
previous interval uncovered, this can be extended to
interval graphs with non-unit intervals.

4.3 Unit-Disk Graphs of Bounded Area

Proving Conjecture 2 is non-trivial, even when all
center points lie in a 2× 2-square. In this setting, a
circle packing argument can be used to establish the
sufficiency of three colors. If a unit disk graph with
conflict-free chromatic number 3 can be embedded
into a 2 × 2-square, the following are necessary. (1)
Every minimum dominating set D has size 3, and
every pair of dominating vertices must have a common
neighbor not shared with the third dominating vertex.
Thus, every minimum dominating set lies on a 6-cycle
without chords connecting a vertex with the opposite
vertex. (2) G has diameter 2; otherwise, one could
assign the same color to two vertices at distance 3.

Using the domination number, one can further re-
strict the position of the points in the 2 × 2-square:
There is an area in the center of the square, depicted
in Figure 6, that cannot contain the center of any disk
because this would yield a dominating set of size 2.

The smallest graph satisfying constraints (1) and
(2) has 11 vertices and is depicted in Figure 6. It
is not a unit disk graph and it is still conflict-free
2-colorable, but every coloring requires at least four
colored vertices, proving that coloring a minimum
dominating set can be insufficient. This implies that
a simple algorithm like the one used in the proof of
Theorem 3 will most likely be insufficient for strips
of greater height. We are not aware of any unit disk
graph satisfying these constraints.

5 Conclusion

There are various directions for future work. In addi-
tion to closing the worst-case gap for unit disks (and

proving Conjecture 2), it is interesting to study the
conflict-free chromatic number of non-unit disk graphs.
Other questions include a tight bound for unit square
graphs, square intersection graphs of general squares,
and a necessary criterion for a family of geometric
objects to have intersection graphs with unbounded
conflict-free chromatic number.
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