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COMPUTING NONSIMPLE POLYGONS OF MINIMUM PERIMETER∗

Sándor P. Fekete,† Andreas Haas,† Michael Hemmer,† Michael Hoffmann,‡

Irina Kostitsyna,§ Dominik Krupke,† Florian Maurer,† Joseph S. B. Mitchell,¶

Arne Schmidt,† Christiane Schmidt,‖ Julian Troegel †

Abstract. We consider the Minimum Perimeter Polygon Problem (MP3): for a given set
V of points in the plane, find a polygon P with holes that has vertex set V , such that the
total boundary length is smallest possible. The MP3 can be considered a natural geometric
generalization of the Traveling Salesman Problem (TSP), which asks for a simple polygon
with minimum perimeter. Just like the TSP, the MP3 occurs naturally in the context of
curve reconstruction.

Even though the closely related problem of finding a minimum cycle cover is polyno-
mially solvable by matching techniques, we prove how the topological structure of a polygon
leads to NP-hardness of the MP3. On the positive side, we provide constant-factor approx-
imation algorithms.

In addition to algorithms with theoretical worst-case guarantess, we provide practical
methods for computing provably optimal solutions for relatively large instances, based on
integer programming. An additional difficulty compared to the TSP is the fact that only
a subset of subtour constraints is valid, depending not on combinatorics, but on geometry.
We overcome this difficulty by establishing and exploiting geometric properties. This allows
us to reliably solve a wide range of benchmark instances with up to 600 vertices within
reasonable time on a standard machine. We also show that restricting the set of connections
between points to edges of the Delaunay triangulation yields results that are on average
within 0.5% of the optimum for large classes of benchmark instances.

1 Introduction

Two of the most fundamental structures in Computational Geometry are planar point sets
and polygons. In this paper we study a natural algorithmic connection between them. For
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a given set V of points in the plane, consider the family of all polygons with holes that have
vertex set V . Such a polygon P consists of an exterior boundary that surrounds a collection
of interior holes, which are simple disjoint polygonal boundaries with disjoint interior; note
that each boundary must contain at least three vertices in order to be non-degenerate.

The Minimum Perimeter Polygon Problem (MP3) asks for a polygon P with holes
on vertex set V , such that the total boundary length is smallest possible.

Figure 1: A Minimum Perimeter Polygon for an instance with 960 vertices.

As can be seen from Figure 1, an optimal solution for the MP3 need not be simply
connected, but may consist of an outer boundary that surrounds a number of holes, i.e.,
interior boundaries. If holes are disallowed, the problem turns into the well-known Traveling
Salesman Problem (TSP): find a shortest polygonal chain through a given set of vertices in
the plane. As a consequence of the triangle inequality, any optimal solution of the TSP is
always a simple polygon of minimum perimeter.

The TSP is one of the classic problems of Combinatorial Optimization. NP-hard
even in special cases of geometric instances (such as grid graphs), it has served as one of the
prototypical testgrounds for developing outstanding algorithmic approaches. These include
constant-factor approximation methods (such as Christofides’ 3/2-approximation [7] for met-
ric instances, or Arora’s [4] and Mitchell’s [23] polynomial-time approximation schemes for
geometric instances), as well as exact methods (such as Grötschel’s optimal solution to a
120-city instance [16] or the award-winning work by Applegate, Bixby, Chvátal and Cook [2]
for solving a 13509-city instance within 10 years of CPU time.) The well-established bench-
mark library TSPLIB [26] of TSP instances has become so widely accepted that it is used
as a benchmark for a large variety of other optimization problems. See the books [17, 21]
for an overview of various aspects of the TSP and the books [3, 8] for more details on exact
optimization.

Because of the fundamental role of polygons in geometry, the study of TSP solutions
has attracted attention for a wide range of geometric applications. One such context is
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geometric shape reconstruction, where the objective is to re-compute the original curve
from a given set of sample points V ; see Giesen [15], Althaus and Mehlhorn [1] or Dey,
Mehlhorn and Ramos [10] for specific examples. However, this only makes sense when the
original shape is known to be simply connected, i.e., bounded by a single closed curve.
More generally, a shape may be multiply connected, with interior holes. Thus, computing a
simple polygon may not yield the desired answer. Instead, the solution may be a Minimum
Perimeter Polygon (MPP) on vertex set V . See Figure 1 for an optimal solution of an
instance with 960 points; this also shows the possibly intricate structure of an MPP.

While the MP3 asks for a cycle cover of the given set of vertices (as opposed to
a single cycle required by the TSP), it is important to note that even the more general
geometry of a polygon with holes imposes some topological constraints on the structure of
boundary cycles; as a consequence, an optimal 2-factor (a minimum-weight cycle cover of
the vertices, which can be computed in polynomial time) may not yield a feasible solution.
Fekete et al. [12] gave a generic integer program for the MP3 (and other related problems)
that yields optimal solutions for instances up to 50 vertices. However, the main challenges
were left unresolved. What is the complexity of computing an MP3? Is it possible to
develop constant-factor approximation algorithms? And how can we compute provably
optimal solutions for instances of relevant size?

Our Results

In this paper, we resolve the main open problems related to the MP3.

• We prove that the MP3 is NP-hard. This shows that despite of the relationship to
the polynomially solvable problem of finding a minimum 2-factor, dealing with the
topological structure of the involved cycles is computationally difficult.

• We give a 3-approximation algorithm for the MP3.

• We provide a general IP formulation with O(n2) variables to ensure a valid solution
for the MP3.

• We describe families of cutting planes that significantly reduce the number of iterations
needed to eliminate outer components and holes in holes, leading to a practically useful
formulation.

• We present experimental results for the MP3, solving instances with up to 1000 points
in the plane to provable optimality within 30 minutes of CPU time.

• We also consider a fast heuristic that is based on geometric structure, restricting the
edge set to the Delaunay triangulation. Experiments on structured random point sets
show that solutions are on average only about 0.5% worse than the optimum, with
vastly superior runtimes.
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2 Complexity

Theorem 1. The Minimum Perimeter Polygon Problem (MP3) is NP-hard.

Proof. The proof is based on a reduction from the Minimum Vertex Cover problem for
planar graphs, which was proven to be NP-complete by Garey and Johnson [14]: for an
undirected planar graph G = (V,E) and a parameter k ∈ N, decide whether there exists a
subset V ′ ⊂ V of at most k vertices such that for every edge (u, v) ∈ E, at least one of u or
v is in V ′. Given an instance IMVC of the Minimum Vertex Cover problem we construct an
instance IMP3 of the MP3 such that IMP3 has a solution if and only if IMVC has a solution.
Given a planar graph G, we replace its vertices with vertex gadgets, connect them with edge
gadgets, and add three points at the vertices of a large triangle enclosing the construction.
The triangle delimits the outer boundary of the polygon in the instance of the MP3, and the
vertex and edge gadgets enforce a choice of cycles covering the points that form the holes of
the polygon.

Vertex gadget. The vertex gadget consists of four points (refer to Figure 2). The top
three points are always connected by a cycle. If the fourth point p is in the same cycle, that
represents putting the corresponding vertex in subset V ′. The cycle’s length is 3ε if p /∈ V ′,
and 2b+ 2ε if p ∈ V ′.

b b

ε ε

p

ε ε

p

ε

Figure 2: Vertex gadget. Left: p ∈ V ′, total length is 2b+ 2ε; right: p /∈ V ′, total length is
3ε.

Edge gadget. The edge gadget consists of a repeating pattern of four points forming a
rhombus (refer to Figure 3). Let some edge gadget consist of r rhombi. There are three
ways of covering all the points except for, possibly, the two outermost points, with cycles
of total length at most 2ra + rε (see Figure 3 (a-c)). This will leave either the leftmost
point, either the rightmost point, or both, the leftmost and the rightmost points, uncovered
by the cycles. If we require both outermost points to be covered by the cycles, their total
length is at least 2(r+ 1)a+ (r−1)ε (see Figure 3 (d)). The points of the edge gadget could
potentially be covered by a path of length 2ra+ rε (see Figure 3 (e)) that closes into a cycle
through other gadgets. To prevent this situation we add triplets of points that form small
holes in the middle of each face of G. If a cycle would pass through an edge gadget, then
the cycle would enclose at least one face of the graph G and thereby also enclose another
hole, which is forbidden.
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Figure 3: Edge gadget. (a)–(c) the gadget is covered by cycles of total length ≈ 10a + 5ε;
(d) total length 12a+ 4ε; (e) the gadget is covered by a path of total length 10a+ 5ε.

Split gadget. The split gadget (refer to Figure 4) multiplies the connection to a vertex
gadget, thus allowing us to connect one vertex gadget to multiple edge gadgets. If point p is
covered by the vertex gadget, all the points, including points p1 and p2, of the split gadget
can be covered by cycles of total length 16a + 11ε. If point p is not covered by the vertex
gadget, p and all the points of the split gadget, except for p1 and p2, can be covered by
cycles of total length 16a + 11ε. Notice, that the cycles can only consist of the edges that
are shown in the figure (with solid or dashed lines). There is always the same number of
edges used in any collection of cycles that cover the same number of points. Therefore, if
some cycle contains an edge that is longer than a, the other edges in the cycles have to be
shorter to compensate for the extra length. By a simple case distinction one can show that
there is no collection of cycles of length at most 16a + 11ε that covers the same points of
the split gadget and that uses any edge that is not shown in Figure 4.

If we require the split gadget to cover points p1 and p2 when point p is not covered
by the vertex gadget, the total length of the cycles is at least 18a+ 10ε (see Figure 5).
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Figure 4: Split gadget. Left: vertex ∈ V ′, total length is 16a+ 11ε; right: vertex /∈ V ′, total
length is 16a+ 11ε.
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p

p1 p2

Figure 5: Split gadget: points p, p1, and p2 are covered by cycles of total length 18a+ 10ε.

To summarize, given an embedding of planar graph G = (V,E) with n vertices and
m edges, we construct an instance of the MP3 by replacing the vertices of the graph with the
vertex gadgets, attaching deg(v)−1 split gadgets (where deg(v) denotes the degree of vertex
v) to the corresponding vertex gadget of every vertex v, and connecting the vertex gadgets
by edge gadgets (see Figure 6). We enclose the construction in a triangle of a very large
size, that will form the outer boundary of the polygon. Let the perimeter of the triangle T
be � than the diameter of G. The cycles covering the points of the gadgets are the holes
in the polygon. Moreover, to every face of G we add triplets of points forming cycles of a
very small length� ε. This eliminates any possibility of passing through edge gadgets with
a single cycle.

The number of vertex gadgets used in the construction is n, and the number of split
gadgets is

∑
v∈V deg(v)−n = 2m−n. Let the number of rhombi used in all the edge gadgets

be r, and let the total length of the extra holes in the middle of the faces of G be ε. Then

=⇒

Figure 6: Given a planar graph G, we construct an instance of the MP3. Highlighted in
violet are the vertex gadgets, in orange are the split gadgets, in green are the edge gadgets,
and in gray are the extra holes in the middle of the faces of G.
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the instance of the MP3 asks whether there exists a polygon of perimeter at most

L = T + k(2b+ 2ε) + (n− k)3ε+ (2m− n)(16a+ 11ε) + 2ra+ rε+ ε

= (2b− ε)k + T + 2(16m− 8n+ r)a+ (22m− 8n+ r + 1)ε .

Let d be the length of the shortest edge. Choose a, b, and ε, such that ε � b � a � d.
Using standard graph embedding techniques, it is straightforward to see that all coordinates
of this embedding are polynomial in the size of the original graph.

Then there is a polygon with perimeter at most L for IMP3 if and only if there is a
vertex cover of size at most k for IMVC.

Let V ′ be a vertex cover of size k of G = (V,E). Then, by selecting the corresponding
vertex gadgets to cover points p, and propagating the construction of cycles along the split
and edge gadgets, we get a polygon of perimeter L.

Let there exist a polygon P with perimeter at most T + 2(16m− 8n+ r)a+ 2kb+
(22m−8n+r−k+1)ε. By construction, the outer boundary of P is the triangle of perimeter
T . Suppose there are more than k vertex gadgets that are covering the corresponding points
p. Then the perimeter of P has to be greater than T + 2(16m − 8n + r)a + 2kb + (22m −
8n + r − k + 1)ε, as the third term (of variable b) of the perimeter expression dominates
the fourth term (of variable ε). Thus, there have to be no more than k variable gadgets
that cover the corresponding points p. Every edge gadget has to have one of the end-points
covered by the vertex gadgets (through split gadgets). Otherwise, the second term of the
expression of the polygon perimeter would be greater. Therefore, the polygon corresponds
to a vertex cover of size at most k for IMVC.

3 Approximation

In this section we show that the MP3 can be approximated within a factor of 3.

Theorem 2. There exists a polynomial-time 3-approximation algorithm for the MP3.

Proof. Let OPT be the length of an optimal solution of the MP3 and APX the length of
the approximation that our algorithm will compute for the given set, V , of n points in the
plane. We compute the convex hull, CH(V ), of the input set; this takes time O(n log h),
where h is the number of vertices of the convex hull. Note that the perimeter, |CH(V )|, of
the convex hull is a lower bound on the length of an optimal solution (OPT ≥ |CH(V )|),
since the outer boundary of any feasible solution polygon must enclose all points of V , and
the convex hull is the minimum-perimeter enclosure of V .

Let U ⊆ V be the input points interior to CH(V ). If U = ∅, then the optimal
solution is given by the convex hull. If |U | ≤ 2, we claim that an optimal solution is a
simple, not necessarily convex, polygon, with no holes, on the set V , given by the TSP tour
on V ; since |U | = 2 is a constant, it is easy to compute the optimal solution in polynomial
time, by trying all O(h2) possible ways of inserting the points of U into the cycle of the
points of V that lie on the boundary of the convex hull, CH(V ).
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Figure 7: A 2-factor (left) and its corresponding nesting forest (right).

Thus, assume now that |U | ≥ 3. We compute a minimum-weight 2-factor (i.e., a
a minimum-weight cycle cover of the vertices), denoted by γ(U), on U , which is done in
polynomial-time by standard methods [9]. (The time required is that of solving a minimum-
weight matching in a bipartite graph having O(|U |) nodes and O(|U |2) edges; this can be
done in time O(|U |3).) Now, γ(U) consists of a set of disjoint simple polygonal curves
having vertex set U ; the curves can be nested, with possibly many levels of nesting. We
let F denote the directed nesting forest whose nodes are the cycles, i.e., the connected
components of γ(U), and whose directed edges indicate nesting (i.e., containment) of one
cycle within another; refer to Figure 7. Since an optimal solution consists of a 2-factor (an
outer cycle, together with a set of cycles, one per hole of the optimal polygon), we know
that OPT ≥ |γ(U)|. In an optimal solution, the nesting forest corresponding to the set of
cycles covering all of V , not just the points U interior to CH(V ), is simply a single tree that
is a star: a root node corresponding to the outer cycle, and a set of children adjacent to
the root node, corresponding to the boundaries of the holes of the optimal polygon. If the
nesting forest F for our optimal 2-factor is a set of isolated nodes (i.e., there is no nesting
among the cycles of the optimal 2-factor on U), then our algorithm outputs a polygon with
holes whose outer boundary is the boundary of the convex hull, CH(V ), and whose holes
are the disjoint polygons given by the cycles of γ(U). In this case, the total weight of our
solution is equal to |CH(V )|+ |γ(U)| ≤ 2 ·OPT .

Assume now that F has at least one nontrivial tree. We describe a two-phase process
that transforms the set of cycles corresponding to F into a set of pairwise-disjoint cycles,
each defining a simple polygon interior to CH(V ), with no nesting. The resulting simple
polygons are disjoint, each having at least 3 vertices from U ⊂ V .

Phase 1 of the process transforms the cycles γ(U) into a set of polygonal cycles that
define weakly simple polygons whose interiors are pairwise disjoint, where a polygonal cycle
β defines a weakly simple polygon Pβ if Pβ is a closed, simply connected set in the plane
with a boundary, ∂Pβ consisting of a finite union of line segments, whose traversal (e.g.,
while keeping the region Pβ to one’s left) is the counterclockwise cycle β, which can have
line segments that are traversed twice, once in each direction. (The notion of a “weakly
simple” polygon can have various meanings, which may be slightly different from that used
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here; we refer the reader to [5], which includes algorithmic results as well.) The total length
of the cycles at the end of phase 1 is at most 2 times the length of the original cycles, γ(U).
Then, phase 2 of the process transforms these weakly simple cycles into (strongly) simple
cycles that define disjoint simple polygons interior to CH(V ). Phase 2 only does shortening
operations on the weakly simple cycles; thus, the length of the resulting simple cycles at
the end of phase 2 is at most 2 times the total length of γ(U). At the end of phase 2, we
have a set of disjoint simple polygons within CH(V ), which serve as the holes of the output
polygon, whose total perimeter length is at most |CH(V )|+ 2|γ(U)| ≤ 3 ·OPT .

We now describe phase 1. Let T be a nontrivial tree of F . Associated with T are
a set of cycles, one per node. A node u of T that has no outgoing edge of T (i.e., U has
no children) is a sink node; it corresponds to a cycle that has no cycle contained within
it. Let v be a node of T that has at least one child, but no grandchildren; clearly, such a
node must exist in a nontrivial tree T . Then, v corresponds to a cycle (simple polygon) Pv,
within which there is one or more disjoint simple polygonal cycles, Pu1 , Pu2 , . . . , Puk , one
for each of the k ≥ 1 children of v. We describe an operation that replaces Pv with a new
weakly simple polygon, Qv, whose interior is disjoint from those of Pu1 , Pu2 , . . . , Puk . Let
e = pq (p, q ∈ V ) be any edge of Pv; assume that pq is a counterclockwise edge, so that the
interior of Pv lies to the left of the oriented segment pq. Let Γ be a shortest path within
Pv, from p to q, that has all of the polygons Pu1 , Pu2 , . . . , Puk to its right; thus, Γ is a “taut
string” path within Pv, homotopically equivalent to ∂Pv, from p to q. Such a geodesic path
is related to the “relative convex hull” of the polygons Pu1 , Pu2 , . . . , Puk within Pv, which
is the shortest cycle within Pv that encloses all of the polygons; the difference is that Γ is
“anchored” at the endpoints p and q. Note that Γ is a polygonal path whose vertices are
either (convex) vertices of the polygons Puj or (reflex) vertices of Pv. The path Γ can be
computed in linear (O(|V |)) time [18], after triangulating the domain. Consider the closed
polygonal walk that starts at p, follows the path Γ to q, then continues counterclockwise
around the boundary, ∂Pv, of Pv until it returns to p. This closed polygonal walk is the
counterclockwise traversal of a weakly simple polygon, Qv, whose interior is disjoint from
the interiors of the polygons Pu1 , Pu2 , . . . , Puk . Refer to Figure 8. The length of this closed
walk (the counterclockwise traversal of the boundary of Qv) is at most twice the perimeter
of Pv, since the path Γ has length at most that of the counterclockwise boundary ∂Pv, from
q to p, because Γ is a homotopically equivalent shortening of this boundary. We consider the
boundary of Pv to be replaced with the cycle around the boundary of Qv, and this process
has reduced the degree of nesting in T : node v that used to have k children (leaves of T )
is now replaced by a node v′ corresponding to Qv, and v′ and the k children of v are now
all siblings in the modified tree, T ′. If v had a parent, w, in T , then v′ and the k children
of v are now children of W ; if v had no parent in T (i.e., it was the root of T ), then T has
been transformed into a set of k + 1 cycles, none of which are nested within another cycle
of γ(U); each is within the convex hull CH(V ), but there is no other surrounding cycle of
γ(U). We continue this process of transforming a surrounding parent cycle (node v) into a
sibling cycle (node v′), until each tree T of F becomes a set of isolated nodes, and finally F
has no edges, i.e., there is no nesting.

Phase 2 is a process of local shortening of the cycles/polygons, Q1, Q2, . . . , Qm, that
resulted from phase 1, in order to remove repeated vertices in the weakly simple cycles, so
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Figure 8: Left: The geodesic path Γ from p to q within Pv, surrounding all of the (red)
polygons Pu1 , Pu2 , . . . , Puk . Right: The new weakly simple polygon (now red) obtained
from the traversal of Γ and the boundary of Pv.

that cycles become strongly simple. There are two types of repeated vertices to resolve:
those that are repeated within the same cycle, i.e., repeated vertices p of a cycle Qi where
∂Qi “pinches” upon itself, and those that are repeated across different cycles, i.e., vertices p
where one cycle is in contact with another, both having vertex p.

Consider a weakly simple polygon Q, and let p be a vertex of Q that is repeated
in the cycle specifying the boundary ∂Q. This implies that there are four edges of the
(counterclockwise) cycle, p0p, pp1, p2p, and pp3, incident on p, all of which lie within a
halfplane through p (by local optimality). There are then two subcases: (i) p0, p, p1 is a left
turn (Figure 9, left); and (ii) p0pp1 is a right turn (Figure 9, right). In subcase (i), p0p, pp1
define a left turn at p (making p locally convex for Q), and p2p, pp3 define a right turn at
p (making p locally reflex for Q). In this case, we replace the pair of edges p0p, pp1 with a
shorter polygonal chain, namely the “taut” version of this path (homotopically equivalent to
it), from p0 to p1, along a shortest path, β0,1, among the polygons Qi, including Q, treating
them as obstacles. The taut path β0,1 is computed in linear time and consists of left turns
only, at (locally convex) vertices of polygons Qi (Qi 6= Q) or (locally reflex) vertices of
Q, where new pinch points of Q are created. Refer to Figure 9, left. Case (ii) is treated
similarly; see Figure 9, right. Thus, resolving one repeated vertex, p, of Q can result in the
creation of other repeated vertices of Q, or repeated vertices where two cycles come together
(discussed below). The process is finite, though, since the total length of all cycles strictly
decreases with each operation; in fact, there can be only a polynomial number (O(n3)) of
such adjustments, since each triple (p0, p, p1), is resolved at most once.

Now consider a vertex p that appears once as a reflex vertex in Q1 (with incident
ccw edges p0p and pp1) and once as a convex vertex in Q2 (with incident ccw edges p2p and
pp3). This is because cycles resulting after phase 1 are locally shortest, p must be reflex
in one cycle and convex in the other. Our local operation in this case results in a merging
of the two cycles Q1 and Q2 into a single cycle, replacing edges p0p (of Q1) and pp3 (of
Q2) with the taut shortest path, β0,3. As in the process described above, this replacement
can result in new repeated vertices, as the merged cycle may come into contact with other
cycles, or with itself.
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Figure 9: Left: Case (i) of the phase 2 shortening process for a pinch point of Q. Right:
Case (ii) of the phase 2 shortening process.
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Figure 10: The phase 2 shortening process for a point p shared by cycles Q1 and Q2.
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Finally, the result of phase 2, is a set of disjoint cycles, with no repeated vertices,
defining disjoint simple polygons within CH(V ); these cycles define the holes of the output
polygon, whose total perimeter length is at most that of CH(V ), plus twice the lengths
of the cycles γ(U) in an optimal 2-factor of the interior points U . Thus, we obtain a
valid solution with objective function at most 3 times optimal. The total running time is
polynomial; a straightforward implementation takes time O(n4), but this time bound can
likely be improved substantially.

4 IP Formulation

4.1 Cutting-Plane Approach

In the following we develop suitable Integer Programs (IPs) for solving the MP3 to provable
optimality. The basic idea is to use a binary variable xe ∈ {0, 1} for any possible edge e ∈ E,
with xe = 1 corresponding to e being part of a solution P if and only if xe = 1. The objective
is then to min

∑
e∈E xece, where ce is the length of e. In addition, we impose a suitable set

of linear constraints on these binary variables, such that they characterize precisely the set
of polygons with vertex set V . The challenge is to pick a set of constraints that achieve this
in a (relatively) efficient manner.

As it turns out (and is discussed in more detail in Section 5), there is a significant set
of constraints that correspond to eliminating cycles within proper subsets S ⊂ V . Moreover,
there is an exponential number of relevant subsets S, making it prohibitive to impose all of
these constraints at once. The fundamental idea of a cutting-plane approach is that much
fewer constraints are necessary for characterizing an optimal solution. To this end, only
a relatively small subfamily of constraints is initially considered, leading to a relaxation.
As long as solving the current relaxation yields a solution that is infeasible for the original
problem, violated constraints are added in a piecemeal fashion, i.e., in iterations.

In the following, these constraints (which are initially omitted, violated by an optimal
solution of the relaxation, then added to eliminate such infeasible solutions) are called cutting
planes or simply cuts, as they remove solutions of a relaxation that are infeasible for the
MP3.

4.2 Basic IP

We start with a basic IP that is enhanced with specific cuts, described in Sections 5.2–5.4.
We denote by E the set of all edges between two points of V , we denote by C a set of invalid
cycles, and we denote by δ(v) the set of all edges in E that are incident to v ∈ V . Then we
optimize over the following objective function:

min
∑
e∈E

xece . (1)
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(a) Invalid cycle of type 1 (b) Invalid cycle of
type 2

(c) Invalid cycle of
type 3

Figure 11: Examples of invalid cycles (red). Black cycles may be valid.

This is subject to the following constraints:

∀v ∈ V :
∑
e∈δ(v)

xe = 2 , (2)

∀C ∈ C :
∑
e∈C

xe ≤ |C| − 1 , (3)

xe ∈ {0, 1} . (4)

For the TSP, C is simply the set of all subtours, making identification and separation
straightforward. This is much harder for the MP3, where a subtour may end up being
feasible by forming the boundary of a hole, but may also be required to connect with other
cycles. Therefore, identifying valid inequalities requires more geometric analysis, such as
the following. If we denote by CH the set of all convex hull points, then a cycle C is invalid
if C contains:

1. at least one and at most |CH| − 1 convex hull points. (See Figure 11(a))

2. all convex hull points but does not enclose all other points. (See Figure 11(b))

3. no convex hull point but encloses other points. (See Figure 11(c))

By Ci we denote the set of all invalid cycles with property i. Because there can be exponen-
tially many invalid cycles, we add constraint (3) in separation steps.

For an invalid cycle with property 1, we use the equivalent cut constraint

∀C ∈ C1 :
∑
e∈δ(C)

xe ≥ 2 . (5)

We use constraint (3) if |C| ≤ 2n+1
3 and constraint (5) otherwise, where δ(C) denotes the

“cut” edges connecting a vertex v ∈ C with a vertex v′ 6∈ C. As argued by Pferschy and
Stanek [25], this technique of dynamic subtour constraints (DSC) is useful, as it reduces the
number of non-zero coefficients in the constraint matrix.
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4.3 Initial Edge Set

In order to quickly achieve an initial solution, we sparsify the Θ(n2) input edges to the O(n)
edges of the Delaunay Triangulation, which naturally captures geometric nearest-neighbor
properties. If a solution exists, this yields an upper bound. This technique has already been
applied for the TSP by Jünger et al. [19]. In theory, this may not yield a feasible solution:
a specifically designed example by Dillencourt shows that the Delaunay triangulation may
be non-Hamiltonian [11]; this same example has no feasible solution for the MP3 when
restricted to Delaunay edges. We did not observe this behavior in practice.

CPLEX uses this initial solution as an upper bound, allowing it to quickly discard
large solutions in a branch-and-bound manner. As described in Section 6, the resulting
bounds are quite good for the MP3.

5 Separation Techniques

5.1 Pitfalls

When separating infeasible cycles, the Basic IP may get stuck in an exponential number of
iterations, due to the following issues. (See Figures 12–14 for illustrating examples.)

Problem 1: Multiple outer components containing convex hull points occur that (despite
the powerful subtour constraints) do not get connected, because it is cheaper to, e.g.,
integrate subsets of the interior points. Such an instance can be seen in Figure 12,
where we have two equal components with holes. Since the two components are sep-
arated by a distance greater than the distance between their outer components and
their interior points, the outer components start to include point subsets of the holes.
This results in a potentially exponential number of iterations.

Problem 2: Outer components that do not contain convex hull points do not get integrated,
because we are only allowed to apply a cycle cut on the outer component containing
the convex hull points. An outer component that does not contain a convex hull point
cannot be prohibited, as it may become a hole in later iterations. See Figure 13 for
an example in which an exponential number of iterations is needed until the outer
components get connected.

Problem 3: If holes contain further holes, we are only allowed to apply a cycle cut on the
outer hole. This outer hole can often cheaply be modified to fulfill the cycle cut but
not resolve the holes in the hole. An example instance can be seen in Figure 14, in
which an exponential number of iterations is needed.

The second problem is the most important, as this problem frequently becomes
critical on instances of size 100 and above. Holes in holes rarely occur on small instances
but are problematic on instances of size > 200. The first problem occurs only in a few
instances.
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(a) (b) (c)

(d) (e) (f)

Figure 12: (a) - (f) show consecutive iterations when trying to solve an instance using only
constraint (5).

(a) (b) (c) (d)

(e) (f) (g)

Figure 13: (a) - (g) show consecutive iterations when trying to solve an instance using only
constraint (3).

(a) (b) (c) (d)

(e) (f) (g)

Figure 14: (a) - (g) show consecutive iterations when trying to solve an instance using only
constraint (3).

In the following we describe three cuts that each solve one of the problems: The glue
cut for the first problem in Section 5.2, the tail cut for the second problem in Section 5.3,
and the HiH-Cut for the third problem in Section 5.4.
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(a) (b)

Figure 15: Solving instance from Figure 12 with a glue cut (red). (a) The red curve needs
to be crossed at least twice; it is found using the Delaunay Triangulation (grey). (b) The
first iteration after using the glue cut.

5.2 Glue Cuts

To separate invalid cycles of property 1 we use glue cuts (GC), based on a curve RD from
one unused convex hull edge to another (see Figure 15). With X (RD) denoting the set of
edges crossing RD, we can add the following constraint:∑

e∈X (RD)

xe ≥ 2 .

Such curves can be found by considering a constrained Delaunay triangulation [6] of
the current solution, performing a breadth-first-search starting from all unused convex hull
edges of the triangulation. Two edges are adjacent if they share a triangle. Used edges are
excluded, so our curve will not cross any used edge. As soon as two different search trees
meet, we obtain a valid curve by using the middle points of the edges (see the red curve in
Figure 15).

For an example, see Figure 15; as illustrated in Figure 12, this instance is problematic
in the Basic IP. This can we now be solved in one iteration.

5.3 Tail Cuts

An outer cycle C that does not contain any convex hull points cannot simply be excluded,
as it may become a legal hole later. Such a cycle either has to be merged with others, or
become a hole. For a hole, each curve from the hole to a point outside of the convex hull
must be crossed at least once.

With this knowledge we can provide the following constraint, making use of a special
curve, which we call a tail (see the red path in Figure 16).

Let RT be a valid tail and X (RT ) the edges crossing it. We can express the constraint
in the following form: ∑

e∈X (RT )\δ(C)

xe︸ ︷︷ ︸
C gets surrounded

+
∑
e∈δ(C)

xe︸ ︷︷ ︸
C merged

≥ 1 .

The tail is obtained in a similar fashion as the curves of the Glue Cuts by building
a constrained Delaunay triangulation and doing a breadth-first search starting at the edges
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(a) (b)

Figure 16: Solving the instance from Figure 13 with a tail cut (red line). (a) The red curve
needs to be crossed at least twice or two edges must leave the component. The red curve is
found via the Delaunay Triangulation (grey). (b) The first iteration after using the tail cut.

of the cycle. The starting points are not considered as part of the curve and thus the curve
does not cross any edges of the current solution.

For an example, see Figure 16; as illustrated in Figure 13, this instance is problematic
in the Basic IP. This can we now be solved in one iteration. Note that even though it is
possible to cross the tail without making the cycle a hole, this is more expensive than simply
merging it with other cycles.

5.4 Hole-in-Hole Cuts

The difficulty of eliminating holes in holes (Problem 3) is that they may end up as perfectly
legal simple holes, if the outer cycle gets merged with the outer boundary. In that case,
every curve from the hole to the convex hull cannot cross the used edges exactly two times
(edges of the hole are ignored). One of the crossed edges has to be of the exterior cycle,
while the other one cannot: otherwise would again leave the polygon. It also cannot be of
an interior cycle, as it would have leave to leave that cycle again to reach the hole.

Therefore the inner cycle of a hole in hole either has to be merged, or all curves from
it to the convex hull do not have exactly two used edge crossings. As it is impractical to
argue over all curves, we only pick one curve P that currently crosses exactly two used edges
(see the red curve in Figure 17 with crossed edges in green).

Because we cannot express the inequality that P is not allowed to be crossed exactly
two times as an linear programming constraint, we use the following weaker observation. If
the cycle of the hole in hole becomes a simple hole, the crossing of P has to change. Let e1
and e2 be the two used edges that currently cross P and X (P ) the set of all edges crossing
P (including unused but no edges of H). We can express a change on P by

∑
e∈X (P )\{e1,e2}

xe︸ ︷︷ ︸
new crossing

+ (−xe1 − xe2)︸ ︷︷ ︸
e1 or e2 vanishes

≥ −1 .

http://jocg.org/


JoCG 8(1), 340–365, 2017 357

Journal of Computational Geometry jocg.org

(a) (b)

Figure 17: Solving instance from Figure 14 with hole in hole cut (red line). (a) The red
line needs to be crossed at least two times or two edges must leave the component or one
of the two existing edges (green) must be removed. The red line is built via Delaunay
Triangulation. (b) The first iteration after using the hole in hole cut.

Together we obtain the following LP constraint for either H being merged or the crossing
of P changing. ∑

e∈δ(VH ,V \VH)

xe︸ ︷︷ ︸
H merged

+
∑

e∈X (P )\{e1,e2}

xe + (−xe1 − xe2)

︸ ︷︷ ︸
Crossing of P changes

≥ −1 .

Again we use a breadth-first search on the constrained Delaunay triangulation start-
ing from the edges of the hole in hole. Unlike the other two cuts we need to cross used edges.
Thus, we get a shortest path search such that the optimal path primarily has a minimal
number of used edges crossed and secondarily has a minimal number of all edges crossed.

For an example, see Figure 17; as illustrated in Figure 12, this instance is problematic
in the Basic IP. This can now be solved in one iteration. The corresponding path is displayed
in red and the two crossed edges are highlighted in green. Changing the crossing of the path
is more expensive than simply connecting the hole in hole to the outer hole and thus the
hole in hole gets merged.

6 Experiments

6.1 Implementation

Our implementation uses CPLEX to solve the relevant IPs. Important is also the geometric
side of computation, for which we used the CGAL Arrangements package [27]. CGAL
represents a planar subdivision using a doubly connected edge list (DCEL), which is ideal
for detecting invalid boundary cycles.

6.2 Test Instances

While the TSPLIB is well recognized and offers a good mix of instances with different
structure (ranging from grid-like instances over relatively uniform random distribution to
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highly clustered instances), it is rather sparse. Observing that the larger TSPLIB instances
are all geographic in nature, we designed a generic approach that yields arbitrarily large
and numerous clustered instances. This is based on illumination maps: A satellite image
of a geographic region at night time displays uneven light distribution. The corresponding
brightness values can be used as a random density function that can be used for sampling
(see Figure 20). To reduce noise, we cut off brightness values below a certain threshold, i.e.,
we set the probability of choosing the respective pixels to zero.

6.3 Results

All experiments were run on an Intel Core i7-4770 CPU clocked at 3.40 GHz with 16 GB
of RAM. We set a 30 minute time limit to solve the instances. In Table 1, all results are
displayed for every instance that we solved within the time limit. The largest instance
solved within 30 minutes is gr666 with 666 points, which took about 6 minutes. The largest
instance solved out of the TSPLib so far is dsj1000 with 1000 points, solved in about 37
minutes. In addition, we generated 30 instances for each size, which were run with a time
limit of 30 minutes.

Table 1: Runtime in milliseconds of all variants on the
TSPLib instances that we solved within 30 minutes. The
number in the name of an instance indicates its size.

BasicIP +JS+DC +JS+TC +JS+DC +JS+DC +DC+TC
+TC+HIHC +HIHC +HIHC +TC +HIHC

burma14 20 22 17 19 26 19
ulysses16 48 42 35 43 32 42
ulysses22 50 34 55 31 32 61

att48 180 58 72 62 57 129
eil51 74 82 72 78 81 99

berlin52 43 38 37 37 38 51
st70 - 329 324 - 348 414
eil76 714 144 105 530 148 239
pr76 - 711 711 - 731 1238
gr96 376 388 349 10982 384 367
rat99 922 480 485 464 513 1190

kroA100 - 961 689 - 950 1294
kroB100 - 1470 2623 - 1489 2285
kroC100 - 470 431 - 465 577
kroD100 4673 509 451 4334 514 835
kroE100 - 273 273 - 272 574

rd100 - 894 756 - 890 2861
eil101 - 575 445 - 527 1090
lin105 - 390 359 - 412 931
pr107 550 401 272 346 513 923

Continued on next page
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Table 1 – Continued from previous page

BasicIP +JS+DC +JS+TC +JS+DC +JS+DC +DC+TC
+TC+HIHC +HIHC +HIHC +TC +HIHC

pr124 495 348 264 322 355 940
bier127 439 288 270 267 276 476
ch130 - 1758 1802 - 1594 2853
pr136 1505 964 1029 992 950 3001
gr137 - 1262 1361 - 1252 1724
pr144 6276 1028 2926 985 1030 2012
ch150 - 4938 5167 - 5867 7997

kroA150 - 3427 5615 - 3327 7474
kroB150 - 2993 2396 - 2943 5265

pr152 13285 2161 1619 10978 2151 19479
u159 13285 1424 1262 5339 1410 2513

rat195 106030 16188 19780 77216 16117 27580
d198 - 19329 155550 - 19398 41118

kroA200 - 26360 13093 - 26389 11844
kroB200 - 5492 6239 - 5525 15238

gr202 - 4975 7512 - 4304 9670
ts225 18902 7746 9750 7595 7603 60167

tsp225 91423 11600 9741 28756 11531 44297
pr226 - 8498 2800 - 7204 18848
gr229 - 5462 26478 - 10153 25674
gil262 - 23000 22146 - - 72772
pr264 24690 6537 - 6719 6549 23641
a280 22023 3601 3857 3980 3619 12983
pr299 - 16251 355323 - 16173 85789
lin318 - 23863 1511219 - 24035 75312

linhp318 - 23107 1313680 - 23064 79352
rd400 - 111128 92995 - 302363
fl417 - 198013 - - 215210 825808
gr431 - 56716 173609 - 78133 265416
pr439 - 46685 36592 - 48231 273873

pcb442 - 1356796 - - - -
d493 - 359072 - - - 837229

att532 - 217679 256394 - 218665 817096
ali535 - 93771 427800 - 91828 323104
u574 - 371523 199114 - - 1010276

rat575 - 417494 191198 - 580320 934988
p654 - 864066 - - - -
d657 - 455378 253374 - 646148 1352747
gr666 - 366157 - - 670818 -
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Figure 18: (Top) Success rate for the different variants of using of the cuts, with 30 instances
for each input size (y-axis). (Bottom) The average runtime of the different variants for all
30 instances. A non-solved instance is interpreted as 30 minutes runtime.
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Figure 19: (Top) The distribution of the runtime within 30 minutes for the case of using
the jumpstart, glue cuts, tail cuts and HiH-cuts. (Bottom) The relative gap of the value on
the edges of the Delaunay triangulation to the optimal value. The red area marks the range
between the minimal and maximal gap.
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(a) Earth by night

(b) A sampled instance

Figure 20: Using a brightness map as a density function for generating clustered point sets.
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Figure 21: The relative gap of the value on the edges of the Delaunay triangulation to the
optimal value. The red area marks the range between the minimal and maximal gap.

We observe that even without using glue cuts and jumpstart, we are able to solve
more than 50% of the instances up to about 550 input points. Without the tail cuts, we hit a
wall at 100 points, without the HiH-cut instances, at about 370 input points; see Figure 18,
which also shows the average runtime of all 30 instances for all variants. Instances exceeding
the 30 minutes time limit are marked with a 30-minutes timestamp. The figure shows that
using jumpstart shortens the runtime significantly; using the glue cut is almost as fast as
the variant without the glue cut.

Figure 19 shows that medium-sized instances (up to about 450 points) can be solved
in under 5 minutes. We also show that restricting the edge set to the Delaunay triangulation
edges yields solutions that are about 0.5% worse on average than the optimal solution.
Generally the solution of the jumpstart gets very close to the optimal solution until about
530 points. After that, for some larger instances, we get solutions on the edge set of the
Delaunay triangulation that are up to 50% worse than the optimal solution.

7 Conclusions

As discussed in the introduction, considering general instead of simple polygons corresponds
to searching for a shortest cycle cover with a specific topological constraint: one outside cycle
surrounds a set of disjoint and unnested inner cycles. Clearly, this is only one example of
considering specific topological constraints. Our techniques and results should be applicable,
after suitable adjustments, to other constraints on the topology of cycles. We gave a
3-approximation for the MP3; it may be that the approximation can be improved, e.g„
based on extending known PTAS techniques for TSP [4, 23] to account for the topological
constraints.
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There are also various practical aspects that can be explored further. It will be in-
teresting to evaluate the practical performance of the theoretical approximation algorithm,
not only from a practical perspective, but also to gain some insight on whether the approxi-
mation factor of 3 can be tightened. Pushing the limits of solvability can also be attempted,
e.g., by using more advanced techniques from the TSP context. We can also consider spar-
sification techniques other than the Delaunay edges; e.g., the union between the best known
tour and the k-nearest-neighbor edge set (k ∈ {2, 5, 10, 20}) has been applied for TSP by
Land [20], or (see Padberg and Rinaldi [24]) by taking the union of k tours acquired by Lin’s
and Kernighan’s heuristic algorithm [22].
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