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1 Introduction

The Art Gallery Problem (AGP) secks to find the fewest
guards to see all of a given domain; in its classic combi-
natorial variant (posed by Victor Klee), it asks for the
number of guards that always suffice and are sometimes
necessary to guard any simple n-gon: the answer is the
well known [n/3] [1, 3].

While Klee’s question was posed about guarding an n-
vertex simple polygon, a related question about point
sets was posed at the 2014 Goodman-Pollack Fest
(NYU, November 2014): Given a set S of n points in
the plane, how many guards always suffice to guard any
simple polygon with vertex set S?7 A set of guards that
guard every polygonalization of S is said to be a set of
universal guards for the point set. The question is how
many universal guards are always sufficient, and some-
times necessary, for any set of n points? We give the
first set of results on universal guarding. We focus here
on the case in which guards must be placed at a subset
(the guarded points) of the input set S and thus will be
vertex guards for any polygonalization of S.

Due to space limitations, we outline here two selected
cases of results: The UGPI (universal guard problem
using interior guards), in which guards are placed only
at points of S that are not on the convex hull of S, and
the UGPG (universal guard problem on grids), in which
the input set S is a regular grid of points. We then men-
tion results for the general UGP (guards placed at any
points of S) and cases in which S has a bounded number
of convex layers. For the UGPI and UGP, it turns out
that a fraction smaller than 1 is not possible: essentially
all of the points of S require guards for universal cov-
erage of all polygonalizations of S. For the UGPG (on
grids) and for cases with bounded convex layers, frac-
tions less than 1 are possible, as we show. Details and
further results appear in the paper [2].

Preliminaries. We say that three points a, b, c € S form
a spike if there exists a subset S’ C S with a,b,c € S’
and a simple polygonal chain, 7, having vertex set S’
such that not all of Aabe is seen by the points S\{a, b, ¢}
when treating 7 as a set of opaque edges. Refer to Fig-
ure 1. A point set S is said to be in a safe configuration
with respect to spikes if no 3 points of S form a spike.
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Figure 1: Examples of spikes on a,b, c; guards at red
points fail to see all of Aabc.

Figure 2: Safe conditions: Rules 1 and 2.

For three unguarded points a, b, c € S we say that they
satisfy the safe condition if they satisfy either one of the
following rules (refer to Figure 2):

Rule 1: There are points inside (or on the boundary
of) Aabe, and within Aabe a ray with apex in {a,b,c}
rotated inwards, starting from each incident edge to the
apex, hits a guarded interior point before hitting an
unguarded point.

Rule 2: There is no point of S inside (or on the bound-
ary of) Aabc, and, further, a ray with apex in {a,b, c}
rotated outwards, starting from each incident edge to
the apex hits a guarded point that is within the corre-
sponding “wedge” (shown in green in the figure), before
hitting an unguarded point.

A key fact (proof omitted here) is the equivalence:

Lemma 1 A point set S with guards at G C S is in safe
configuration with respect to spikes if and only if any
three unguarded points of it satisfy the safe conditions.

2 The UGPI: Using Interior Guards

In the UGPI we allow guards to be placed only at points
of S that are interior to the convex hull, CH(S). Note
that placing guards at all interior points is sufficient



to guard any polygonalization of S, since the C'H(S)
vertices are convex vertices in any polygonalization of
S, and a simple fact is that the reflex vertices of any
simple polygon see all of the polygon. Our main result
in this section is a proof that it is sometimes necessary
to place guards at all interior points, in order to have a
universal guard set:

Theorem 2 There exist configurations of n points S,
for arbitrarily large n, for which CH(S) is a triangle,
and the only universal guard set using only interior
guards is the set of all n — 3 interior points.

Proof sketch: We utilize Lemma 1 and construct a care-
ful configuration of points whose general structure is
shown in Figure 3: The points a,b,c € S are the ver-
tices of CH (SS). Six additional points (in red) are placed
just inside each edge of Aabc, so that each is first hit
by rays rotating inwards from the edges of Aabc. Then,
very carefully located points are placed (in a sequence
of “rounds”) along each of three line segments (thick
green in the figure), in such a way that all of these in-
terior points must be guarded in order to avoid a spike
(created by the unguarded point, together with two ver-
tices of Aabc). (Each of the potential spikes is such that,
in this configuration S, we can argue that there exists
a polygonalization of S that includes the spike.)

Figure 3: The overall configuration for the proof of The-
orem 2.

3 The UGPG: Guarding Full Grids

Theorem 3 Forn = ab points S on a regular a xb grid,

L%J guards are sufficient to guard all polygonalizations

on n points. Further, L%J - b guards are necessary to

guard every polygonalization on ax b grid points (a < b)
with size at least 4 x 5.

The proof of sufficiency is based on either of two pat-
terns of guard selection: (1) place guards at the odd
posititions on odd-numbered rows and at even positions
on even-numbered rows of the grid (i.e., place guards in
the grid according to white squares on a checkboard); or
(2) place guards at all positions on the even-numbered
rows. We argue that with either placement strategy, any
triangle with vertices at grid points, and no other grid
points on the boundary or interior of the triangle, must
have at leat one of its vertices guarded. This implies
that the L%J guards see every point in any polygonal-
ization P of S, since any such P can be triangulated,
and every triangle in any triangulation has at least one
guard at a vertex. The proof of necessity is based on an-
alyzing possible spikes in the grid, using the fact that in
a solution an unguarded interior grid point cannot have
both of its horizontal and vertical neighbors unguarded
at the same time.

4 The General UGP, Bounded Layers, k-UGP
In [2] we prove a bound for the general UGP:

Theorem 4 For any m = 2" > 8 such that h € N,
there is a point set P with |P| =n = m? +2%m — 21
that requires at least (1 — ﬁ)n universal guards.

The proof of this theorem is based on having the points
evenly distributed on multiple convex layers in such a
way that on each layer at most 4 points can be un-
guarded. We also consider sets S on m layers:

Theorem 5 (1 — —2—1)n are always sufficient to

16n 2m
guard all polygonalizations for n points that lie on m

convex layers.

In [2] we also give results on the k-universal guarding
problem, in which the guards must perform visibility
coverage for a set of k different polygonalizations of the
input points (instead of all polygonalizations).

The complexity of deciding if a given set S has a uni-
versal guard set of size at most m is open; it is also
open to obtain approximation algorithms for universal
guarding.
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