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Abstract We discuss the problem of finding a longest tour for a set of points in a
geometric space. In particular, We show that a longest tour for a set of n points in the
plane can be computed in time O(n) if distances are determined by the Manhattan
metric, while the same problem is NP-hard for points on a sphere under Euclidean
distances.

1 Introduction: Short and Long Roundtrips

The Traveling Salesman Problem (TSP) is one of the classic problems of combina-
torial optimization. Given a complete graph G = (V,E) with edge weights c(e) for
all edges e 2 E, find a shortest roundtrip through all vertices, i.e., a cyclic permu-
tation p from the symmetric group Sn of all n vertices v1, . . . ,vn, such that the total
tour length Ân

i=1 c({vi,vp(i)}) is minimized.
The difficulties of finding a good roundtrip are well known. The classical Odyssey

is illustrated in Figure 1: according to legend, it took Ulysses many years to com-
plete his voyage. One justification is the computational complexity of the TSP: it
is one of the most famous NP-hard problems, so it does indeed take many years of
CPU time to find provably optimal solutions for non-trivial instances.

However, there is an even more convincing justification for Ulysses’ failure to
be home in a more timely fashion: it was not him who chose his route. Instead,
malevolent gods caused a deliberately long voyage—so the real objective was to
maximize the traveled distance. This motivates the MaxTSP: Find a roundtrip that
visits all vertices in a weighted graph, such that the total tour length is maximized.

In this chapter, we study longest tours in a geometric setting, in which the vertices
are points in two- or three-dimensional space, and the edge weights are induced
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by the distance between them. As it turns out, the difficulty of the corresponding
MaxTSP depends greatly on the involved geometry.

Fig. 1 The Odyssey: a tour through 16 locations in the Mediterrenean.

2 Traveling in Manhattan

The cost of traveling in a geometric space is measured by the geometric distance
between points. A particularly simple way is to measure the axis-parallel distances
separately, as one does when traveling along streets and avenues in Manhattan, giv-
ing rise to L1 or Manhattan distances. A natural alternative is to use L2 or Euclidean
distances, which correspond to the length of straightline connections. When trying
to find a shortest tour, this distinction does not make a difference in terms of the
resulting problem complexity.

Theorem 1. It is NP-complete to decide whether a set of n distinct points in the
integer planar grid allows a roundtrip of length n.

This amounts to deciding whether a grid graph has a Hamiltionian cycle; see
Figure 2. The corresponding distance is the same in Manhattan or Euclidean dis-
tances.

In the following we sketch why it is considerably easier to find a longest tour for
a planar point set with Manhattan distances.

Theorem 2. When distances are measured according to the Manhattan metric, find-
ing a longest roundtrip for a set P of n points in the plane can be achieved in time
O(n).
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Fig. 2 A set of integer grid
points induces a grid graph,
in which two vertices are ad-
jacent if and only if they have
distance 1. Grid graphs are bi-
partite, as we can split the set
of vertices into those with odd
coordinate sum (black) and
even coordinate sum (white).
It is NP-complete to decide
whether a given grid graph
with n vertices has a tour of
length n, i.e., a Hamiltonian
cycle.

One key idea is to consider a Manhattan median c = (xc,yc) for P, i.e., a point
for which xc is a median of all x-coordinates, and yc is a median of all y-coordinates.
Because c minimizes both the sum of all x- and y-distances to points in P, it induces
a Minimum Steiner Star, as follows; we write L1(p,q) for the Manhattan distance
between p and q.

Lemma 1. A Manhattan median c minimizes the total distance Ân
i=1 L1(c, pi) to all

points in P.
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Fig. 3 (Left) A two-dimensional median c for a planar point set splits it into four quadrants, with
equal numbers of points in opposite quadrants. (Right) In Manhattan distances, connecting two
points in opposite quadrants incurs the same cost as connect the median to both of them.

Finding c is possible in linear time. Because a median splits P into two equal
subsets according to either x- or y-distances, it follows that it induces a split into
four quadrants, such that there is an equal number of points in opposite quadrants;
see Figure 3 (Left). Furthermore, the weight of the corresponding Steiner Star, i.e.,
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the sum of all distances from the median, induces an upper bound on the length of a
longest tour.

Lemma 2. For a set P of n points in the plane, we have the dual relationship
maxp2Scyclic

n
Ân

i=1 L1(pi, pp(i)) 2minc2R2 Ân
i=1 L1(c, pi).

This is a simple consequence of triangle inequality, as shown in Figure 3 (Right):
each edge between two points p and q can be mapped to a path via a third point c,
so L1(p,q) L1(p,c)+L1(c,q). Note that for Manhattan distances, this inequality
actually holds with equality, provided that p and q lie in opposite quadrants respec-
tive to c. This observation allows us to find an optimal permutation that consists of
two cycles instead of one.

Lemma 3. For a set P of n points in the plane, there is a permutation p consisting
of two cycles for which Ân

i=1 L1(pi, pp(i)) = 2minc2R2 Ân
i=1 L1(c, pi).

As shown in Figure 4 (Left), such a solution consists of two subtours: cycles
that go back and forth between opposite quadrants, which is possible because of the
equal number of points in those quadrants.
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Fig. 4 (Left) Because opposite quadrants contain equal numbers of points, traveling back and forth
between quadrants induces an optimal pair of subtours, shown in blue and green. (Right) In a tour,
there must be connections between adjacent quadrants (shown in red), inducing an adjustment of
the upper bound.

There is one final step left for obtaining an optimal tour. Observe that in or-
der to form one connected cycle, any tour must contain a pair of edges (p1,q1)
and (p2,q2) that connect adjacent quadrants, as shown in Figure 4 (Right). This
causes a gap in the triangle inequality, depending on the distance to a coordinate
axis; in the example, this works out to L1(p1,q1) + 2|x1| = L1(p1,c) + L1(c,q1)
and L1(p2,q2) + 2|x2| = L1(p2,c) + L1(c,q2). As a consequence, we must adjust
the upper bound of Ân

i=1 L1(c, pi) by subtracting twice the smallest possible coordi-
nate distances for one point from each of two opposite coordinate halfplanes, i.e.,
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2|x1|+ 2|x2| in the example. Finding such a pair is easily possible in linear time.
Now the corresponding pair of edges (p1,q1) and (p2,q2) can be used for merging
both subtours into one tour that meets this upper bound, meaning that it is optimal.

Theorem 2 has a very powerful generalization for polyhedral norms, which are
induced by using a symmetric convex polyhedron as the unit ball.

Theorem 3. When distances are measured according to a polyhedral norm with a
fixed number f of facets, finding a longest roundtrip for a set P of n points in a
d-dimensional space for some fixed d can be achieved in time O(n f�2 logn).

3 Traveling around the Globe

In a graph setting, the TSP is NP-complete, and it is not difficult to see that this is
also the case for the MaxTSP: If M is a sufficiently large number, replacing each
edge weight c(e) of a TSP instance by M� c(e) yields a MaxTSP instance with the
same optimal tours. But how can we use this simple idea of inverting short and long
edges in a geometric setting? In fact, Theorem 2 indicates that this may not even be
possible.

The key idea lies in switching from from the plane to a sphere, and consider
Euclidean distances. Consider Figure 5, which displays a sign posted at the airport
of Auckland in New Zealand: It shows that furthest distances are to London and
Frankfurt, which are both almost antipodal to the current location, i.e., at close to
the theoretical maximum distance of 20.000km. Moreover, both cities are far from
Auckland, but close to each other.

Utilizing this observation, we can conclude the following.

Theorem 4. When distances are measured according to the Euclidean metric, find-
ing a longest roundtrip for a set P of n points on a sphere is an NP-hard problem.

We sketch a reduction from the Hamiltonicity of Grid Graphs, i.e., a consequence
of Theorem 1. Given a set P of planar distinct grid points, like the one shown in Fig-
ure 2. We embed two “small” copies of P at antipodal locations of a sphere, as
indicated in Figure 6 (Left). This leaves corresponding pairs at maximum possible
distance, as shown in Figure 6 (Middle). Now observe that grid graphs are bipar-
tite: each grid point has either even or odd sum of coordinates, and moving to an
adjacent grid point changes parity. Omitting all even points of P from one of the
two locations, but all odd points from the other (as depicted in Figure 6 (Right))
leaves maximum possible distances between points that are almost antipodal (like
Auckland and Frankfurt)—meaning that they are adjacent in the original grid graph.
Therefore, there is a tour that uses only edges of this maximum possible length, if
and only if the original grid graph has a Hamiltonian cycle. (The complete proof
requires more involved trigonometry for a full argument, but that is a mere matter
of math.)
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Fig. 5 Large distances around the globe: a picture taken at Auckland airport, which is close to
being 20.000km away from, i.e., almost antipodal to, London and Frankfurt.

Fig. 6 Showing NP-hardness of the MaxTSP for points in 3D and Euclidean distances: (Left)
Embedding two copies of a given grid graph G, such that corresponding vertices become antipodal
points. (Middle) Longest distances within the resulting point set connect antipodal points. (Right)
Exploiting bipartiteness of grid graphs for mapping edges in the original grid graph to longest
edges in the remaining point set.

How hard is it to find a longest tour for Euclidean distances in the plane? This has
been unresolved for more than a decade: it is Problem #49 of THE OPEN PROBLEMS
PROJECT, and has been a challenge since 2003.

Problem 1. What is the complexity of finding a longest roundtrip for a set P of n
points in the plane, when distances are measured according to the Euclidean metric?
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4 Further Reading

There are different books describing various aspects of the TSP. A classic overview
is provided by Lawler et al. [18]. A detailed exposition of the computational aspects
involved in solving instances to optimality was presented by Applegate et al. [1],
while Cook [7] gives an entertaining survey with various historical and anecdotal
notes. The Odyssey instance was first presented by Grötschel and Padberg [14, 15,
16] and is contained in the benchmark library TSPLIB [21].

Papdimitriou [20] was the first to prove NP-hardness of the TSP for Euclidean
distances in the plane; the NP-hardness result for Hamiltonicity in grid graphs is due
to Itai et al. [17].

A couple of years before Arora [3] and Mitchell [19] independently showed that
the geometric TSP can be approximated arbitrarily well (i.e., for any e > 0, there
is a polynomial-time algorithm that computes a tour within a factor of (1+ e) of
the optimum), Barvinok [5] already did the same for the MaxTSP. Independently,
Serdyuokov [22, 23, 24] gave several results for the MaxTSP. The bottleneck version
of the MaxTSP (find a tour with a shortest edge that is as long as possible) was
considered by Arkin et al. [2].

Barvinok et al. [4] were the first to provide a polynomial-time algorithm for the
MaxTSP with polyhedral norms in fixed-dimensional space, as stated in Theorem 3.
The strong geometric duality between Minimum Steiner Star and Maximum Match-
ing was first observed by Tamir and Mitchell [25]. Fekete and Meijer [10, 11] proved
a tight bound for the corresponding ratio between Minimum Steiner Star and Max-
imum Matching for Euclidean distances, and demonstrated in [12, 13] that this can
be exploited for finding good maximum-weight matchings.

The results of this chapter (in particular, Theorem 2 and Theorem 4) were first
presented in [9]. A more detailed journal version can be found in [6], which also
contains full details of the conference paper [4].

See [8] for The Open Problems Project.
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