Computing Nonsimple Polygons
of Minimum Perimeter

Sandor P. Fekete! ™) Andreas Haas', Michael Hemmer!, Michael Hoffmann?,
Irina Kostitsyna®, Dominik Krupke!, Florian Maurer', Joseph S.B. Mitchell*,
Arne Schmidt!, Christiane Schmidt®, and Julian Troegel®

L TU Braunschweig, Braunschweig, Germany
s.fekete@tu-bs.de
2 ETH Zurich, Zurich, Switzerland
3 TU Eindhoven, Eindhoven, The Netherlands
4 Stony Brook University, Stony Brook, NY, USA
5 Linképing University, Linképing, Sweden

Abstract. We provide exact and approximation methods for solving
a geometric relaxation of the Traveling Salesman Problem (TSP) that
occurs in curve reconstruction: for a given set of vertices in the plane, the
problem Minimum Perimeter Polygon (MPP) asks for a (not necessarily
simply connected) polygon with shortest possible boundary length. Even
though the closely related problem of finding a minimum cycle cover is
polynomially solvable by matching techniques, we prove how the topo-
logical structure of a polygon leads to NP-hardness of the MPP. On the
positive side, we show how to achieve a constant-factor approximation.

When trying to solve MPP instances to provable optimality by means
of integer programming, an additional difficulty compared to the TSP
is the fact that only a subset of subtour constraints is valid, depending
not on combinatorics, but on geometry. We overcome this difficulty by
establishing and exploiting additional geometric properties. This allows
us to reliably solve a wide range of benchmark instances with up to 600
vertices within reasonable time on a standard machine. We also show
that using a natural geometry-based sparsification yields results that are
on average within 0.5 % of the optimum.

Keywords: Traveling Salesman Problem (TSP) - Minimum Perimeter
Polygon (MPP) - Curve reconstruction + NP-hardness - Exact optimiza-
tion - Integer programming - Computational geometry meets combina-
torial optimization

1 Introduction

For a given set V of points in the plane, the Minimum Perimeter Polygon (MPP)
asks for a polygon P with vertex set V' that has minimum possible boundary
length. An optimal solution may not be simply connected, so we are faced with
a geometric relaxation of the Traveling Salesman Problem (TSP).

© Springer International Publishing Switzerland 2016

A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 134-149, 2016.
DOI: 10.1007/978-3-319-38851-9_10

Computing Nonsimple Polygons of Minimum Perimeter 135

Fig. 1. A Minimum Perimeter Polygon for an instance with 960 vertices.

The TSP is one of the classic problems of Combinatorial Optimization. NP-
hard even in special cases of geometric instances (such as grid graphs), it has
served as one of the prototypical testgrounds for developing outstanding algo-
rithmic approaches. These include constant-factor approximation methods (such
as Christofides’ 3/2 approximation [6] in the presence of triangle inequality, or
Arora’s [4] and Mitchell’s [20] polynomial-time approximation schemes for geo-
metric instances), as well as exact methods (such as Grotschel’s optimal solution
to a 120-city instance [14] or the award-winning work by Applegate et al. [2] for
solving a 13509-city instance within 10 years of CPU time.) The well-established
benchmark library TSPLIB [23] of T'SP instances has become so widely accepted
that it is used as a benchmark for a large variety of other optimization prob-
lems. See the books [15,18] for an overview of various aspects of the TSP and
the books [3,7] for more details on exact optimization.

From a geometric point of view, the TSP asks for a shortest polygonal chain
through a given set of vertices in the plane; as a consequence of triangle inequal-
ity, the result is always a simple polygon of minimum perimeter. Because of
the fundamental role of polygons in geometry, this has made the study of TSP
solutions interesting for a wide range of geometric applications. One such con-
text is geometric shape reconstruction, where the objective is to re-compute the
original curve from a given set of sample points; see Giesen [13], Althaus and
Mehlhorn [1] or Dey et al. [9] for specific examples. However, this only makes
sense when the original shape is known to be simply connected, i.e., bounded
by a single closed curve. More generally, a shape may be multiply connected,
with interior holes. Thus, computing a simple polygon may not yield the desired
answer. Instead, the solution may be a Minimum Perimeter Polygon (MPP):
for a set V of points in the plane, find a not necessarily simple polygon P with
vertex set V, such that the boundary of P has smallest possible length!. See
Fig. 1 for an optimal solution of an instance with 960 points; this also shows the
possibly intricate structure of an MPP.

! Note that we exclude degenerate holes that consist of only one or two vertices.

136 S.P. Fekete et al.

While the problem MPP? asks for a cycle cover of the given set of vertices (as
opposed to a single cycle required by the TSP), it is important to note that even
the more general geometry of a polygon with holes imposes some topological
constraints on the structure of boundary cycles; as a consequence, an optimal
2-factor (a minimum-weight cycle cover of the vertices, which can be computed
in polynomial time) may not yield a feasible solution. Fekete et al. [11] gave a
generic integer program for the MPP (and other related problems) that yields
optimal solutions for instances up to 50 vertices. However, the main challenges
were left unresolved. What is the complexity of computing an MPP? Is it possible
to develop constant-factor approximation algorithms? And how can we compute
provably optimal solutions for instances of relevant size?

Our Results
In this paper, we resolve the main open problems related to the MPP.

— We prove that the MPP is NP-hard. This shows that despite of the rela-
tionship to the polynomially solvable problem of finding a minimum 2-factor,
dealing with the topological structure of the involved cycles is computation-
ally difficult.

— We give a 3-approximation algorithm.

— We provide a general IP formulation with O(n?) variables to ensure a valid
solution for the MPP.

— We describe families of cutting planes that significantly reduce the number of
iterations needed to eliminate outer components and holes in holes, leading
to a practically useful formulation.

— We present experimental results for the MPP, solving instances with up to
1000 points in the plane to provable optimality within 30 min of CPU time.

— We also consider a fast heuristic that is based on geometric structure, restrict-
ing the edge set to the Delaunay triangulation. Experiments on structured
random point sets show that solutions are on average only about 0.5 % worse
than the optimum, with vastly superior runtimes.

2 Complexity

Theorem 1. The MPP problem is NP-hard.

The proof is based on a reduction from the Minimum Vertex Cover problem
for planar graphs. Details are omitted for lack of space; see the full version of
the paper [12] for the detailed proof.

3 Approximation

In this section we show that the MPP can be approximated within a factor of
3. Note that we only sketch the general approach, skipping over some details for
lack of space; a full proof is given in the full version of the paper [12].

2 For simplicity, we will also refer to the problem of computing an MPP as “the MPP”.

Computing Nonsimple Polygons of Minimum Perimeter 137

Theorem 2. There exists a polynomial time 3-approximation for the MPP.

Proof. We compute the convex hull, CH(V), of the input set; this takes time
O(nlogh), where h is the number of vertices of the convex hull. Note that the
perimeter, |CH(V)|, of the convex hull is a lower bound on the length of an
optimal solution (OPT > |CH(V)]|), since the outer boundary of any feasi-
ble solution polygon must enclose all points of V, and the convex hull is the
minimum-perimeter enclosure of V.

Let U C V be the input points interior to CH (V). If U = &, then the optimal
solution is given by the convex hull. If |U| < 2, we claim that an optimal solution
is a simple (nonconvex) polygon, with no holes, on the set V', given by the TSP
tour on V; since |U| = 2 is a constant, it is easy to compute the optimal solution
in polynomial time, by trying all possible ways of inserting the points of U into
the cycle of the points of V' that lie on the boundary of the convex hull, CH (V).

Thus, assume now that |U| > 3. We compute a minimum-weight 2-factor,
denoted by ~(U), on U, which is done in polynomial-time by standard meth-
ods [8]. Now, «v(U) consists of a set of disjoint simple polygonal curves having
vertex set U; the curves can be nested, with possibly many levels of nesting. We
let F' denote the directed nesting forest whose nodes are the cycles (connected
components) of v(U) and whose directed edges indicate nesting (containment)
of one cycle within another. Because an optimal solution consists of a 2-factor
(an outer cycle, together with a set of cycles, one per hole of the optimal poly-
gon), we know that OPT > |y(U)|. (In an optimal solution, the nesting forest
corresponding to the set of cycles covering all of V' (not just the points U interior
to CH(V)) is simply a single tree that is a star: a root node corresponding to
the outer cycle, and a set of children adjacent to the root node, corresponding
to the boundaries of the holes of the optimal polygon.) If the nesting forest F’
for our optimal 2-factor is a set of isolated nodes (i.e., there is no nesting among
the cycles of the optimal 2-factor on U), then our algorithm outputs a polygon
with holes whose outer boundary is the boundary of the convex hull, CH(V),
and whose holes are the (disjoint) polygons given by the cycles of v(U). In this
case, the total weight of our solution is equal to |CH(V)|+ |[y(U)| < 2-OPT.

Assume now that F' has at least one nontrivial tree. We describe a two-
phase process that transforms the set of cycles corresponding to F' into a set of
pairwise-disjoint cycles, each defining a simple polygon interior to CH(V'), with
no nesting — the resulting simple polygons are disjoint, each having at least 3
vertices from U C V.

Phase 1 of the process transforms the cycles v(U) to a set of polygonal
cycles that define weakly simple polygons whose interiors are pairwise disjoint.
(A polygonal cycle 8 defines a weakly simple polygon Pg if Pg is a closed, simply
connected set in the plane with a boundary, dPg consisting of a finite union of
line segments, whose traversal (e.g., while keeping the region Pg to one’s left) is
the (counterclockwise) cycle 8 (which can have line segments that are traversed
twice, once in each direction).) The total length of the cycles at the end of phase 1
is at most 2 times the length of the original cycles, 4(U). Then, phase 2 of the
process transforms these weakly simple cycles into (strongly) simple cycles that

138 S.P. Fekete et al.

define disjoint simple polygons interior to CH (V). Phase 2 only does shortening
operations on the weakly simple cycles; thus, the length of the resulting simple
cycles at the end of phase 2 is at most 2 times the total length of v(U). Details
of phase 1 and phase 2 processes are given in the full version of the paper. At
the end of phase 2, we have a set of disjoint simple polygons within CH (V),
which serve as the holes of the output polygon, whose total perimeter length is
at most |[CH (V)| +2|v(U)| <3-OPT. a

4 IP Formulation

4.1 Cutting-Plane Approach

In the following we develop suitable Integer Programs (IPs) for solving the MPP
to provable optimality. The basic idea is to use a binary variable z, € {0,1}
for any possible edge e € E, with z. = 1 corresponding to e being part of a
solution P if and only if . = 1. This allows it to describe the objective function
by min) . zcce, Where ¢ is the length of e. In addition, we impose a suitable
set of linear constraints on these binary variables, such that they characterize
precisely the set of polygons with vertex set V. The challenge is to pick a set of
constraints that achieve this in a (relatively) efficient manner.

As it turns out (and is discussed in more detail in Sect. 5), there is a significant
set of constraints that correspond to eliminating cycles within proper subsets
S C V. Moreover, there is an exponential number of relevant subsets S, making
it prohibitive to impose all of these constraints at once. The fundamental idea
of a cutting-plane approach is that much fewer constraints are necessary for
characterizing an optimal solution. To this end, only a relatively small subfamily
of constraints is initially considered, leading to a relaxation. As long as solving
the current relaxation yields a solution that is infeasible for the original problem,
violated constraints are added in a piecemeal fashion, i.e., in iterations.

In the following, these constraints (which are initially omitted, violated by
an optimal solution of the relaxation, then added to eliminate such infeasible
solutions) are called cutting planes or simply cuts, as they remove solutions of a
relaxation that are infeasible for the MPP.

4.2 Basic IP

We start with a basic IP that is enhanced with specific cuts, described in
Sects. 5.2-5.4. We denote by E the set of all edges between two points of V,
C a set of invalid cycles and d(v) the set of all edges in E that are incident to
v € V. Then we optimize over the following objective function:

min Z TeCe. (1)

eclE

Computing Nonsimple Polygons of Minimum Perimeter 139

This is subject to the following constraints:

Vwev: > wm.=2, (2)

e€d(v)
VCeC: Y x <[C|—1, (3)
ecC
z. € {0,1}. (4)

For the TSP, C is simply the set of all subtours, making identification and
separation straightforward. This is much harder for the MPP, where a subtour
may end up being feasible by forming the boundary of a hole, but may also be
required to connect with other cycles. Therefore, identifying valid inequalities
requires more geometric analysis, such as the following. If we denote by CH the
set of all convex hull points, then a cycle C is invalid if C' contains:

1. at least one and at most |[CH| — 1 convex hull points. (See Fig.2(a))
2. all convex hull points but does not enclose all other points. (See Fig.2(b))
3. no convex hull point but encloses other points. (See Fig. 2(c))

By C; we denote the set of all invalid cycles with property ¢. Because there can
be exponentially many invalid cycles, we add constraint (3) in separation steps.

For an invalid cycle with property 1, we use the equivalent cut constraint

Vel :) me>2 (5)
e€d(C)

We use constraint (3) if |C| < 2%t and constraint (5) otherwise, where §(C)
denotes the “cut” edges connecting a vertex v € C with a vertex v’ € C. As
argued by Pferschy and Stanek [22], this technique of dynamic subtour con-
straints (DSC) is useful, as it reduces the number of non-zero coefficients in the
constraint matrix.

R

/\\I

Q 5

) Invalid cycle of type 1 (b) Invalid cycle of (¢) Invalid cycle of
type 2 type 3

Fig. 2. Examples of invalid cycles (red). Black cycles may be valid. (Color figure online)

140 S.P. Fekete et al.

4.3 Initial Edge Set

In order to quickly achieve an initial solution, we sparsify the ©(n?) input edges
to the O(n) edges of the Delaunay Triangulation, which naturally captures geo-
metric nearest-neighbor properties. If a solution exists, this yields an upper
bound. This technique has already been applied for the TSP by Jiinger et al.
[16]. In theory, this may not yield a feasible solution: a specifically designed
example by Dillencourt shows that the Delaunay triangulation may be non-
Hamiltonian [10]; this same example has no feasible solution for the MPP when
restricted to Delaunay edges. We did not observe this behavior in practice.

CPLEX uses this initial solution as an upper bound, allowing it to quickly
discard large solutions in a branch-and-bound manner. As described in Sect. 6,
the resulting bounds are quite good for the MPP.

5 Separation Techniques

5.1 Pitfalls

When separating infeasible cycles, the Basic IP may get stuck in an exponential
number of iterations, due to the following issues. (See Figs.3-5 for illustrating
examples.)

Problem 1: Multiple outer components containing convex hull points occur that
(despite the powerful subtour constraints) do not get connected, because it is
cheaper to, e.g., integrate subsets of the interior points. Such an instance can
be seen in Fig. 3, where we have two equal components with holes. Since the
two components are separated by a distance greater than the distance between
their outer components and their interior points, the outer components start
to include point subsets of the holes. This results in a potentially exponential
number of iterations.

Problem 2: Outer components that do not contain convex hull points do not
get integrated, because we are only allowed to apply a cycle cut on the outer
component containing the convex hull points. An outer component that does
not contain a convex hull point cannot be prohibited, as it may become a hole
in later iterations. See Fig. 4 for an example in which an exponential number
of iterations is needed until the outer components get connected.

Problem 3: If holes contain further holes, we are only allowed to apply a cycle
cut on the outer hole. This outer hole can often cheaply be modified to fulfill
the cycle cut but not resolve the holes in the hole. An example instance can
be seen in Fig. 5, in which an exponential number of iterations is needed.

The second problem is the most important, as this problem frequently
becomes critical on instances of size 100 and above. Holes in holes rarely occur on
small instances but are problematic on instances of size >200. The first problem
occurs only in a few instances.

In the following we describe three cuts that each solve one of the problems:
The glue cut for the first problem in Sect. 5.2, the tail cut for the second problem
in Sect. 5.3, and the HiH-Cut for the third problem in Sect. 5.4.

Computing Nonsimple Polygons of Minimum Perimeter 141

jage] jage] 8] 8] ng UCI

gl (s M e [R5

(d) (e) ()

Fig. 3. (a)—(f) show consecutive iterations when trying to solve an instance using only
constraint (5).

EI; 8]
o n n n n

(a) (b) (c) ()

o P i

(e) (f) (8)

Fig. 4. (a)—(g) show consecutive iterations when trying to solve an instance using only
constraint (3).

Fig. 5. (a)—(g) show consecutive iterations when trying to solve an instance using only
constraint (3).

5.2 Glue Cuts

To separate invalid cycles of property 1 we use glue cuts (GC), based on a curve
Rp from one unused convex hull edge to another (see Fig.6). With X' (Rp)
denoting the set of edges crossing Rp, we can add the following constraint:

142 S.P. Fekete et al.

(a) (b)

Fig. 6. Solving instance from Fig. 3 with a glue cut (red). (a) The red curve needs to
be crossed at least twice; it is found using the Delaunay Triangulation (grey). (b) The
first iteration after using the glue cut. (Color figure online)

Such curves can be found by considering a constrained Delaunay triangula-
tion [5] of the current solution, performing a breadth-first-search starting from
all unused convex hull edges of the triangulation. Two edges are adjacent if they
share a triangle. Used edges are excluded, so our curve will not cross any used
edge. As soon as two different search trees meet, we obtain a valid curve by using
the middle points of the edges (see the red curve in Fig. 6).

For an example, see Fig. 6; as illustrated in Fig. 3, this instance is problematic
in the Basic IP. This can we now be solved in one iteration.

5.3 Tail Cuts

An outer cycle C' that does not contain any convex hull points cannot simply
be excluded, as it may become a legal hole later. Such a cycle either has to be
merged with others, or become a hole. For a hole, each curve from the hole to a
point outside of the convex hull must be crossed at least once.

With this knowledge we can provide the following constraint, making use of
a special curve, which we call a tail (see the red path in Fig. 7).

Let Ry be a valid tail and X (Ryr) the edges crossing it. We can express the
constraint in the following form:

Yo me+ Y we>L

e€X(R1)\6(C) ecdo(C)
———
C gets surrounded C merged

The tail is obtained in a similar fashion as the curves of the Glue Cuts by
building a constrained Delaunay triangulation and doing a breadth-first search
starting at the edges of the cycle. The starting points are not considered as part
of the curve and thus the curve does not cross any edges of the current solution.

For an example, see Fig. 7; as illustrated in Fig. 4, this instance is problematic
in the Basic IP. This can we now be solved in one iteration. Note that even
though it is possible to cross the tail without making the cycle a hole, this is
more expensive than simply merging it with other cycles.

5.4 Hole-in-Hole Cuts

The difficulty of eliminating holes in holes (Problem 3) is that they may end
up as perfectly legal simple holes, if the outer cycle gets merged with the outer

Computing Nonsimple Polygons of Minimum Perimeter 143

RS

peereriey
. .
rpf B 11 f j
)

(a)

Fig. 7. Solving the instance from Fig.4 with a tail cut (red line). (a) The red curve
needs to be crossed at least twice or two edges must leave the component. The red curve
is found via the Delaunay Triangulation (grey). (b) The first iteration after using the
tail cut. (Color figure online)

boundary. In that case, every curve from the hole to the convex hull cannot
cross the used edges exactly two times (edges of the hole are ignored). One of
the crossed edges has to be of the exterior cycle, while the other one cannot:
otherwise would again leave the polygon. It also cannot be of an interior cycle,
as it would have leave to leave that cycle again to reach the hole.

Therefore the inner cycle of a hole in hole either has to be merged, or all
curves from it to the convex hull do not have exactly two used edge crossings.
As it is impractical to argue over all curves, we only pick one curve P that
currently crosses exactly two used edges (see the red curve in Fig. 8 with crossed
edges in green).

Because we cannot express the inequality that P is not allowed to be crossed
exactly two times as an linear programming constraint, we use the following
weaker observation. If the cycle of the hole in hole becomes a simple hole, the
crossing of P has to change. Let e; and es be the two used edges that currently
cross P and X' (P) the set of all edges crossing P (including unused but no edges
of H). We can express a change on P by

Z Te+ (—Tey — Te,) > —1.
—_———

c€X(P)\{e1,e2} ey or eg vanishes

new crossing

Together we obtain the following LP constraint for either H being merged or
the crossing of P changing.

Z Te+ Z Te + (—Tey — Xe,) > —1.

e€d(Vu,V\VH) ecX(P)\{e1,e2}

H merged Crossing of P changes

Again we use a breadth-first search on the constrained Delaunay triangula-
tion starting from the edges of the hole in hole. Unlike the other two cuts we need
to cross used edges. Thus, we get a shortest path search such that the optimal
path primarily has a minimal number of used edges crossed and secondarily has
a minimal number of all edges crossed.

For an example, see Fig. 8; as illustrated in Fig. 3, this instance is problematic
in the Basic IP. This can now be solved in one iteration. The corresponding path

144 S.P. Fekete et al.

Fig. 8. Solving instance from Fig.5 with hole in hole cut (red line). (a) The red line
needs to be crossed at least two times or two edges must leave the component or one
of the two existing edges (green) must be removed. The red line is built via Delaunay
Triangulation. (b) The first iteration after using the hole in hole cut. (Color figure
online)

is displayed in red and the two crossed edges are highlighted in green. Changing
the crossing of the path is more expensive than simply connecting the hole in
hole to the outer hole and thus the hole in hole gets merged.

6 Experiments

6.1 Implementation

Our implementation uses CPLEX to solve the relevant IPs. Important is also
the geometric side of computation, for which we used the CGAL Arrangements
package [24]. CGAL represents a planar subdivision using a doubly connected
edge list (DCEL), which is ideal for detecting invalid boundary cycles.

6.2 Test Instances

While the TSPLIB is well recognized and offers a good mix of instances with
different structure (ranging from grid-like instances over relatively uniform ran-
dom distribution to highly clustered instances), it is rather sparse. Observing
that the larger TSPLIB instances are all geographic in nature, we designed a
generic approach that yields arbitrarily large and numerous clustered instances.
This is based on illumination maps: A satellite image of a geographic region at
night time displays uneven light distribution. The corresponding brightness val-
ues can be used as a random density function that can be used for sampling (see
Fig. 12). To reduce noise, we cut off brightness values below a certain threshold,
i.e., we set the probability of choosing the respective pixels to zero.

6.3 Results

All experiments were run on an Intel Core i7-4770 CPU clocked at 3.40 GHz
with 16 GB of RAM. We set a 30 min time limit to solve the instances. In Table 1,
all results are displayed for every instance with more than 100 points that we

Computing Nonsimple Polygons of Minimum Perimeter 145

Table 1. The runtime in milliseconds of all variants on the instances of the TSPLib
with more than 100 points, solved within 30 min. The number in the name of an instance

indicates the number of points.

BasiclP | +JS+DC+H+TC+ | +JS+TC+ | +JS4+DC+ | +JS+DC+ | +DCHTC+

HIHC HIHC HIHC TC HIHC
€il101 - 575 445 - 527 1090
lin105 - 390 359 - 412 931
prl07 550 401 272 346 513 923
prl24 495 348 264 322 355 940
bier127 439 288 270 267 276 476
ch130 - 1758 1802 - 1594 2853
prl36 1505 964 1029 992 950 3001
grl37 - 1262 1361 - 1252 1724
prld4 6276 1028 2926 985 1030 2012
ch150 - 4938 5167 - 5867 7997
kroA150 - 3427 5615 - 3327 7474
kroB150 - 2993 2396 - 2943 5265
prls52 13285 2161 1619 10978 2151 19479
uld9 13285 1424 1262 5339 1410 2513
rat195 | 106030 16188 19780 77216 16117 27580
d198 - 19329 155550 - 19398 41118
kroA200 - 26360 13093 - 26389 11844
kroB200 - 5492 6239 - 5525 15238
gr202 - 4975 7512 - 4304 9670
ts225 18902 7746 9750 7595 7603 60167
tsp225 91423 11600 9741 28756 11531 44297
pr226 - 8498 2800 - 7204 18848
gr229 - 5462 26478 - 10153 25674
gil262 - 23000 22146 - - 72772
pr264 24690 6537 - 6719 6549 23641
a280 22023 3601 3857 3980 3619 12983
pr299 - 16251 355323 - 16173 85789
lin318 - 23863 1511219 - 24035 75312
linhp318 - 23107 1313680 - 23064 79352
rd400 - 111128 92995 - 302363
fl417 - 198013 - - 215210 825808
gr431 - 56716 173609 - 78133 265416
pr439 - 46685 36592 - 48231 273873
pcb442 - 1356796 - - - -
d493 - 359072 - - - 837229
att532 - 217679 256394 - 218665 817096
ali535 - 93771 427800 - 91828 323104
ub74 - 371523 199114 - - 1010276
rat575 - 417494 191198 - 580320 934988
p654 - 864066 - - - -
d657 - 455378 253374 - 646148 1352747
gr666 - 366157 - - 670818 -

146 S.P. Fekete et al.

solved within the time limit. The largest instance solved within 30 min is gr666
with 666 points, which took about 6 min. The largest instance solved out of the
TSPLib so far is dsj1000 with 1000 points, solved in about 37 min. In addition,
we generated 30 instances for each size, which were run with a time limit of
30 min.

We observe that even without using glue cuts and jumpstart, we are able to
solve more than 50 % of the instances up to about 550 input points. Without the
tail cuts, we hit a wall at 100 points, without the HiH-cut instances, at about 370
input points; see Fig. 9, which also shows the average runtime of all 30 instances
for all variants. Instances exceeding the 30 min time limit are marked with a 30-
minutes timestamp. The figure shows that using jumpstart shortens the runtime
significantly; using the glue cut is almost as fast as the variant without the
glue cut.

Figure 10 shows that medium-sized instances (up to about 450 points) can be
solved in under 5 min. We also show that restricting the edge set to the Delaunay
triangulation edges yields solutions that are about 0.5 % worse on average than
the optimal solution. Generally the solution of the jumpstart gets very close to
the optimal solution until about 530 points. After that, for some larger instances,

600

Input Size
w
5
8
Time in min

100 ’:|
[
BasICIP JSGCTCHIHC JSTCHIHC JSGCHIHC — JSGCTC — GCTCHIHC Point size

H95% - 100% solved 1 50% - 94% solved —BASCIP —ISGCTCHIHC —JSTCHIHC —ISGCHIHC —JSGCTC —GCTC HIHC

Fig. 9. (Left) Success rate for the different variants of using of the cuts, with 30
instances for each input size (y-axis). (Right) The average runtime of the different
variants for all 30 instances. A non-solved instance is interpreted as 30 min runtime.

30 - 5 + - 4,0% —Average gap
., Ve

Time in min

Point size

Fig. 10. (Left) The distribution of the runtime within 30 min for the case of using the
jumpstart, glue cuts, tail cuts and HiH-cuts. (Right) The relative gap of the value on
the edges of the Delaunay triangulation to the optimal value. The red area marks the
range between the minimal and maximal gap.

Computing Nonsimple Polygons of Minimum Perimeter 147

4,0% —Average gap

3,5%

3,0% = | BER 1
2,5%

2,0%) BER |
1,5%

1,0% I A |
0,5% WWMMW\W
0,0%

n O un o
M w1 0

n O N O 1 O N O N O nu O unu O n O v O un O
O M 10 00 O M W 0 O M N 0 O M W1 X O M N O
F H H d N NN oo NS S T LN non

Fig. 11. The relative gap of the value on the edges of the Delaunay triangulation to
the optimal value. The red area marks the range between the minimal and maximal
gap. (Color figure online)

(a) Earth by night (b) A sampled instance

Fig. 12. Using a brightness map as a density function for generating clustered point
sets.

we get solutions on the edge set of the Delaunay triangulation that are up to
50 % worse than the optimal solution.

7 Conclusions

As discussed in the introduction, considering general instead of simple polygons
corresponds to searching for a shortest cycle cover with a specific topological
constraint: one outside cycle surrounds a set of disjoint and unnested inner cycles.
Clearly, this is only one example of considering specific topological constraints.
Our techniques and results should be applicable, after suitable adjustments, to
other constraints on the topology of cycles. We gave a 3-approximation for the
MPP; we expect that the MPP has a polynomial-time approximation scheme,
base on PTAS techniques [4,20] for geometric TSP, and we will elaborate on this
in a future version of the full paper.

148 S.P. Fekete et al.

There are also various practical aspects that can be explored further. It will
be interesting to evaluate the practical performance of the theoretical approxi-
mation algorithm, not only from a practical perspective, but also to gain some
insight on whether the approximation factor of 3 can be tightened. Pushing the
limits of solvability can also be attempted, e.g., by using more advanced tech-
niques from the TSP context. We can also consider sparsification techniques
other than the Delaunay edges; e.g., the union between the best known tour and
the k-nearest-neighbor edge set (k € {2,5,10,20}) has been applied for TSP
by Land [17], or (see Padberg and Rinaldi [21]) by taking the union of k tours
acquired by Lin’s and Kernighan’s heuristic algorithm [19].

Acknowledgements. We thank Stephan Friedrichs and Melanie Papenberg for help-
ful conversations. Parts of this work were carried out at the 30th Bellairs Winter
Workshop on Computational Geometry (Barbados) in 2015. We thank the workshop
participants and organizers, particularly Erik Demaine. Joseph Mitchell is partially
supported by NSF (CCF-1526406). Irina Kostitsyna is supported by the Netherlands
Organisation for Scientific Research (NWO) under project no. 639.023.208.

References

1. Althaus, E., Mehlhorn, K.: Traveling salesman-based curve reconstruction in poly-
nomial time. SIAM J. Comput. 31(1), 27-66 (2001)

2. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: On the solution
of traveling salesman problems. Documenta Mathematica — Journal der
DeutschenMathematiker-Vereinigung, ICM, pp. 645-656 (1998)

3. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Sales-
man Problem: A Computational Study. Princeton Series in Applied Mathematics.
Princeton University Press, Princeton (2007)

4. Arora, S.: Polynomial time approximation schemes for Euclidean traveling sales-
man and other geometric problems. J. ACM 45(5), 753-782 (1998)

5. Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4(1-4), 97-108

1989

6. E}hris‘zoﬁdes, N.: Worst-case analysis of a new heuristic for the Travelling Sales-
man Problem, Technical report 388, Graduate School of Industrial Administration,
CMU (1976)

7. Cook, W.J.: In Pursuit of the Traveling Salesman: Mathematics at the Limits of
Computation. Princeton University Press, Princeton (2012)

8. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial
Optimization. Wiley, New York (1998)

9. Dey, T.K., Mehlhorn, K., Ramos, E.A.: Curve reconstruction: connecting dots with
good reason. Comput. Geom. 15(4), 229-244 (2000)

10. Dillencourt, M.B.: A non-Hamiltonian, nondegenerate Delaunay triangulation. Inf.
Process. Lett. 25(3), 149-151 (1987)

11. Fekete, S.P., Friedrichs, S., Hemmer, M., Papenberg, M., Schmidt, A.,
Troegel, J.: Area- and boundary-optimal polygonalization of planar point sets.
In: EuroCG 2015, pp. 133-136 (2015)

12. Fekete, S.P., Haas, A., Hemmer, M., Hoffmann, M., Kostitsyna, 1., Krupke, D.,
Maurer, F., Mitchell, J.S.B., Schmidt, A., Schmidt, C., Troegel, J.: Computing
nonsimple polygons of minimum perimeter. CoRR, abs/1603.07077 (2016)

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Computing Nonsimple Polygons of Minimum Perimeter 149

Giesen, J.: Curve reconstruction, the traveling salesman problem and Menger’s
theorem on length. In: Proceedings of 15th Annual Symposium on Computational
Geometry (SoCG), pp. 207-216 (1999)

Grotschel, M.: On the symmetric travelling salesman problem: solution of a 120-
city problem. Math. Program. Study 12, 61-77 (1980)

Gutin, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations.
Springer, New York (2007)

Jiinger, M., Reinelt, G., Rinaldi, G.: The traveling salesman problem. In: Hand-
books in Operations Research and Management Science, vol. 7, pp. 225-330 (1995)
Land, A.: The solution of some 100-city Travelling Salesman Problems, Technical
report, London School of Economics (1979)

Lawler, E.L., Lenstra, J.K., Rinnooy-Kan, A.H.G., Shmoys, D.B.: The Travel-
ing Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley,
Chichester (1985)

Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-
salesman problem. Oper. Res. 21(2), 498-516 (1973)

Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: a
simple polynomial-time approximation scheme for geometric TSP, k-MST, and
related problems. SIAM J. Comput. 28(4), 1298-1309 (1999)

Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems. STAM Rev. 33(1), 60-100 (1991)
Pferschy, U., Stanek, R.: Generating subtour constraints for the TSP from pure
integer solutions. Department of Statistics and Operations Research, University of
Graz, Technical report (2014)

Reinelt, G.: TSPIib - a traveling salesman problem library. ORSA J. Comput. 3(4),
376-384 (1991)

Wein, R., Berberich, E., Fogel, E., Halperin, D., Hemmer, M., Salzman, O.,
Zukerman, B.: 2D arrangements. In: CGAL User and Reference Manual,
4.3rd edn. CGAL Editorial Board (2014)

	Computing Nonsimple Polygons of Minimum Perimeter
	1 Introduction
	2 Complexity
	3 Approximation
	4 IP Formulation
	4.1 Cutting-Plane Approach
	4.2 Basic IP
	4.3 Initial Edge Set

	5 Separation Techniques
	5.1 Pitfalls
	5.2 Glue Cuts
	5.3 Tail Cuts
	5.4 Hole-in-Hole Cuts

	6 Experiments
	6.1 Implementation
	6.2 Test Instances
	6.3 Results

	7 Conclusions
	References

