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Abstract—This paper investigates efficient techniques to
collect and concentrate an under-actuated particle swarm
despite obstacles. Concentrating a swarm of particles is of
critical importance in health-care for targeted drug delivery,
where micro-scale particles must be steered to a goal location.
Individual particles must be small in order to navigate through
micro-vasculature, but decreasing size brings new challenges.
Individual particles are too small to contain on-board power
or computation and are instead controlled by a global input,
such as an applied fluidic flow or electric field.

To make progress, this paper considers a swarm of robots
initialized in a grid world in which each position is either free-
space or obstacle. This paper provides algorithms that collect
all the robots to one position and compares these algorithms
on the basis of efficiency and implementation time.

I. INTRODUCTION

Targeted drug therapy is a goal for many interventions,
including treating cancers, delivering pain-killers, and stop-
ping internal bleeding. Treatment often uses the patient’s
vasculature to deliver the therapy. This drug therapy is
challenging due to the complicated geometry of vasculature,
as shown in Fig. 1.

This paper builds on the techniques for controlling many
simple robots with uniform control inputs presented in [1],
[2], and also outlines new research problems; see video and
abstract [3] for a visualizing overview.

[5] gives us an understanding of some of the challenges
related to controlling multiple micro robots (less than 64
robots at a time). Building systems capable of accomplishing
difficult motion tasks is a major focus of research in this
area and [6] shows how magnetic manipulation has great
potential controlling such particles in low Reynolds number.
One example is particles with a magnetic core and a cat-
alytic surface for carrying medicinal payloads [7], [8]. An
alternative is superparamagnetic iron oxide microparticles,
9 pm particles that are used as a contrast agent in MRI
studies [9]. Real-time MRI scanning could allow feedback
control using the location of a swarm of these particles.

Steering magnetic particles using the magnetic gradient
coils in an MRI scanner was implemented in [7], [10]. 3D
Maxwell-Helmholtz coils are often used for precise magnetic
field control [9]. Still needed are motion planning algorithms
to guide the swarms of robots through vascular networks.
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Fig. 1. Vascular networks are common in biology such as the circulatory
system and cerebrospinal spaces, as well as in porous media including
sponges and pumice stone. Navigating a swarm using global inputs, where
each member receives the same control inputs, is challenging due to the
many obstacles. This paper focuses on using boundary walls to break the
symmetry and collect the swarm at a desired location. See simulation at [4].

From an algorithmic perspective, the strongest parallels in
literature are robot localization and rendezvous. In Almost
sensorless localization or “localizing a blind robot in a
known map”, a mobile robot with a map of the workspace
must localize itself, using only a compass and a bump-sensor
that detects when the robot contacts a wall. [11], [12]
has been extended to robots with bounded uncertainty in
their inputs [13]. Given an environment, finding a localizing
sequence is framed as a planning problem with an unknown
initial state and an unobservable current state. The solution
in [11] was to transform the problem from an unobservable
planning problem in state space to an observable problem
in a more complex information space. They provided a
complete algorithm, but generating an optimal localizing
sequences remains an open problem. [11] assumes there is
only one robot, but it still gives us clarity on how planning for
independent robot systems differ from swarm robot systems.
Also related is work on sensorless part orientation, where a
flat tray is tilted in a series of directions to bring a polygonal
part, initially placed at random orientation and position in the
tray, to a known position and orientation [14]. This is similar
to localizing a robot with minimum travel; however, it moves
the robot and requires take additional measurements [15].

The other parallel concept, robot rendezvous, requires two
or more independent, intelligent agents to meet. Alpern and
Gal [16] introduced a wide range of models and methods
for this concept as have Anderson and Fekete [17] in a two-
dimensional geometric setting. Key assumptions include a
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bounded topological environment and robots with limited
onboard computation. This is relevant to maneuvering par-
ticles through worlds with obstacles and implementation of
strategies to reduce computational burden while calculating
distances in complex worlds [18]. In a setting with au-
tonomous robots, these can move independent of each other,
i.e., follow different movement protocols, called asymmetric
rendezvous in the mathematical literature [16]. If the agents
are required to follow the same protocol, this is called
symmetric rendezvous. This corresponds to our model in
which particles are bound by the uniform motion constraint;
symmetry is broken only by interaction with the obstacles.

The ‘robots’ in this paper are simple particles without
autonomy. A planar grid workspace W is filled with a
number of unit-square robots (each occupying one cell of
the grid) and some fixed unit-square blocks. Each unit square
in the workspace is either free, which a robot may occupy
or obstacle which a robot may not occupy. Each square
in the grid can be referenced by its Cartesian coordinates
x = (z,y). All robots are commanded in unison: the valid
commands are “Go Up” (u), “Go Right” (r), “Go Down”
(d), or “Go Left” (I).

We consider two classes of commands, discrete and
maximal moves. Discrete moves: robots all move in the
commanded direction one unit unless they are prevented from
moving by an obstacle or a stationary robot. Maximal moves:
robots all move in the commanded direction until they hit
an obstacle or a stationary robot. For maximal moves, we
assume the area of W is finite and issue each command
long enough for the robots to reach their maximum extent.
A command sequence m consists of an ordered sequence
of moves my, where each my, € {u,d,r,l} A representative
command sequence is (u,r,d,l,d,r,u,...).

We consider two types of particles, small and large, as
depicted in Fig. 2. If particles are much smaller than the
workspace geometry, we call them small. We represent each
grid cell as filled if it contains at least one particle and empty
otherwise. A cell filled with small particles can combine with
another filled cell. If particles are the same size as workspace
gridcells, we call the particles large. Large particles cannot
combine. The presence of a large particle in a cell prevents
another particle from entering.

We study two notions of collecting a swarm, correspond-
ing with particle size: for small particles the swarm is
collected when all robots share the same (z,y) coordinates.
If the particles are large, the swarm is collected when it
forms one connected component. 2D cells are neighbors if
they share an edge, 3D cells are neighbors if they share a
face. A connected component is a set of particles P such that
for any two particles in P, there is a sequence of neighboring
particles that connect them.

II. THEORY

With discrete inputs and small particles, the problem can
be reduced to localizing a sensorless robot in a known
workspace. This is similar to work on draining a poly-
gon [19], or localizing a blind robot [11], [12], but with dis-

Small

Small 1

Fig. 2. If particles are much smaller than the workspace geometry, we
call them small. We represent each grid cell as filled or empty, and allow a
filled cell to combine with another filled cell. If particles are the same size
as workspace gridcells, we call the particles large. Large particles cannot
combine. The presence of a large particle in a cell prevents another particle
from entering.

(a)

Fig. 3. Examples of workspaces for which collection is not possible.
(a) The swarms are in unconnected components (b) A world for which
maximal moves will never allow particles to meet. (c) An unbounded
world with a single obstacle. In this world discrete moves can collect
particles but maximal moves cannot collect particles. In a world without
boundaries and without obstacles, discrete moves cannot collect all particles.
(d) A world configuration where large particle collection is impossible.
No input sequence exists that will make all the particles part of the same
connected component.

crete inputs. In Section III, for the small particle problem we
present an optimal collection algorithm, Alg. 1 in Section II-
B and a greedy collection policy Alg. 2 in Section II-C. We
also give positive (Section II-D) and negative (Section II-E)
results for large particles.

A. Our problems of interest

The freespace must be connected. Robots initialized in two
unconnected components ¢ and j of a free space cannot be
collected. The proof is trivial, since a robot in free space
can not reach free space j. Such a configuration is depicted
in Fig. 3a.

Under maximal inputs, the world can be constructed with
spaces resembling bottles or fish weirs from which a single
robot cannot escape, as shown in Fig. 3b. If the free space
contains at least two such bottles with at least one robot in
each, the swarm cannot be collected with maximal inputs.

The world must be bounded. Two initially separated robots
in an unbounded world without obstacles cannot be collected;
however with discrete inputs, one obstacle is sufficient as
seen in Fig. 3¢ and can be inferred from [20].

A swarm with discrete moves and small particles can be
collected on any bounded grid. However, with large particles
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there are configurations where the topology does not allow
collection, as seen in Fig. 3d.

B. Collecting with the shortest move sequence

A conceptually simple strategy to collect all particles in a
workspace is to construct a configuration tree that expands
the tree of all possible movement sequences in a breadth-
first search manner, and halts when the configuration has
all robots collected at one point. Alg. 1 implements this
breadth-first-search technique. It initializes a tree where each
node contains the configuration of robot locations C/[p] , the
move that generated this configuration M [p] and a parent
configuration pointer P[p|. Here C, M, P are the respective
complete lists. p is the current iteration pointer and e is the
end of list pointer. The root node is {Cy, &, 0}, where Cj is
the initial configuration of robot locations. We then construct
a breadth-first tree of possible configurations {u,r,d,[},
pruning configurations that already exist in the tree. We
stop when the cardinality at a leaf is one, |C;|= 1, which
indicates that the swarm has been collected (equivalently,
that the robot has been localized). This algorithm produces
the optimal path to determine the shortest path length ‘s’ as
seen in Fig. 4, but requires O(4*) time to learn and O(4%)
memory and the graph grows exponentially (Fig. 5). This
leads us to investigate other algorithms which will solve the
path with much lower computational time and data.

Algorithm 1 OptimalCollecting(W, Cp)

1 p+1

2: {C[p], M|[p], Plp]} + {Cv, 2,0} > initialize
e+ 1

4: while |C[p]|> 1 do > more than 1 unique position
5: for m = {u,d,r,(} do

6: Ctemp < ApplyMove(C'[p], m)

7: if Ciemp & C' then > add node to list
8: e+e+1

9: {Cle], Mle], Ple]} < {Ctemp, m, p}

10: end if

11: end for

12: pp+1 > get next configuration
13: end while

14: path « {} > construct optimal path

15: while P[p] > 1 do

16: Append M |p] to path
17: p < P[p]

18: end while

19: path < Reverse[path]

C. Collecting small particles with a greedy strategy

Two particles in a finite and connected polyomino can
be collected with small particles and discrete movement by
simply repeatedly moving one particle onto another in the
shortest way. The corresponding procedure COLLECTAB is
described in Alg. 2. By iteratively collecting any two disjoint
particles, the size of the distinct positions of the particle
swarm can be reduced until all particles are at the same

position. The two particles can be chosen with different
methods and our focus will be to implement the following
methods:

1) Closest pair of particles - choose a pair of particles
with the minimum distance between them.

2) Furthest pair of particles - choose a pair with maximum
distance between them.

3) Connect to first - choose the first two particles while
searching for particles in the workspace from top left
to bottom right.

4) Random combinations - choose any two particles.

5) First to last - choose the first particle and last particle,
i.e., the leftmost top and rightmost bottom particles,
respectively.

COLLECTAB can be called to implement any of these
methods.

Algorithm 2 Collecting two particles that can overlap

Require: a can reach b, Polyomino is bounded
1: procedure COLLECTAB(a: Particle, b: Particle)
2: while dist(a,b) # 0 do

3: Let C € {u,d,l,7} be the shortest control
sequence that moves a onto pos(b)

4: Execute C

5: end while

6: end procedure

Theorem 1: COLLECTAB collects two particles in a poly-
omino with O(n?) discrete control commands, where n
equals the polyomino’s height times its width.

Proof: The distance between a and b equals the length
of C. After execution of C, the distance has not increased as a
is now on the previous position of b and b has at most moved
|C| units from it. If b had a collision during the execution of
C, the distance is even less as at least one command did not
result in a move of b. As dist(a,b) € O(n), only O(n) loop
iterations with collisions are needed to collect a and b. Obvi-
ously, |C|€ O(n) and hence every loop iteration executes at
most O(n) commands. With every iteration without collision,
the positions of @ and b change each by pos(b) —pos(a). This
difference only changes if b had a collision, therefore the
particles move in the same direction with every collision-free
iteration. After O(n) collision-free iterations of the loop, b
must have a collision, as the polyomino is finite. This results
in O(n?) commands to reduce the distance by at least one
and thus O(n?) commands suffice to collect a and b. [ |

Theorem 2: COLLECTAB has a computational complex-
ity of O(n?).

Proof: The shortest control sequence C can be calcu-
lated in O(n) time by a simple breadth-first-search. Under
the assumption that a command can be executed in O(1),
one loop iteration has a computational complexity of O(n).
With O(n?) loop iterations (see proof of Theorem 1), this
results in an overall complexity of O(n?3). [ |

Theorem 3: A particle swarm of size O(m) can be col-
lected with O(m * n3) discrete control commands and a
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Fig. 4.
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With discrete inputs and particles, the collecting problem can be reduced to localizing a sensor-less robot in a known workspace. Above shows

the optimal solution for a world with 27 free spaces, which required expanding 423,440 nodes with an optimal path (shown) taking 17 moves.
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Fig. 5. Unfortunately, the optimal BFS (Algorithm 1) solution requires
expanding a number of nodes that increases (approximately) exponentially
with the number of free spaces. A workspace with 30 free spaces required
1.6 million nodes before finding the optimal solution.

computational complexity of O(m * n®) where n equals the
polyomino’s height times its width.

Proof:  Select two disjunct particles and execute
CollectAB. This reduces the size of distinct positions in
the particle swarm by one. After O(m) executions, there is
only one position left and the particle swarm is collected. B

D. Collecting large particles in a target region

In the previous two subsections, the particles are relatively
small, allowing several to be collected in the same location
anywhere in the environment. If the particles are relatively
large, they may block each other’s way, making the motion
control trickier. We can still deliver a swarm of particles to a
target region by making use of discrete moves, assuming that
particles are metabolized once they reach the target region,
i.e., the target is “sticky”. (This implies that they stay within
the target region once they get there, and that they do not
block each other within that region.)

Theorem 4: For a sticky target region and large particles
within an environment of diameter D, a particle swarm of
size O(m) can be collected with O(m x D) discrete control
commands.

Proof:  The proof is straightforward by induction.
Moving one particle to the target region takes at most D
moves, which leaves all other particles within distance D.

|
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Fig. 6.
order to deliver a single “blue” particle into the grey target region in the
lower left, a 3SAT instance has to be satisfied, corresponding to a set of
decisions in the upper part of the construction.

NP-hardness of deciding reachability with maximal moves: In

Note that the extent of the environment is critical. If we
are dealing with m particles within an environment of size
n X n, then we get the following.

Corollary 5: For a sticky target region and large particles,
a particle swarm within an environment of size n X n can
be collected with O(n?) discrete control commands.

If all particles of the swarm are relatively close to the
target region, the complexity can be stated differently.

Corollary 6: For a sticky target region and large particles,
a particle swarm of size O(m) that fills a square environ-
ment around a target region can be collected with O(m?/?)
discrete control commands.

E. Collecting large particles with maximal moves

Our results rely on being able to limit the extent of the
motion, i.e., having discrete moves. If that is not the case,
i.e., in the case of maximal moves, in which each particle
moves until it is stopped by an obstacle or another stopped
particle, the problem becomes considerably harder and may
indeed be intractable. As we showed in previous work [21],
deciding whether even a single particle can be delivered to
a target region (Fig. 6) is already an NP-hard problem; this
implies not only that finding a solution is computationally
hard, but that there are instances in which no solution exists.

IIT1. RESULTS AND INFERENCES

Experiment one compares the optimal algorithm (Alg. 1)
versus three varients of the greedy algorithm (Alg. 2). Fig. 7
compares the number of moves required to converge for
the optimal strategy (Alg. 1) versus the greedy strategy
for small worlds ranging from 5 free spaces to 30 free
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spaces. Workspaces with more spaces were not considered
because the optimal algorithm requires a lot of time due
to the exponential time to free space relationship. This plot
shows that the optimal algorithm requires approximately
half the moves of the greedy algorithms. The plot has an
upward moving trend in general as the number of free spaces
increases, but there are local minimums corresponding to
easier configurations, which leads to downward spikes in
the plot. The number of moves taken to completely collect
particles also depends on the complexity of the workspace
and does not completely depend on the number of free
spaces.

For small workspaces the best result among the greedy
algorithms changes and so we cannot determine which is the
best using small workspaces. To further compare the greedy
strategies, we tested the algorithms on larger workspaces.
The largest workspace in Fig. 8 has 8,493 non-obstacle po-
sitions. Fig. 8 demonstrates that choosing which particles to
pairwise collect in Alg. 2 has a large impact on convergence
time. We conducted a comparison study between the number
of moves and the resulting unique particles. As discussed
earlier in Alg. 1 (Section II-B) and Alg. 2 (Section II-C),
getting the number of unique particles down to ‘1’ signifies
completion of the collecting algorithm. In the leaf vascular
network, the majority of particle collection occurs during
the first steps, with a long tail distribution to collect the final
particles, as shown in the top row of images. Fig. 8 shows
that connect to first, discussed in Section II.B, outperforms
the other algorithms. This can also be validated by further
testing to compare the three greedy algorithms on larger
workspaces.

We simulated bounded worlds of varied sizes from 500
free spaces to 8,493 free spaces. The results are represented
in Fig. 9, based on Fig. 1 because biological vasculatures
are our goal application. This graph plot has a smoother
trend compared to the plot in Fig. 7 because the ratio of free
space to node complexity is similar for worlds in Fig. 9. The
important observation is the consistency that connect to first
performs best. This validates connect to first as the best of
the compared algorithms. This is good news because unlike
the other two techniques, which involve distance calculation
between all pairs of particles, there is negligible calculation
involved in the connect to first algorithm. The data for which
two particle are in top-leftmost location is readily available
from the row, column indices of the particles.

IV. CONCLUSION AND FUTURE WORK

This paper presented optimal and greedy algorithms to
collect small globally commanded particles with guarantees
that these algorithms will always collect particles for any
bounded world which can be represented as a connected
polyomino. Algorithm connect to first combines both low
computational time and, in simulations, requires fewer moves
than five other algorithms. It requires 50,607 moves to
converge all the particles in the complete leaf world shown in
Fig. 1 (see video [4]). We also introduced challenges inherent
with large particle collection, which poses new problems
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Fig. 7. The greedy strategy requires 1.95 as many moves as the optimal

strategy in a test with 17 different test environments. Below the plot are
examples of some of the test environments used.

0 moves 5 moves 25 moves 50 moves
8493 unique particles 3866 unique particles 1164 unique particles 794 unique particles

—closest particles
—furthest particles
——connect to first

——random A,B

Unique robot positions
=)

2000 3000 4000

Moves along path

0 1000 5000

Fig. 8. Choosing which two particles to collect during each COLLECTAB
step changes convergence time. Collecting the furthest particles (green)
performs poorly. Connecting the two closest nodes (blue) is better, but both
strategies are beat by the strategy that chooses the first two (the top-most,
left-most) particles each iteration.
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Fig. 9. Comparing the required number of moves to collect overlapping

particles to a position for three greedy algorithms (Alg. 2) for five different,
connected vascular networks.

and complexities. The technology to fabricate microbots is
rapidly improving and so has interest in microrobots for
potential applications in drug delivery. There are many op-
portunities for future work, including refining the algorithms
to handle large particles. This paper assumed the workspace
was bounded. That assumption is violated in biological
vascular systems, which connect to larger vasculature. One
avenue for future research is to add constraints to serve as
virtual walls and actively prevent particles from escaping
through a set of exits. Additional complexities such as
medium viscosity and wall friction must be studied before
the algorithms are applied in vivo/in vitro. Future work
should focus not only on collecting, but also on avoiding
accumulation in sensitive regions.
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