Size-Dependent Tile Self-Assembly:
Constant-Height Rectangles and Stability

Séndor P. Fekete!, Robert T. Schweller?, and Andrew Winslow? ()

! TU Braunschweig, Braunschweig, Germany
s.feketeQtu-bs.de
2 University of Texas-Pan American, Edinburg, TX, USA
rtschweller@utpa.edu
3 Université Libre de Bruxelles, Brussels, Belgium
awinslow@ulb.ac.be

Abstract. We introduce a new model of algorithmic tile self-assembly
called size-dependent assembly. In previous models, supertiles are sta-
ble when the total strength of the bonds between any two halves
exceeds some constant temperature. In this model, this constant tem-
perature requirement is replaced by an nondecreasing temperature func-
tion 7 : N — N that depends on the size of the smaller of the two halves.
This generalization allows supertiles to become unstable and break apart,
and captures the increased forces that large structures may place on the
bonds holding them together.

We demonstrate the power of this model in two ways. First, we give
fixed tile sets that assemble constant-height rectangles and squares of
arbitrary input size given an appropriate temperature function. Second,
we prove that deciding whether a supertile is stable is coNP-complete.
Both results contrast with known results for fixed temperature.

1 Introduction

In this paper, we introduce the size-dependent tile self-assembly model, a natural
extension of the well-studied two-handed tile assembly model or 2HAM [4]. As
in the 2HAM, a size-dependent system consists of a collection of square Wang
tiles [17,21] with an associated bond strength assigned to each tile edge color.
In the 2HAM, self-assembly proceeds by repeatedly combining any two previ-
ously assembled supertiles into a new stable supertile provided the total bond
strength between the supertiles meets or exceeds some positive integer called the
temperature.

Although the 2HAM is both simple and natural, the model does not capture
the intuition that two large assemblies should require more bond strength to be
stable than two very small assemblies. As an analogy, a single staple is sufficient
to attach two pieces of paper or to attach a sheet of paper to the hull of a
battleship. However, a staple is too weak to amalgamate together two battleships.

The size-dependent self-assembly model generalizes the 2HAM by replacing
the fixed, integer temperature parameter 7 of the 2HAM with a nondecreasing
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temperature function 7(n) that specifies a required threshold of bond strength
when given the size of the smaller of two supertiles under consideration. A set
of tile types and temperature function together define a size-dependent self-
assembly system.

Our results. We first consider efficiently assembling fixed-height rectangles and
squares in the size-dependent self-assembly model. We prove that there exists
a fixed tile set assembling a k x 3 rectangle for every k > 7 given an appropri-
ate temperature function. This tile set is extended to obtain a matching result
for k x k squares. These results demonstrate that size-dependent temperature
functions can, in theory, direct assembly in the spirit of temperature program-
ming [11,20], concentration programming [3,7,12], and staging [5]. Unlike these
other methods, size-dependence is present in all physical systems, but has not
be demonstrated to be programmable. Thus these constructions demonstrate
that this ubiquitous aspect of physical systems can (and likely already does)
direct assembly in dramatic ways, regardless of whether they can be implemented
physically.

In addition to the design of systems that assemble rectangles and squares, we
consider the complexity of determining if a supertile is stable, i.e. cannot break
apart due to insufficient bond strength. Determining the stability of an supertile
is a fundamental problem for design, simulation, and analysis of tile self-assembly
systems. This problem enjoys a straightforward, polynomial-time solution in
the 2HAM. In contrast, we prove that the problem is coNP-complete in the
size-dependent model, even for temperature functions with just two distinct
temperatures.

Reversibility. A key feature of size-dependence is reversibility: the possibility
of breaking bonds. Our rectangle and square constructions make critical use of
reversibility to beat tile type lower bounds in similar models (see [18]), and our
hardness result proves that this mechanism is capable of complex behaviors.

Reversibility has been more directly incorporated into a number of other self-
assembly models via glues that repel [8,16] or deactivate [10,13,14], tiles that
dissolve [1], and temperatures that change over time [2,20]. Reversibility in these
models has yielded a number of new functionalities, including replication [1,13],
fuel-efficient computation [14,19], shape identification [15], and efficient small-
scale assembly of general shapes [6]. We believe that further study of the ubiqui-
tous but indirect form of reversibility found in size-dependent self-assembly may
yield similar functionality.

2 Definitions

The first three subsections define the 2HAM, giving definitions equivalent to
those in prior work, e.g. [4]. The final section describes the differences between
the two-handed and size-dependent models.
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2.1 Tiles, Assemblies, and Supertiles

A tile type is a quadruple (gn, g9r, gs, gw) of glues from a fixed alphabet X'. Each
glue g; € X has an associated non-negative integer strength, denoted by str(g;).!
An instance of a tile type, called a tile, is an axis-aligned unit square with center
in Z2. The edges of a tile are labeled with the glues of the tile’s type (e.g. gn,
9E, gs, gw) in clockwise order, starting with the edge with normal vector (0, 1).
Two tiles are adjacent if their centers have distance 1.

An assembly o is a partial mapping « : Z? — T from tile locations to a set of
tile types T, also called a tile set. The domain of this partial function is denoted
by dom(«). Each assembly has a dual bond graph: a grid graph with vertex set
dom(«) and an edge between every pair of adjacent tiles that form a bond. An
edge cut of the bond graph of an assembly is also called a cut of the assembly,
and the total strength of the bonds of the edges in the cut is the strength of the
cut. An assembly is 7-stable if every cut of the assembly has strength at least 7.

For an assembly a : Z? — T and vector u = (z,y) with z,y € Z2, the
assembly a4 u denotes the assembly consisting of the tiles in «, each translated
by w. For two assemblies a and [, § is a translation of «, written 8 ~ «,
provided that there exists a vector w such that 8 = a + u. The supertile of « is
the set @ = {f : @ ~ B}. A supertile & is T-stable provided that the assemblies
it contains are 7-stable. The size of a supertile is denoted by |&| and is equal to
the size of an assembly in & (and not the cardinality of &, which is always Ng).

2.2 The Assembly Process

Two assemblies « and 3 are disjoint if dom(a) Ndom(8) = @. The union of two
disjoint assemblies o and 3, denoted by aU 3, is the partial function aUg3 : Z? —
T defined as (eUf)(x,y) = afx,y) if (z,y) € dom(«) and (U S)(x,y) = B(z,y)
if (z,y) € dom(pB). Two supertiles & and B can combine into a supertile 5
provided:

— There exist disjoint assemblies o € @ and (§ € 8.
— aU B =+ € 74 and the cut partioning dom() into dom(«) and dom(3) has
strength at least 7 (equivalently, «y is T-stable).

The set of all combinations of & and B at temperature 7 is denoted by C’; 5

2.3 Two-Handed Tile Assembly Systems

A two-handed tile assembly system or two-handed system is a pair T = (T, 1),
where T is a tile set and 7 € N is a temperature. Given a system 7 = (T,7), a
supertile & is producible, written & € A[T], provided that either |G| =1 or & is
a combination of two other producible supertiles of 7. A supertile & is terminal
provided that for all producible supertiles 3, Cg - = . A system is directed or

deterministic provided that it has only one terminal supertile.

! In later sections, glues with strength 0 are treated as non-existent.
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Given a shape P C Z?2, we say a system 7 self-assembles P, provided that
every terminal supertile & of 7 has an assembly a € & such that dom(a) = P.
That is, every terminal supertile has shape P, up to translation. A shape P is a
wx h rectangle provided that P = {x+1,2+2,..., 24w} x{y+1,y+2,...,y+h}
for some x,y,w, h € Z. If w = h, then the rectangle is a square.

2.4 Size-Dependent Systems

A size-dependent two-handed tile assembly system or size-dependent system S =
(T, 7) is a generalization of a two-handed tile assembly system. Two-handed and
size-dependent systems are identical, except for the definition of 7. Recall that
in two-handed systems, 7 € N determines the bond strength needed for two
supertiles to combine and for a supertile to be T-stable.

In size-dependent systems, 7 is not an integer temperature, but rather a non-
decreasing temperature function 7 : N — N. An assembly + is 7-stable provided
any cut partioning dom(vy) into two assemblies dom(«), dom(/3) has strength at
least 7(min(|al,|3])). A supertile ¥ is 7-stable provided the assemblies in 4 are
r-stable. Also, two supertiles @ and 3 can combine into a supertile 7 provided
that:

— There exist disjoint assemblies o € & and § € B
— aU B =+v € 7 and the cut partioning dom() into dom(«) and dom(3) has
strength at least 7(min(|c|, |5])).

For a given temperature function 7 : N — N, the set of all combinations of &
and [ is denoted by C; 5 Note that the second condition is not equivalent to ~y
being 7-stable. Figure 1 illustrates an example: a cut in a supertile has sufficient
strength, but combining with another supertile causes increased size that causes
the cut to become insufficiently strong. So &, B may be 7-stable while their
combination 74 is T-unstable.

(3 :
rE] _[gs]  [BE]

Fig. 1. Three steps of size-dependent self-assembly with glue function 7(n) = n — 1.
The addition of a new tile (left) causes the supertile to have a strength-1 cut partioning
it into two supertiles of 3 tiles each (center). Because 7(3) = 2 > 1, the supertile can
then break (right).
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Supertiles that are 7-unstable can also “break” into smaller supertiles. A
supertile 4 can break into & and [ provided that:
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— There exist disjoint assemblies o € & and 3 € 3 with connected bond graphs.
— aUpf =+ € 7 and the strength of the cut partioning v into o and 3 is less
than 7(min(|e|, |4])).

A cut between two supertiles resulting from a break is called a break cut. For a
given temperature function 7 : N — N the set of all supertiles resulting from
breaks of 7 is denoted by BZ. Given a size-dependent system 7 = (T,7), a
supertile & is producible provided either:

- la| = 1.
— @ is the combination of two other producible supertiles.
— @ is the result of a break of a producible supertile.

A producible supertile & is terminal provided C’; 5= @ and Bl = @.

Note that the conditions on supertiles combin{ng and breaking do not imply
that combining supertiles or supertiles resulting from a break are 7-stable. This
allows for systems with an infinite number of producible supertiles and a unique
terminal supertile, including those described in this work.

3 Constant-Height Rectangles

Here we prove that there exists a single set of tiles that can be used to self-
assemble constant-height rectangles of arbitrary width using an appropriate
choice of temperature function. Such a result contrasts with the polynomial
number of tiles required to assemble a constant-height rectangle in an assembly
system with constant temperature [2].

Theorem 1. There exists a tile set T such that for every k > 7, there exists a
size-dependent system with tile set T that self-assembles a k X 3 rectangle.

Proof. The temperature function used is:

3:n<k—-6
4:k—-5<n<k+3
5:k4+4<n<2k—-2
8 : otherwise

7(n) =

The tile set consists of three tile types and two blocks: supertiles with unique
internal glues and strength 8, the maximum temperature of the system. The tiles
and blocks are listed and named in Fig. 2.

The system works by assembling a unique terminal k x 3 supertile in three
phases. First, top filler tiles and top bases combine into arbitrarily wide height-2
supertiles. These undergo at least two breaks to form top half supertiles of size
2k — 3. Second and separately, bottom filler tiles and bottom bases combine to
form bottom half supertiles of size approximately k+ 3. Finally, these two halves
combine into a terminal k£ X 3 supertiles shown in Fig. 3. It can easily be verified
that this supertile is a terminal supertile of the system; it remains to be shown
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Fig. 2. The tile types and blocks for the constant-height rectangle construction. The
gray glues are unique and strength at least 8 (Color figure online).
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Fig. 3. The unique terminal supertile of the constant-height rectangle construction.

1

that no other terminal supertiles of the system exist (necessary for the system
to self-assemble a k x 3 rectangle).

Top Filler Supertiles. To start, consider the producible supertiles consisting
of only top filler tiles, called top filler supertiles. Because 7(n) > 2 for all n,
upper and lower top filler tiles must first combine into size-2 supertiles before
combining with other top filler supertiles into height-2 rectangular supertiles
(lower right supertile in Fig. 4). These rectangular supertiles break along 2-edge
and 3-edge cuts into the remaining supertiles seen in Fig. 4.

Because k > 7, any partition of the lower right supertile in Fig. 4 either has
a part that is a single tile or uses a strength-4 cut of at least 2 edges and thus
both parts have size at least k + 3 > 10. Therefore, the remaining 8 types of
supertiles in Fig. 4 have at least 4 columns of 2 tiles each.

The width bounds seen in the figure are computed by considering how the
supertiles are created. If the supertile is the result of a break, it must satisfy the
size bound for the strength of the cut used in the break. If it is the result of a
combination, it must be larger than the total sizes of the combined supertiles.?

We designate three types of top filler supertiles as seen in Fig. 4. As already
proven, breaks only result in single tiles or supertiles of size 10 and larger. Any
two-tab (one-tab) supertile can break into a one-tab (tabless) supertile and a
single tile, and these are the only breaks that use cuts of strength at most 3.
Then any other break uses a cut of strength 4 or more, and so results in supertiles
of size at least k + 4. Thus any combination of two-tab and one-tab supertiles
has size at least 2(k + 4). A two-tab supertile can also be the result of a break
using a cut of strength 7 and thus have size at least 2k — 3 and, because two-tab
supertiles have even size, 2k — 2. Because min(2(k + 4),2k —2) — 1 = 2k — 3
and k > 7, 2k —3 > k 4+ 4 and a break of a two-tab supertile into a single tile

2 An upper bound is also implied by 7, but this is ignored here.
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Fig. 4. The producible top filler supertiles.

and one-tab supertile cannot yield a one-tab supertile smaller than k£ + 4. In
conclusion, one-tab and two-tab supertiles have size at least k + 4 and 2k — 2,
respectively, implying the bounds seen in Fig. 4.

Top and Bottom Halves. Top filler supertiles cannot combine with other
supertiles, except for a complete top base to form a top half supertile (upper
supertile in Fig.5). Top half supertiles may combine with top filler supertiles
and break into top half and top filler supertiles. A top half supertile with a
single upper filler tile in the rightmost column is ready. Because ready top half
supertiles are two-tab top filler supertiles that have combined with a top base,
they have size at least 2k — 3 and thus width at least k — 2.

Independently of top halves, bottom filler tiles combine into arbitrarily wide
height-1 supertiles called a bottom filler supertile. These supertiles also combine
with bottom bases at various stages of assembly. A bottom half supertile contains
bottom filler tiles and a completed bottom base. If the number of bottom filler
tiles in a bottom half is at least 2k — 18 (and there exists a 1-edge strength-3 cut
partitioning the supertile into two of size at least k — 5), the bottom half can
break into a bottom half and bottom filler supertile.

Combining Halves. The only shared glues between top and bottom tiles are
the strength-2 glues on the south of the top base and west of the bottom base
(turquoise and yellow in Fig. 2). Thus a supertile consisting of bottom tiles can-
not combine with a supertile consisting of top tiles, unless the supertiles are
bottom and top halves.

A bottom half and top half can combine, provided they have the same width
and the top half is ready (and thus has width at least k — 2. Moreover, because
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Fig. 5. The top half and bottom half supertiles. The bottom half A can be arbitrarily
large, but the upper bound follows from the requirement that to combine, 7(|]A|) < 4
and thus |\ < k.

the maximum strength of the bonds between the bottom and top halves is 4,
they can only combine only if the smaller supertile, necessarily the bottom half,
has size at most k + 3 and thus width at most k — 2. Thus, the bottom and top
halves combine provided they both have width exactly k — 2, forming a terminal
supertile of width exactly k.

No Waste. Although it is not required by the definition of self-assembly, this
system also has the property that every supertile may undergo a sequence of
breaks and combinations to become terminal. In other words, the system has
no “waste” supertiles. This can be seen by noting that supertiles not found
within the (unique) terminal supertile, i.e. top filler supertiles wider than k — 4,
top halves wider than k — 2, bottom filler supertiles of width more than k£ — 5,
and bottom halves of width more than k& — 2 can repeatedly break into smaller
supertiles that are found in the terminal supertile. O

The temperature functions used in the previous construction all have a max-
imum bounded above by the constant 8. Next, we prove that any set of temper-
ature functions used to assemble arbitrarily large constant-height rectangles are
similarly bounded above by a constant.

Theorem 2. Let T be a tile set and 11,72, ... be an infinite sequence of temper-
ature functions such that the size-dependent system (T, 7;) assembles a k; x O(1)
rectangle and all k; are distinct. Let f(n) = min;en(7;(n)). Then f(n) = O(1).

Proof. Let ¢ € N be the maximum height of a rectangle assembled by a system
(T, 7;). Let gmax be the maximum strength of a glue in T. Let 4 be a terminal
assembly of (7', 7;) and thus a rectangle with width &;. For any n < k;/2, there
exists a cut of 4 into supertiles &, 3 such that n = |&| < |8] and the cut contains
at most ¢ + 1 edges. Then since 7 is stable, f(n) < 7;(n) < (¢ + 1)gmax for all
n < k;/2. Because there exist infinitely many k;, every n has n < k;/2 for large
enough k; and we conclude that f(n) < (¢4 1)gmax for all n € N. O
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4 Squares

Here we extend the constant-height rectangle construction in the last section
to assemble squares. The temperature function, tile types, and blocks from the
constant-height rectangle construction are used to form the base of the square;
additional tile types and blocks are used to “fill in” the remainder of the square
once the base is complete.

Theorem 3. There exists a tile set T such that, for every k > 7, there exists a
size-dependent system with tile set T that self-assembles a k X k square.

The constant-height rectangle construction used as the basis for the con-
struction of Theorem 3 result in temperature functions that are bounded above
by a constant. We conjecture that there exists a square construction that uses
temperature functions that all scale as £2(1/n), and prove that no better lower
bound is possible:

Theorem 4. Let T be a tile set and T, Ts2,... be an infinite sequence of tem-
perature functions such that the size-dependent system (T, ;) assembles a k; X k;
square and k; are all distinct. Let f(n) = minen(7i(n)), the minimum of all
temperature functions for size n. Then f(n) is not w(y/n).

5 t-stabilility is coNP-complete

In two-handed tile assembly systems that are not size-dependent, determining
whether a supertile is 7-stable amounts to determining if there exists a cut of
the bond graph of weight less than 7, a problem decidable in polynomial time. In
contrast, we prove that the same problem is coNP-complete for size-dependent
systems, even when restricted to constant-time-computable temperature func-
tions with just two distinct temperatures.

The reduction is from maximum independent set in Hamiltonian cubic (3-
regular) planar graphs, proved NP-hard in [9]. The constructed assembly contains
vertex gadgets arranged horizontally along a line bisecting the assembly. Gad-
gets are connected by zero-strength cuts mirroring the edges of the input graph,
and have two possible cuts through them: include or exclude. The include path
has slightly lower strength, but intersects the zero-strength cuts connecting the
vertex gadget to the gadgets of adjacent vertices in the input graph. The tem-
perature function requires that any cut passes through all vertex gadgets, does
not use the include cuts of the gadgets of two adjacent vertices in the graph,
and does not use too many exclude paths. Thus an independent set of at least
some size exists if and only if there exists a sufficiently larger independent set of
vertices.

Theorem 5. Given a temperature function T : N — N and supertile, determin-
ing whether the supertile is T-stable is coNP-complete.
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6 Open Problems

The rectangle and square constructions in this work use artificial temperature
functions engineered in tandem with the tile sets. A central open question is
whether physically implementable families of temperature functions (e.g. 7(n) =
cn? for varying ¢, § > 0) are similarly capable of such control. We conjecture that
the design of such systems is possible but difficult; consider the lengthy analysis
of the construction in Sect. 3 with just 5 components. Alternatively, temperature
functions may be given as input along with shapes, with the goal of designing
systems that assemble shapes despite the temperature functions.

The difficulty of system design is supported by the coNP-hardness of deter-
mining stability. Proving the PSPACE-hardness of predicting a system outcomes,
such as whether a unique terminal supertile exists, would give even further evi-
dence of this difficulty.

As previously discussed, reversibility is a key feature of size-dependent sys-
tems. Reversibility has been more directly incorporated into algorithmic design
in other tile assembly models, leading to functionality not found in irreversible
models. For instance, replication of shapes and patterns [1,13], fuel-efficient
systems [14,19], and assembly of arbitrary shapes using a small, bounded scale
factor [6]. Can any of these be achieved with size-dependent systems?
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