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Abstract— We consider the problem of organizing a scattered
group of n robots in two-dimensional space. The communication
graph of the swarm is connected, but there is no central au-
thority for organizing it. We want to arrange them into a sorted
and equally-spaced array between the robots with lowest and
highest label, while maintaining a connected communication
network.

In this paper, we describe a distributed method to accomplish
these goals, without using central control, while also keeping
time, travel distance and communication cost at a minimum.
We proceed in a number of stages (leader election, initial path
construction, subtree contraction, geometric straightening, and
distributed sorting), none of which requires a central authority,
but still accomplishes best possible parallelization. The overall
arraying is performed in O(n) time, O(n2) individual messages,
and O(n) travel distance per robot. Implementation of the
sorting and navigation use communication messages of fixed
size, and are a practical solution for large populations of low-
cost robots.

I. INTRODUCTION AND RELATED WORK

Consider a large company of n robots after deployment.
They are scattered across a geometric region. While the
swarm is still connected in terms of communication, it lacks
central control; and while each of the robots carries a unique
ID, none of them has information about the actual range of
labels. How can we get the group into an organized arrange-
ment: an equally spaced array between the positions of the
robots with minimum and maximum label? (See Figure 1
for an example with 30 robots.) Not only does this demand
dealing with the possibly complicated geometric arrangement
in a distributed fashion; it also involves sorting them by label,
which already requires Ω(n logn) in a centralized setting.
Furthermore, what are the achievable time until completion,
required communication, and distance traveled?

Arranging robots in a specific order is a necessary routine
in some applications on multi-robot systems. In addition to
scenarios after deployment or perturbation by an uncontrol-
lable event, robots may need to be ordered to go through
a narrow passage, or to perform sequential procedures. For
homogeneous robots, swapping tasks can solve this problem
in some applications, but sorting is required if robots have
different structures, are carrying different physical loads that
cannot be swapped (and may need to arrive in order), or
differ in some other intrinsic quantities, such as remaining
battery level that cannot be transferred wirelessly [1].
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Fig. 1: An example of arraying a scattered swarm of robots. Thirty
robots are initially randomly distributed in space, and eventually
form an evenly spaced, sorted linear arrangement. A video of this
process for 75 robots has been attached and can also be obtained
from https://youtu.be/rqAALDwNDkQ.

In this paper, we describe an arraying algorithm to arrange
robots in a sorted line. We show that this algorithm has linear
completion time and travel distance, which are both optimal.
The overall protocol is safe for any arbitrary initial connected
robot configuration in Euclidean space. We make minimal
assumptions on the robot’s communication and computation
requirements, so our approach is suitable for simple robots
with limited resources.

Related Work

There has been a considerable amount of work on multi-
robot navigation for labeled robots; e.g., see [2]–[8], who
demonstrate a number of different challenges and approaches
for dealing with various aspects of the inherent difficulties.
However, there is limited previous work on sorting groups
of robots in a way that combines the requirements of two-
dimensional geometry, distributed computing, and sorting;
moreover, the absence of obstacles makes the problem easier
to solve, shifting the focus to achieving optimal efficiency.
The most relevant work is of Litus and Vaughan [1], which
uses a double bracket flow to build a dynamical system
to model the robot’s positions. Running this system will
drive the positions to a sorted ordering. This is a compact,
analytical solution and has provable properties, but it requires
that the robots are initially placed among a line parallel to
some given axis. Additionally, it requires long-range sensing
and communication between robots.

A previous approach to our scenario modeled the system
with a discrete model, see Zhou, Li, and McLurkin [9]. This
model does not include the dynamic properties of the robots:
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Fig. 2: An initial configuration of 60 robots. Edges of the graph G are indicated in light gray. The central path (Section IV-B) from rmin
to rmax is indicated in red.
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Fig. 3: A snapshot of the contraction phase of swarm already depicted in Fig. 2. Several robots have already moved onto the central
path depicted in red. Robot paths for contraction are depicted in blue. It can also be observed that the contraction phase is intervened
with the fourth phase as the central path has already straightened significantly.

Fig. 4: A snapshot of the wave sort phase. After all the robots have been integrated into the central path during the contraction phase
and as soon as the path is considered straight enough rmin initializes sorting waves that propagate through the chain of robots.

they simply jump to their destination at each time step. The
authors prove convergence with matrix iteration, but also
assume a robot can communicate to its final predecessor and
successor. As it turns out, this method may get stuck if only
local communication is available.

Some components of our approach make use of methods
for related subproblems. One of them is the task of straight-
ening a chain of robots in the plane, based on purely local
methods; this amounts to our problem for the very special
case of a communication graph that is a path, and robots
are already sorted by labels. In a considerable sequence of

papers, Meyer auf der Heide et al. [10]–[22] studied versions
of the strategy GO-TO-THE-MIDDLE (GTM), in which each
robot moves to the midpoint between its two immediate
neighbors. Some of the underlying models are based on
discrete rounds, with robots performing (possibly larger)
discrete moves; however, Degener et al. [14] showed that
in a setting with continuous motion and sensing, the variant
MOVE-ON-BISECTOR produces a straight, evenly spaced
chain in time bounded by O(n); more recently, Brandes et
al. [22] provided an analysis for continuous GTM and also
established an upper bound of O(n) on the distance traveled
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by a robot, and thus, the overall time.
Another subproblem is actually sorting the robots along

the chain. Here the idea is to exploit parallelism for achiev-
ing linear sorting time, thus beating the lower bound of
Ω(n logn) for comparison-based sorting. This has been stud-
ied in the context of a stationary array, with synchronized
rounds: a parallel variant of bubblesort called odd-even
sort [23] achieves a runtime of Θ(n); see Lakshmivarahan,
Dhall, and Miller [24] for a comprehensive analysis. Note
that our distributed scenario does not provide using synchro-
nized rounds, but has to work in an asynchronous setting.
To this end, we extend the previous work on odd-even sort
to a new, asynchronous variant, which we call wave sort.

There is some relationship between the paper [25] by
Zuluaga and Vaughan, who consider precedence rules for
coordinated motion control of multiple robots with nonzero
size and the heuristic component of our overall algorithm that
aims at collision avoidance. However, Zuluaga and Vaughan
give precedence based on energy already spent for motion,
while we give precedence based on energy that still needs to
be spent.

In addition to these explicit references, there are also
several aspects which are dealt with implicitly, including
local navigation, and connectivity. Given the limited amount
of space, we refrain from providing a survey of these related
aspects.

Contribution

This paper presents a distributed algorithm that arranges
a set of robots to an uniformly spaced path (implemented as
doubly linked list in which each robot knows its predecessor
and successor) and sorts them based on some intrinsic
property (label). In the end, the robots with minimal and
maximal label are the beginning and end of this path,
with both of them staying put throughout the protocol.
Assuming that robots can communicate when within unit
distance, the objective is achieved in total time Θ(n), and
total travel distance Θ(n) per robot, which are both best
possible assuming small robot diameter compared to the final
path length. The message complexity is O(n2) after leader
election. As a subroutine, we propose the distributed Θ(n)
sorting algorithm “Wave Sort” that is based on Odd-Even-
Sort [23], but works in an asynchronous manner. In addition,
we give simulation results for an implementation with up to
130 robots, demonstrating that all components of our overall
protocol are indeed linear.

II. MODEL AND ASSUMPTIONS

We are given a swarm R of n robots ri, i ∈ {1, . . . ,n},
where each robot has a unique ID number ID(ri), the total
set of these labels is unknown. We assume the ID of a robot
to be expressable by a constant size bit field. In addition we
are given a total order < among them. The ID space need
not be known in advance.

Communication is possible whenever two robots are suf-
ficiently close, i.e., they are within communication range
of each other. Thus, the robots form the vertices of an

undirected communication graph G = (V,E) with n nodes,
in which two vertices ri and r j are connected by an edge in
E, iff ri and r j are close enough in order to communicate
directly without utilizing other robots.

Let robot r j be a direct neighbor of robot ri in G,
then ri can measure the relative position of r j. We assume
that all these measurements are accurate and timely, unless
otherwise noted. Furthermore, we assume that each robot can
accurately move in the direction of another robot, or towards
the midpoint between two visible robots. We also assume that
the time to travel a specific distance d is basically linear in
d, as the time to reach maximum speed is small compared
to travel time.

Now the overall task is to achieve a sorted, evenly spaced
arrangement of robots between those with lowest and highest
ID-number, i.e., robot ri must move to position p1+(i−1)×
(pn− p1)/(n−1), for i = 1, . . . ,n, where p1 and pn are the
initial positions of robot r1 and rn, respectively.

Throughout this paper, we do not explicitly deal with
message loss, as the use of a communication protocol with
acknowledgements [26] makes our algorithm robust against
dropped messages. The iteration number can be appended to
avoid multiplication of messages due to lost acknowledge-
ments. A robot will only move if it has received all necessary
messages, thus if a robot starts to move before we received
an acknowledgement from it, we know it has received the
message. Overall, delays only slow down execution, but do
not harm it.

Note that robot motion in the course of carrying out
an algorithm may significantly change the scale of robot
distances. Therefore, even every small positive dimensions of
robots may cause qualitative behavior that is fundamentally
different than that for point robots. As a consequence, our
algorithms are designed for robots of positive size and
with realistic motion, which is also shown in simulation.
For the purposes of quantified theoretical evaluation, robot
dimensions (and other practical parameters like message
delays) are treated as small constants, so they are covered
by O-notation.

III. ECHO WAVES

The echo algorithm of Chang [27] is a wave algorithm
that is used multiple times in this paper. The initiator starts
the algorithm by sending a message to all its neighbors.
A robot that receives such a message for the first time
broadcasts the message to all its neighbors except for the
sender of the message, which is saved as predecessor. This
can be implemented by a simple broadcast message with
appended information for the predecessor to ignore this
message. Only when the robot has also received the message
from all its neighbors, it sends the message back (echo) to its
predecessor. The algorithm terminates as soon as the initiator
has received the message from all its neighbors.

One important aspect of this algorithm is that it spans
a tree and each robot finishes before its predecessor. For
equal messages delays this tree equals the minimal hop tree
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towards the initiator. The algorithm terminates within O(n)
time steps and needs O(n) broadcast messages.

IV. OUR ALGORITHM

Our algorithm proceeds in a total of five phases. The
first phase is the leader election phase, in which all robots
identify the extremal ID numbers (Section IV-A). The second
phase then establishes an initial path within G between the
two extremal robots rmin and rmax (Section IV-B). We then
straighten (Section IV-C) the central path. Integrating the
remaining robots into the path is achieved by contracting
subtrees (Section IV-D). In the overall protocol (and thus
in our simulations), both processes run in parallel; we do
present them as two different phases for better readability
As soon as all robots are on the central path and as soon as
the path is straight enough (Section IV-C) we move on to the
fifth and last phase, the wave sort, which is a modification
of odd-even-Sort, a synchronized, parallel variant of bubble
sort. It requires O(n) time and O(n2) messages (Section IV-
E). Overall, the first four phases can be seen as building a
robot array implemented as doubly linked list, while the last
phase efficiently sorts the array without deforming it.

A. Leader Election

We determine the robots with smallest and largest ID using
a simple leader election protocol as described in [28], based
on the echo wave. Initially every robot claims to be the
minimal/maximal robot and starts an echo wave containing
its value. A robot does not propagate a wave if it already
knows of a better value. Thus, only rmin and rmax are able
to finish their waves. As soon as rmax finishes its wave, rmax
broadcasts a message to inform all robots. As soon as rmin
has received this message and has finished its echo wave, it
initializes another echo wave. Each robot that finishes this
wave can be sure its values are final and transits to the next
phase. As the last robot to finish an echo wave is the initiator,
rmin is the last robot that enters the next phase.

The phase needs at most O(n2) broadcast messages and
at most O(n) time steps. At the end of this phase, no robot
has moved, but the robots rmin and rmax with smallest and
largest ID have been identified.

B. Central Path

The goal of this phase is to establish an initial central path
from rmin to rmax within G; see Figure 2. We could save
work by choosing a path that already contains many robots;
however, this amounts to solving the NP-hard problem of a
maximum-length path in G, which may still not contain all
robots. We sidestep these difficulties by pulling remaining
robots to the initial central path, as described further down.
More critical is the property of the path to be free from
self-intersections, as these may lead to irresolvable collisions
and blocking during straightening, even for arbitrarily small
robot sizes. We prove that this can be avoided by choosing
a shortest path from rmin to rmax in G, using the squared
Euclidean distance as edge weight.

1
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Fig. 5: Straightening using the continuous GO-TO-THE-MIDDLE
(GTM) Method. Not only does it straighten the path, it also makes
it evenly spaced, as can be seen by r3. In a continuous process the
path gets straight.

Theorem IV.1 The path from the root to a leaf in the routing
tree T R of a Unit-Disc-Graph using the squared Euclidean
distances as edge weights is intersection free.

Proof: Assume there is an intersection of the path’s
edges (a,b) and (c,d) with dist(a) < dist(b) < dist(c) <
dist(d), where dist refers to the distance to the root. Since
(a,b) and (c,d) intersect the robots {a,b,c,d} form a convex
quadrilateral. There is at least one corner of a robot x ∈
{a,b,c,d} with an angle ≥ 90°, which implies that the diag-
onal (either (a,b) or (c,d)) formed by its two adjacent robots
is longer than the two quadrilateral edges at x. Hence, this
diagonal can not be part of the routing tree, a contradiction.

Note that this proof in fact only requires edge weights that
reflect the order induced by their Euclidean length.

It is not difficult to see that the path remains crossing free
throughout the rest of the algorithm. In order to compute the
path we first compute a routing tree T R rooted at rmin using
the Chandy-Misra-Algorithm [29] that can be implemented
with O(n) time and O(n ·e) individual messages for a graph
with e edges, making use of a synchronizer [30]. Based
on broadcast messages (and assuming constant effort for
each), the total message complexity is O(n2). After T R

is established, rmax sends a message to rmin on T R. Each
robot that receives this message forwards it to its parent in
T R and becomes part of the initial path. As soon as the
message reaches rmin, it starts an echo wave on G, telling
the remaining robots that they are not on the path. Robots
that have finished that wave go over to the next phase. As
before, rmin is the last robot that enters the next phase.

At the end of this phase, all robots know if they are on the
initial path and if so its predecessor and successor, that is, the
robots on the path emulate a doubly linked list. The phase
has a time complexity of O(n) and a message complexity of
O(n2). There is no motion, yet.

C. Straightening a Path

All robots that are on the central path straighten the path
by following the continuous GTM method, for which it
is known that the chain of robots converges to a straight
line (up to inaccuracy of measurements) [10]–[22]. The rule
is simple: every robot moves towards the midpoint of the
segment between its two neighbors nl and nr in the doubly
linked list; see Figure 5. In addition, robots on the path are
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Fig. 6: Example for contraction. Extremal robots are shown in
black, central path robots in grey with thick edges, and contraction
tree in doted blue. Robot r6 is not adjacent to the central path and
thus moves towards its predecessor. Robot r5 is adjacent to the
path and moves to the closest midpoint of a central path edge to
get integrated.

not allowed to cross other path edges in order to ensure that
the path remains intersection free.

As mentioned before, this phase is only described on its
own for clearer exposition; in the overall algorithm, it runs
parallel to contraction (Section IV-D), as well as sorting
(Section IV-D). During contraction, the process evens out
distances among consecutive pairs of robots, making space
for new incoming robots that are integrated into the path.
During sorting, this process ensures that robots continue to
have sufficient space.

The overall movement in GTM of a robot has been proven
to be in O(n) [22]. Note that our proof of total travel distance
O(n) for each robot considers a sequence of phases. It is
plausible that the distance does not get worse if phases run
in a condensed, parallel manner.

D. Contracting Subtrees

This phase integrates remaining robots into the central
path; see Figure 6. The idea is that robots that are close to the
central path move towards the midpoint of two consecutive
robots and get integrated into the path as soon as they have
reached that position. At the same time, these robots are
the roots of contracting subtrees that organize robots that
are further away; see Figure 3. The continued straightening
(Section IV-C) ensures that there is sufficient space between
consecutive robots. At the end of this phase, there is a doubly
linked list that contains all robots with rmin and rmax at its
ends.

a) Contraction Tree: The contraction tree T C is built
by inducing another routing tree rooted at rmin. However,
edges on the central path get weight zero, while all other
edges in G get their Euclidean length. Thus, we obtain
several routing trees that are attached to the central path.

b) Contraction: The following protocol ensures that
robots that are further away move first, so parents do not
lose connectivity to their children. In order to start a motion,
rmin induces an echo wave on T C. However, only robots that
have finished this wave are allowed to move. By delaying the
finalization of the wave, a child can keep its parent static until
it is ready to move. In general, children move towards their
parent, while child robots attached to the central path move
towards the midpoint of the closest path edge. Contractive

motion can be parallelized with straightening the path. Time
and travel distance per robot are linear.

We remark that due to contraction, the robots density
grows. Thus, in extreme cases a child robot may get stuck,
which could cause a loss of connection to its parent. This
can be prevented by messaging the parent. However, we do
not consider this for the quantified theoretical analysis.

c) Integration: Each path edge is owned by the incident
robot closer to rmin. If an exterior robot rext , i.e., a robot that
is not yet integrated into the central path yet, is close enough
to the midpoint of an edge, the owner rown of the edge can
send an offer-message containing the ID of itself and the
ID of its successor rsuc on the central path. Usually, rext
acknowledges this with an accept-message to rown and rsuc,
in which case rext is integrated into the central path between
rown and rsuc. However, in rare cases rext may already have
received another offer, in which case rext replies with a reject-
message. Assuming that a robot receives at most O(n) offers,
the message complexity is O(n2).

d) Termination: For a cleaner separation of the sorting
phase, we enforce all robots to be integrated before we
start sorting. The contraction phase terminates as soon as
all robots have been integrated into the central path, which
is checked as follows. As soon as rmin has no child, it
periodically sends an echo wave. However, the wave is
restricted to the central path and only robots without any
children are allowed to forward the wave. Therefore, all
robots are integrated as soon as rmax sends the echo.

In addition, the wave is used to check that the path is
straight enough, i.e., the wave is only sent via robots that
are close to the middle of its two path neighbors. This is
stable and ensures that robots have sufficient space to move
during the next phase.

In O(n) contraction and straightening time, only O(n)
waves are initiated by rmin. The periodically sent echo waves
can be seen as one echo wave that is refreshed until it
succeeds. The time is in O(n) consisting of O(n) until the
succeeding wave is initiated and its termination time of O(n).
At most O(n2) messages are sent.

E. Wave Sort

As soon as the robots are arrayed on a sufficiently straight
line, we enter the actual sorting phase. The idea is to use
a variant of odd-even sort [23], [24], a parallel version of
bubble sort in which alternately robots of odd and even pairs
compare their labels and swap their positions if necessary.
With global control, odd-even sort takes O(n) time by
carrying out at most n− 1 parallel rounds, each in time
O(1). However, in our distributed setting with no global
control, implementing global synchronization for each odd
(even) round would take O(n) time, increasing the overall
complexity to O(n2).

Instead, our new Wave Sort implements each odd (even)
round as a wave that is initialized at rmin. If an odd (even)
wave reaches and odd (even) pair, they first propagate the
signal and then start to swap if necessary. Thus, the minimal
frequency of waves is essentially bounded by the time
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required to swap two consecutive robots which is O(1). For
large n, one can literally see several waves that propagate
through the chain of robots—see Figure 4. Overall, the
algorithm requires O(n) time. In particular, we require at
most n−3 waves.

Robots rmin and rmax are already correctly placed. Con-
sequently, they will not require swaps; rmin initializes waves
(Algorithm 1), while rmax absorbs waves (Algorithm 3). Both
algorithms are stated for completeness. In the following we
present Algorithm 2 for all other robots. The predecessor in
the doubly linked list is denoted by nl and the successor by
nr.

Algorithm 1 Wave Sort: Min-Robot
1: m← ‘Master’
2: while not sorted do
3: Wait for READY[] from nr
4: Send INIT[m, ID] to nr
5: Wait for RET[r]
6: nr←min{nr,r}
7: m← m
8: end while
9: Sorted!

Algorithm 2 Wave Sort: Non-extremal-Robots

1: while not sorted do
2: Wait for nl in range; Send READY[] to nl
3: Wait for INIT[m, l] from nl
4: if m = ‘Master’ then
5: Send RET[min{ID,nr}] to nl
6: Wait for READY[] from nr
7: Send INIT[m, l] to nr
8: Wait for RET[r] from nr
9: if nr < ID then

10: nl ← nr; nr← r
11: Swap with nr, sidestep right
12: else
13: nl ← l
14: end if
15: else
16: Wait for READY[] from nr
17: Send INIT[m,max{ID,nl}] to nr
18: Wait for RET[r] from nr
19: Send RET[r] to nl
20: if nl > ID then
21: nr← nl ; nl ← l
22: Swap with nl , sidestep right
23: else
24: nr← r
25: end if
26: end if
27: end while

1) Algorithm 2: The message exchange ensures that all
robots know their future left and right neighbors, so that

Algorithm 3 Wave Sort: Max-Robot
1: while not sorted do
2: Wait for nl in range; Send READY[] to nl
3: Wait for INIT[m, l] from nl
4: Send RET[ID] to nl
5: nl ←max{nl , l}
6: end while

they can update the pointers of the doubly linked list before
starting the actual swap (if necessary). In general, all incom-
ing messages are stored in a buffer; i.e., if a robot WAITS for
a message, it checks this buffer until it contains the message
(which may already be the case). On success the message is
taken and removed from the buffer.

Consider the bottom of Figure 7 depicting a master-slave
pair and its two neighboring pairs. The robots of these pairs
may also swap. In the left pair, the robot that is going
to end up at Position 1 must know min(rc,rd), which is
going to be its right neighbor. Similarly, the right pair must
know max(rc,rd). At the same time the robot ending up at
Position 2 must know max(ra,rb) and the robot that will be
at Position 3 must know min(re,r f ). After this information
is exchanged the doubly linked list can be updated and (if
necessary) the robots also change their physical positions
(Algorithm 2:Line 11 and Line 22).

2) Example: A detailed example is given in Figure 7.
In the top row, robot r2 and r3 are already paired. The
message exchange of robot r7 in detail is as follows. Robot r7
starts its loop by sending a READY-message (A2:L2) to its
left neighbor r3. It then waits for a INIT-message (A2:L3)
from r3, which turns r7 into a master for this round and
also indicates that the left pair will end the round with r3
as the robot at Position 1. r7 then answers with a RET-
message (A2:L5) indicating the future right neighbor for r3,
namely r6. r7 then waits for a READY-message (A2:L6)
from r6 and turns it into a slave by an INIT-message (A2:L7),
which also contains the future left neighbor of this pair,
namely r3. It then waits for r6 to finish its handshake with
the right pair and finally receives a RET-message (A2:L8),
which contains the future right neighbor for r7, which is r4.
As master and slave now know their future neighbors, they
update their pointers (A2:L10 and L21) and start the actual
swap.

The important part of this protocol is that the master of the
next pair always immediately answers with a RET-message
(A2:L8), as soon as it has received its INIT-message (A2:L3).
This RET-message already contains the future right neighbor
of the current pair. This information is sufficient for the
current pair to update its pointers and to start the swap while
the wave continues to propagate to the right.

V. SIMULATION

We validated our approach by conducting simulations with
robot swarms of various size. As we consider continuous
sensing and motion, we assume that sensing and motion
errors even out. Robots are simulated as disks, i.e., they
may collide. The used parameters are inspired by those of
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Fig. 7: Bottom: Sketch of a master-slave pair with its two neighbors.
Top: A concrete example of a wave. Robots of central pair (r7,r6)
swap, while left and right pair are not required to swap. Dotted
robots are still in the previous wave. Gray robots are in the
current wave. Red robots swap. Dotted pointers are already updated.
Messages: READY—orange; INIT—blue; RET—green;

the actual r-one robots of Rice University [31]: robot radius
is 0.05m, communication range is 4.5m, maximal velocity
is 1m/s and maximal acceleration is 1.8m/s2. A robot can
perform around 1.6 360° rotations per second, which are
necessary to change the direction, as the robots can only
drive for- and backwards. Robots are simulated at 60hz and
messages are received within the next time step, i.e., after
1/60s.

The experiments where made for n=15,...,130 robots. They
were randomly placed into a quadrilateral of length 0.4*n and
height 12. The minimal robot was placed at the lower left
corner and the maximal at the lower right corner; see Fig-
ures 2-4 for an overall illustration. For collision avoidance,
we used a heuristic “retreat from neighbors closer to their
goal”. This heuristic is self-explanatory because adjacent
robots tend to aim for the same geometric positions. The
comparison is made by exchanging the goal distance. The
message complexity for this is not considered by us.

Clearly, the running time is linear.
It is also evident that the time for straightening the chain

(the subject of numerous papers dealing with GTM) is almost
negligible, i.e., O(n) with a small constant.
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Fig. 8: Simulation runs for |R| = 15, . . . ,130 with 64 runs each;
time includes deadlock prevention during collision-avoiding motion
control. Clearly, all program components have linear runtime. The
times are the time spans from the beginning until the swarm
detected itself to be sorted, straight, or contracted.

VI. CONCLUSION

We presented a distributed algorithm to sort robots in
Euclidean space, in overall time that is linear time. Robots
get sorted from arbitrary initial configuration, even if sensor
range is limited and there is no central control. Our under-
lying assumption is that configurations are dense enough for
a connected communication graph, but not too dense for
feasible arrangements (i.e., available space along the final
path is sufficient for accomodating all robots) or for local
collision avoidance.

There are many exciting new challenges that lie ahead.
The next step is to combine our approach with dense settings
in which density along the terminal path is a problem, and
multi-robot collision avoidance comes into play. We plan
to resolve these by moving global minimum and maximum
apart to make the problem feasible. As this generalizes the
subproblem of straightening a chain of robots by a local
strategy like continuous GO-TO-THE-MIDDLE or MOVE-
ON-BISECTOR, the mathematical analysis becomes more in-
volved, even if the overall strategy displays benign behavior
toward each other to make problem solvable.

At this point, our method is no yet able to recover from
failures. There is hope of making this approach fully self-
stabilizing.
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