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Abstract

We consider staged self-assembly, in which square-
shaped Wang tiles can be added to bins in several
stages. Within these bins the tiles may connect
to each other, depending on the glue types of their
edges. In general, self-assembly constructs complex
(polyomino-shaped) structures from a limited set of
square tiles. Previous work by Demaine et al. consid-
ered a setting in which assembly proceeds in stages. It
was shown that a relatively small number of tile types
suffices to produce arbitrary shapes; however, these
constructions were only based on a spanning tree of
the geometric shape, so they did not produce full con-
nectivity of the underlying grid graph. We present
new systems for stages assembly to assemble a fully
connected polyomino in O(log2 n) stages. Our con-
struction works even for shapes with holes and uses
only a constant number of glues and tiles.

1 Introduction

In self-assembly, a set of simple tiles form complex
structures without any active or deliberate handling
of individual components. Instead, the overall con-
struction is governed by a simple set of rules, which
describe how mixing the tiles leads to bonding be-
tween them and eventually a geometric shape.

The leading theoretical model for self-assembly is
the abstract tile-assembly model (aTAM). It was first
introduced by Winfree [12, 9]. The tiles used in
this model are building blocks called Wang tiles [11],
which are unrotatable squares with a specific glue on
each side. Equal glues have a connection strength
and may stick together. If two partial assemblies
(“supertiles”) want to assemble, then the sum of the
glue strength along the linkage needs to be at least
some minimum value 7, which is called the tempera-
ture. While assembling some shapes we consider the
minimum number of distinct tiles to uniquely assem-
ble this shape; this is called the tile complezitiy t.
Apart from that we also consider a minimum num-
ber of glues, which is the glue complezitiy g. Clearly,
g<t<gh

In this paper we consider the staged tile assembly
model introduced by Demaine et al. [3]. In this model
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the assembly process is split into sequential stages
that are kept in separate bins, with supertiles from
earlier stages mixed together consecutively to gain
some new supertiles. We can either add a new tile
to an existing bin, or we pour one bin into another
bin, such that the content of both get mixed. Hence,
there are bins at each stage. Unassembled parts get
removed. The overall number of necessary stages and
bins are the stage complexity and the bin complexity.
Demaine et al. [3] achieved a number of results that
are summarized in Table 1. Most notably, they were
able to come up with a system (based on utilizing a
spanning tree) that can produce arbitrary shapes in
O(diameter) many stages, O(logn) bins and a con-
stant number of glues; the downside is that the re-
sulting shapes are not fully connected.

1.1 Our results

We show that there is a staged assembly system for
an arbitrary polyomino with the following properties:

1. polylogarithmic stage complexity
2. constant glue and tile complexity
3. constant scale factor

4. full connectivity

We show how to assemble an arbitrary polyomino
even with holes. Most methods of Demaine et al.
using a constant number of glues and tiles have either
a big stage complexity or the build polyomino is not
fully connected. We use a polylogarithmic number of
stages with full connectivity and still use a constant
number of glues and tiles. On the other hand, we use
a small constant scale factor for the assembled shapes.
Table 1 gives an overview of the methods which uses
a constant number of glues and tiles.

1.2 Related work

As mentioned above, we stick to the aTAM. For other
models, see [1].  Other related geometric work by
Cannon et al. [2] and Demaine et al. [4] considers re-
ductions between different systems, often based on ge-
ometric properties. Fu et al. [6] use geometric tiles in
a generalized tile assembly model to assemble shapes
[6]. Fekete et al. [5] study the power of using more
complicated polyominoes as tiles.
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Lines and Squares Glues|Tiles| Bins Stages |7|Scale/Conn.|Planar
Line [3] (sect. 2.1) 3 6 7 O(logn) (1| 1 full yes
Square — Jigsaw techn. [3] (sect. 2.2) 9 |O(1)] O(1) O(logn) (1| 1 full yes
Square — 7 = 2 (sect. 2.3) 4 |0O(1)| O() O(logn) |2 1 full yes
Arbitrary Shapes Glues|Tiles| Bins Stages |7|Scale|Conn.|Planar
Spanning Tree Method [3] 2 16 |O(logn)|O(diameter)|1| 1 |partial| no
Simple Shapes [3] 8 1)| O(n) O(n) 1l 2 full no
Simple Shapes (sect. 3.2) 18 D o(v]) | O(log®n) [1| 4 | full no
Monotone Shapes [3] (sect. 3.1) 9 1)| O(n) O(logn) (1| 1 full yes
Shape with holes (sect. 3.3) 7 D o(v]) | O(log*n) |2| 3 full no

Table 1: Overview of some results from Demaine et al. [3] and us using a constant number of glues and tiles.
Also pictured are bin complexity, stage complexity, temperature, scale factor, connectivity and planarity. n is
the side length of a smalles bounding square and V' are the vertices of the polyomino.

Using stages has received attention in DNA self
assembly. Reif [8] uses a step-wise model for par-
allel computing. Park et al. [7] consider assembly
techniques with hierarchies to assemble DNA lattices.
Somei et al. [10] use a stepwise assembly of DNA tiles.
None of these works considers complexity aspects.

2 Lines and Squares

We start with staged assembly for lines and squares.
While the results of Section 2.1 and 2.2 are due to [3],
Section 2.3 states a new result.

2.1 1 x n lines

Theorem 1 A 1 X n-line can be assembled with a
7 = 1 staged assembly system using O(logn) stages,
3 glues, 6 tiles and 7 bins.

2.2 n X n squares (divide and conquer)

Making use of a “jigsaw” technique, Demaine et al. [3]
were able to come up with an efficient method that is

Theorem 2 An n X n-square can be assembled with
full connectivity in O(logn) stages with 9 glues, O(1)
tiles, O(1) bins, and 7 = 1.

2.3 n X n squares with 7 = 2

For 7 = 2 assembly systems, it is possible to come up
with more efficient ways of constructing a square. The
construction is based on an idea by Rothemund and
Winfree (see [9]), which we adapt to staged assem-
bly. Basically, it consists of connecting two lines by a
corner tile, before filling up this frame; see Figure 1.

Theorem 3 There exists a 7 = 2 assembly system
for a fully connected nxn square with O(logn) stages,
4 glues, 14 tiles and 7 bins.
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Figure 1: First: Construction for square assembly.
Second: Filling up the square. Third: Intermediate
Result: some tiles have been assembled to the back-
bone. Fourth: Fully assembled square.

Proof. First we need to construct the 1 x (n—1) lines
with strength 2 glues. We know from Theorem 1 that
a line can be constructed in O(logn) stages, 3 glues, 6
tiles and 7 bins. Because both lines are perpendicular
they will not connect. Therefore we can use all 7 bins
to construct both lines parallel. For each line we use
tiles such that the side, which is directed to the inner
side of the square, has a strength 1 glue. In the next
stage we mix together the single corner tile with the
two lines. In the last step we add a tile with the
strength 1 glues on all four sides. When the square is
filled no further tile will be connecting because every
connection would have a strength sum of 1.

Overall we needed O(logn) stages with 4 glues (3
for the construction, 1 for filling up the square), 14
tiles (6 for each line, 1 for the corner tile, 1 for filling
up the square) and 7 bins for the parallel construction
of the two lines. 0

3 Assembling Polyominoes

Now we describe approaches for assembling arbitrary
polyominoes.

3.1 Monotone shapes

For monotone shapes, [3] showed the following.
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Theorem 4 A monotone polyomino can be assem-
bled with full connectivity in a 7 = 1 staged assembly
system in O(logn) stages using 9 glues, O(1) tiles and
O(n) bins.

3.2 Simple shapes

We present a system for building simple polyominoes.
The main idea comes from [3], i.e., splitting the poly-
omino into strips. Then an arbitrary strip gets assem-
bled piece by piece and if there is a component which
can assemble to the currently strip then we create the
component and attach it to the strip.

Our new staged assembly system partitions the
polyomino into rectangles and uses them to assem-
ble the whole polyomino. We may use more bins than
the old method, but we have an improvement in the
stage complexity. We first consider a building block,
see Figure 2. Details are omitted due to limited space.

Lemma 1 A 2n x 2n square which has at most two
tabs each top or left side and at most two pockets each
bottom or right side (see Figure 2) can be assembled
with O(logn) stages, 9 glues, O(1) tiles and O(1) bins
at T =1.

Figure 2: A square (green) with tabs on top and left
side (yellow) and pockets on bottom and right side.

This construction works equally well for modified
2n x 2m rectangles. Hence, we can search for a de-
composition of a simple polyomino into components
of this type.

Theorem 5 Let V be the set of vertices of the poly-
omino. There exists a T = 1 staged assembly system
that constructs a fully connected simple polyomino in
O(log? n) stages with 18 glues, O(1) tiles, O(|V|) bins
and scale factor 4.

Proof. Details are omitted for lack of space. The
main idea is to cut the polyomino into rectangles.
These rectangles are recursively divided into subsets,
and assembled making use of jigsaw techniques.
Overall we have O(logn) stages to assemble the
O(]V]) rectangles with O(1) bins for each rectangle
plus O(log? n) stages to assemble the polyomino from
the rectangles which are in total O(log2 n) stages and
O(|V]) bins. For the rectangles we need 9 glues and 9
glues for the remaining assemblage, hence, in total 18
glues and with it O(1) tiles. To uniquely assemble the
polyomino we need to scale it by a factor of 4 in total
(scaled by 2 two times). That is, we replace each tile
by a 4 x 4 supertile. (]
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Figure 3: Left: A chosen rectangle (orange) which
splits the polyomino into components (green). Mid-
dle: Decomposition of splitting rectangle. Right: De-
composition of the components.

3.3 Temperature 7 = 2 assembly

The idea for assembling polyominoes with holes at
7 = 2 is similar to squares. To this end, we construct
a backbone. For an arbitrary polyomino scaled by a
factor 3, this is a spanning construct formed with the
following line types:

1. the lines on the left boundary of the polyomino
or right boundary of a hole,

2. the lines on the right boundary of the polyomino
or left boundary of a hole,

3. the lines on the upper boundary of the poly-
omino or lower boundary of a hole,

4. the lines on the lower boundary of the polyomino
or upper boundary of a hole.

5. the lines that connect two components along the
first row of an 3 x 3 supertile.

In order to avoid cycle in this construction, we leave
out the lowest leftmost line on the boundary of the
polyomino and the highest rightmost line on the
boundary of each hole. Moreover, the fifth line type
can be found by moving left from a leftmost (and low-
est in case of ties) tile of each hole until a line gets
hit. Hence, the construction yields a simple shape.
An example for a backbone can be found in Figure 4.
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Figure 4: Left: A scaled polyomino with one hole.
Middle: Backbone without the fifth type of lines.
Right: Complete Backbone of the shape.

Lemma 2 Let V be the set of vertices of a polyomino
P. After scaling P by a factor of 3, the corresponding
backbone can be assembled in O(log®n) stages with
4 glues, O(1) tiles and O(|V'|) bins.
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Proof. The backbone consists of two types: lines and
connection tiles (see Figure 5). Observe that each
connection tile has either two or three adjacent lines.
Hence, in the adjacency graph they would have degree
two and three respectively.
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Figure 5: Left: A backbone of a polyomino. Right: A
backbone decomposed into lines (green) and connec-
tion tiles (yellow).
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The construction proceeds in three steps. Details
are omitted due to space constraints. In total we
use 4 glues, O(1) tiles and O(|V|) bins to assemble a
backbone for a given polyomino within O(log2 n+2-
logn) = O(log® n) stages. O

We can now use this idea to construct any poly-
omino by assembling its backbone and then filling up:

Theorem 6 Let V be the set of vertices of the poly-
omino. Then there is a T = 2 staged assembly system
that constructs a fully connected arbitrary polyomino
in O(log®n) stages, 7 glues, O(1) tiles, O(|V|) bins
and scale factor 3.

Proof. The construction proceeds in two parts;
again, we have to omit details. For the first part we
present a construction such that no tile gets to an
unwanted position while filling up the polyomino.
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Figure 6: Glue chart for 3 x 3 tiles to fill up the shape.
Blue glue L gl, orange glue = g2 and red glue £ g3.

To fill up the polyomino we mix the nine kinds of
tiles (see Figure 6) plus the backbone in one bin. In
total we need O(log® n) stages, 7 glues, O(1) tiles and
O(]V]) bins to assemble a fully connected polyomino,
scaled by a factor 3 from the target shape. O

4 Future Work

Our new methods have the same stage and bin com-
plexity and use quite a small number of glues. Be-
cause the bin complexity is in O(|V]) for some poly-
omino with V' as the set of vertices, we may need
many bins if the polyomino has many vertices. Hence,

both methods are good for slightly branched polyomi-
noes. This raises the question for a staged assembly
system with the same complexities but a better bin
complexity for polyominoes with many vertices, i.e.,
if [V]| € O(n?)?

Another interesting challenge is to come up with a
more efficient system for an arbitrary polyomino. Is
there a staged assembly system of stage complexity
o(log? n) without increasing the other complexities?
In total we think that both methods are a good ap-
proach to assemble a polyomino although the number
of bins may be a really big value.
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