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Abstract

Given a set S = {R1, R2, . . . , R2n} of 2n disjoint re-
gions in the plane, we examine the problem of comput-
ing a non-crossing perfect region-matching: determine if
there exists a perfect matching on S that is realized by a set
of non-crossing line segments, with the segments disjoint
from the regions. We study the complexity of this prob-
lem, showing that, in general, it is NP-hard. We also show
that a perfect matching always exists and can be computed
in polynomial time if the regions are unit disks (or nearly
equal-sized disks or squares). We consider also the bipar-
tite version of the problem in which there are n red regions
and n blue regions; in this case, even for unit disk (or unit
square) regions, the problem is NP-hard.

1 Introduction

We consider a natural geometric matching problem on
planar regions. Given a set S = {R1, R2, . . . , R2n} of
2n disjoint regions in the plane, we examine the prob-
lem of computing a non-crossing perfect region-matching:
determine if there exists a set of n pairs of regions,
{(P1, Q1), (P2, Q2), . . . , (Pn, Qn)}, of S (Pi, Qi ∈ S)
such that there exist non-crossing (disjoint interiors) line
segments, piqi, that realize the matching, with pi ∈ Pi,
qi ∈ Qi, and piqi disjoint from the interiors of the regions
of S (i.e., the regions of S are obstacles through which the
edges of the matching are not allowed to pass).

Related Work. Aloupis et al. [4] considered the prob-
lem of realizing a given matching (i.e., with a pairing of the
regions specified) by a set of non-crossing line segments
connecting each pair of regions in the matching. They par-
ticularly studied the problem in which one region of each
given pair is a single point, while the other region is either
a discrete point set or a line segment, possibly in a special
configuration. The bottleneck version of the problem has
been studied by Abu-Affas et al. [3].

Addressing a problem posed by Ferran Hurtado at a

workshop in Barcelona, Ábrego et al. [1, 2] studied a vari-
ant of geometric matching, called C-matching, in which a
set S of points are to be matched using regions of a speci-
fied type (e.g., squares) from a set C; the regions serve as
the “edges” of the C-matching. In a perfect C-matching,
each point of S lies in exactly one of the |S|/2 regions
of the C-matching, and each such region contains exactly
two points of S. If the regions are pairwise-disjoint, the
matching is said to be strong.

Preliminaries. We are given a set S = {R1, . . . , R2n}
of 2n disjoint (open) regions; most of our attention is fo-
cused on the case of regions that are circular disks or axis-
aligned squares. The complement, <2 \ (∪iRi) of the set
of regions is a (closed) connected set, which we call the
free space. Consider the region visibility graph, G, whose
nodes are the regions S and whose edges E correspond to
pairs of regions, Ri andRj , that are weakly visible, mean-
ing that there exist points pi ∈ ∂Ri and pj ∈ ∂Rj such
that the line segment pipj lies fully within the free space.
A set of line segments is a non-crossing matching for S
if the segments all lie within the free space, are pairwise
non-crossing (no point lies in the relative interior of two
distinct segments), and there is a matching in the graph G
for which the segments are a geometric realization. Note
that even if the graph G on S has a perfect matching, it
may not be possible to realize it with non-crossing line
segments; see Figure 1(a), where the only realization by
straight segments of a perfect matching on the set of small
and large squares results in two edges crossing in the mid-
dle of the figure. In Figure 1(b), we show a simple case of
circular regions (small and large) for which the graph G is
a star (so only one pair of regions can be matched).

Summary of Results. We prove that determining if a
non-crossing perfect matching exists is NP-complete for
disjoint regions that are squares or disks, not all the same
size. In contrast, we prove that if the regions are (dis-
joint) unit disks/squares, a non-crossing perfect matching
always exists and can be computed efficiently. If the re-
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(a) While the graph
G has a perfect
matching, it has
no realization
with non-crossing
straight segments.

(b) The graph G
is a star; at most
two regions can be
matched.

Figure 1: Examples.

gions are disks/squares with a bounded ratio of largest to
smallest, then one can always find a non-crossing match-
ing that matches a constant fraction of the input regions.
We also consider the bipartite case, in which the input is
n “red” regions and n “blue” regions; we prove that it is
NP-complete to decide if there is a non-crossing perfect
bipartite matching for unit disks/squares.

2 Hardness

Theorem 1 Given a set S of 2n disjoint circular disks or
axis-aligned squares in the plane, deciding if there exists a
non-crossing perfect matching on S is NP-complete.

Proof. [Sketch] Our proof is from Planar-Exactly-1-in-3-
SAT. We focus on the case of axis-aligned squares. In Fig-
ures 2,3,4 we show some of the gadgets; not shown are the
(polynomially) numerous “blockers”, which fill the space
around the squares and red/green edges shown, making it
so that the only edges possible to consider for the match-
ing are (essentially) those red/green edges shown, as there
are no other combinatorially distinct free-space connecting
segments between pairs of squares. Gadgets for blockers
are shown in Figure 4 (both for squares and circular disks).
A blocker is designed in such a way that the only way to
pair up the objects in the blocker is to make internal con-
nections that leave the outer bounding objects unavailable
for matching.

In the variable gadget of Figure 2(a), using the red (ver-
tical) edges corresponds to setting the variable to True,
while using the green (horizontal) edges corresponds to
setting the variable to False. Once we commit to the type
of edge (red or green) matching to the square labelled vi,
we are commited to this choice along the “variable chain”.
Figure 2(b) shows a splitting gadget that allows the signal
from a variable to be split, so that it can propagate to multi-
ple different clauses. Figure 3 shows three variable chains
connecting to a clause gadget (a single square). Note that
the clause square may have to be larger than shown, in or-
der to accommodate configurations in which, say, the three
edges incident to the clause are all red (i.e., all three vari-
ables appear as positive literals). We claim that there is

(a) Variable gadget.
(b) A splitting gadget.

Figure 2: Variable gadgets used in the proof of Theorem 1.

Figure 3: Clause gadget: Three variables arrive at the
clause.

(a) Blocker using
squares. (b) Blocker using

circular disks.

Figure 4: Blocker gadgets.

a non-crossing perfect matching if and only if it is possi-
ble to satisfy all clauses using exactly one true literal per
clause. Further, we claim that the entire construction uses
a polynomial number of squares. �

3 Matching Unit Disks and Squares

Theorem 2 Given a set S = {R1, . . . , R2n} of 2n dis-
joint unit-radius disks or axis-aligned unit squares in the
plane, there is always a non-crossing perfect matching on
S, and it can be computed in polynomial time.

Proof. For disksRi, we construct the Euclidean Delaunay
triangulation of the disk centers, pi, in time O(n log n).
We know, from Dillencourt [5], that there is a perfect
matching in the Delaunay triangulation. We match pairs
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(a) Circular
regions.

(b) Square regions.

Figure 5: Proof of Theorem 2.

of disks according to this matching. We then realize the
connections as follows (see Figure 5(a)): for a Delau-
nay edge (pi, pj), with corresponding witness circle Ci,j
(which passes through pi and pj and has no other cen-
ter points interior to it), centered at ci,j , we connect point
p′i ∈ ∂Ri to the point p′j ∈ ∂Rj , where p′i (resp., p′j) is the
“shifted” point on the segment pici,j at distance 1 from pi
(resp., on the segment pjci,j at distance 1 from pj). Then,
the circle C ′i,j centered at ci,j of radius 1 less than the ra-
dius ofCi,j has an interior disjoint from all other unit disks
Rk of S (since Ci,j is empty of unit disk centers, and the
radius ofC ′i,j is 1 less than that ofCi,j). Thus, the segment
p′ip
′
j , which lies within C ′i,j , does not intersect any other

unit disk. Further, the segments p′ip
′
j obtained from De-

launay edges in this way are pairwise non-crossing, since
each such segment has a corresponding witness circleC ′i,j ,
whose interior contains no other shifted points p′k. Thus,
we have obtained a non-crossing perfect matching on the
set S of unit disks.

For squares, we construct the L∞ Delaunay triangula-
tion of the centers of the regions S. We know that the
Delaunay triangulation has a perfect matching (in fact, it
also has a Hamiltonian path; one simple proof is given in
[2]). We match pairs of squares according to such a match-
ing/path. We then realize the connections as shown in Fig-
ure 5(b). �

Theorem 3 Computing a non-crossing perfect matching
on 2n unit disks or axis-aligned unit squares has an
Ω(n log n) lower bound.

Proof. Our reduction is from sorting. Given n distinct in-
tegers {x1, x2, . . . , xn} that are to be sorted, we create an
instance of region matching on a set of 2n − 2 disjoint
small squares, each of side length 1/4, centered on the
points ximin

, ximax
, and xi ± 1/4, for i 6= imin, imax,

along the x-axis. Here, ximin
= mini xi = xπ1

and
ximax

= maxi xi = xπn
are the smallest and largest of

the input integers, whose sorted sequence (unknown to us)
is given by the permutation π: (xπ1 , xπ2 , . . . , xπn). (The
values ximin

and ximax
are easily computed in timeO(n).)

For this set of disjoint squares, the only non-crossing per-
fect matching is that which joins the square centered at
ximin

with the square centered at xπ2
− 1/4, the square

centered at xπ2
+1/4 with the square centered at xπ3

−1/4,
etc. Thus, the result of the matching (which square is
matched to which square) determines the sorted order of
the input xi. �

Note that if the radii of the regions (disks) can be ar-
bitrary, then it may not be possible to match more than
a single pair of regions; see Figure 1(b). It is interesting
to consider for what ratio of large to small radius can we
say that a perfect matching always exists. We know that a
perfect matching always exists if the ratio is one (i.e., all
disks are of the same radius). Let rmax (resp., rmin) de-
note the radius of the largest (resp., smallest) disk/square.
Let ρ = rmax/rmin be the ratio of the size of the largest
to smallest object. We denote by ρ∗D the critical ratio for
disks, and by ρ∗S the critical ratio for squares, so a non-
crossing matching exists for any ratio ρ ≥ ρ∗D or ρ ≥ ρ∗S ,
respectively, but not for ρ < ρ∗D, ρ < ρ∗S . It follows from
Theorem 2 that ρ∗D and ρ∗S exist, because there is a non-
crossing matching whenever ρ = 1. The examples in Fig-
ure 6 show that ρ∗D ≥ 1/3 for disjoint disks, and ρ∗S ≥ φ
for disjoint squares, where φ = 0.618 . . . is the Golden
Ratio.

We now consider the question of achieving a matching
(with non-crossing edges) of at least a certain fraction of
the input regions.

Theorem 4 If rmax/rmin ≤ C, then there always exists
a non-crossing matching of Ω(n/C) pairs.

Proof. [Sketch] We shrink disks to rmin and do a non-
crossing matching on the equal-radius disks. Then, we
argue that no original (larger) disk can block more than
O(C) of the matched edges. �

4 Bipartite Matchings

Theorem 5 Given a set S of 2n disjoint axis-aligned unit
squares in the plane, n of them “red” and n of them “blue”,
deciding if there exists a non-crossing perfect bipartite
matching between red and blue squares is NP-complete.

Proof. [Sketch] We reduce from planar Constraint Graph
Satisfaction [6]: given a planar graph with edge weights

1

x

1−x

x

Figure 6: Lower bounds for the critical ratio: Examples
for which no non-crossing perfect matchings exist.
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of 1 (denoted red) or 2 (denoted blue), where each ver-
tex is red-red-blue (called AND) or blue-blue-blue (called
OR), decide whether there is an orientation such that ev-
ery vertex has a total incoming weight of at least 2. Given
such a graph, we embed it orthogonally in a grid, and re-
place each AND vertex, each OR vertex, and each turn with
Figures 7a, 8a, and 9a, respectively. Dashed lines denote
candidate matching connections; all other connections are
suitably blocked by a bipartite unit-square blocker (details
appear in the full paper). Figures 7, 8, and 9 show all
valid solutions of these gadgets. Each 6-cycle forces the
contained two points to either both match into this gadget
(representing an outgoing edge in the orientation) or into
the adjacent gadget (representing an incoming edge in the
orientation). The central points force the appropriate be-
havior by blocking certain connections. �

(a) Gadget
(b) No inputs ac-
tive, forcing output
inactive.

(c) One input ac-
tive, forcing output
inactive.

(d) Two inputs ac-
tive, output inac-
tive.

(e) Two inputs ac-
tive, output active.

Figure 7: Constraint-graph AND vertex represented as bi-
partite region matching. Here we view the red edges as
inputs and the blue edge as an output; we call an input
active if it is incoming, and call an output active if it is
outgoing.
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(a) Gadget
(b) No inputs ac-
tive, forcing output
inactive.

(c) One input ac-
tive, output inac-
tive.

(d) One input ac-
tive, output active.

(e) Two inputs ac-
tive, output inac-
tive.

(f) Two inputs ac-
tive, output active.
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(a) Gadget
(b) Directed from
left to top.

(c) Directed from
top to left.
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