
Cost-Oblivious Reallocation for Scheduling and Planning

Michael A. Bender
Stony Brook University

bender@cs.stonybrook.edu

Martín Farach-Colton
Rutgers University

farach@cs.rutgers.edu

Sándor P. Fekete
TU Braunschweig

s.fekete@tu-bs.de
Jeremy T. Fineman
Georgetown University

jfineman@cs.georgetown.edu

Seth Gilbert
NUS

seth.gilbert@comp.nus.edu.sg

ABSTRACT
In a reallocating-scheduler problem, jobs may be inserted
and deleted from the system over time. Unlike in tradi-
tional online scheduling problems, where a job’s placement
is immutable, in reallocation problems the schedule may be
adjusted, but at some cost. The goal is to maintain an
approximately optimal schedule while also minimizing the
reallocation cost for changing the schedule.

This paper gives a reallocating scheduler for the problem
of assigning jobs to p (identical) servers so as to minimize
the sum of completion times to within a constant factor of
optimal, with an amortized reallocation cost for a length-
w job of O(f(w) · log3 log ∆), where ∆ is the length of the
longest job and f() is the reallocation-cost function. Our
algorithm is cost oblivious, meaning that the algorithm is
not parameterized by f(), yet it achieves this bound for any
subadditive f(). Whenever f() is strongly subadditive, the
reallocation cost becomes O(f(w)).

To realize a reallocating scheduler with low reallocation
cost, we design a k-cursor sparse table. This data struc-
ture stores a dynamic set of elements in an array, with inser-
tions and deletions restricted to k “cursors” in the structure.
The data structure achieves an amortized cost of O(log3 k)
for insertions and deletions, while also guaranteeing that any
prefix of the array has constant density. Observe that this
bound does not depend on n, the number of elements, and
hence this data structure, restricted to k � n cursors, beats
the lower bound of Ω(log2 n) for general sparse tables.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Sequencing
and scheduling

Supported in part by NSF grants CNS 1408695,
CCF 1439084, IIS 1247726, IIS 1251137, CCF 1217708,
CCF 1114809, IIS 1247750, CCF 1114930, CCF 1218188,
CCF 1314633, DFG Grant FE407/17-1, Tier 2 ARC
MOE2014-T2-1-157, and Sandia National Laboratories.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPAA’15, June 13–15, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3588-1/15/06 ...$15.00.
DOI: http://dx.doi.org/10.1145/2755573.2755589 .

Keywords
Resource allocation; reallocation; cost-oblivious problems

1. INTRODUCTION
Scheduling is a ubiquitous aspect of life, and an essential

aspect of real scheduling is that schedules change. Consider
train and plain schedules: both are examples of schedules
prone to disruption, where weather patterns and mechanical
failures affect the availability of crew and aircraft.

In many such cases, there is a cost when resource alloca-
tions change (e.g., people miss flights, airlines have to pay
overtime, etc.), so the objective is to minimize the cost of
schedule disruptions (or resource reallocation) without vio-
lating scheduling constraints.

Scheduling subject to changes/disruptions is a classic ex-
ample of a reallocation problem. In a reallocation problem,
an allocator assigns resources to jobs. Unlike in tradition
online problems, the allocator may revise prior decisions,
at some cost. A good reallocation algorithm maintains an
approximately optimal allocation of resources, while simul-
taneously minimizing the reallocation cost. Reallocation is
online in the sense that the schedule is modified immedi-
ately when a new request arrives, however no decision is
irrevocable and resources may always be reallocated.

Perhaps the most-studied problem with a reallocation fla-
vor is multi-machine load-balancing (e.g., [1,6,16,28,30,33,
34]), where a solution should simultaneously minimize the
maximum machine load and the number of migrations across
machines. When load-balancing a web server, for exam-
ple, it makes sense to optimize for migration cost. In other
scheduling problems, such airline scheduling, changing the
start time of a job may be expensive and the goal is to min-
imize schedule updates.

In our experience, we have seen reallocation problems
underlying many aspects of parallel systems. In our own
research, we have modelled FPGA reorganization as a re-
allocation problem, minimizing reconfiguration costs [17].
We have also explored reallocation problems in database re-
source management with respect to crash safety and trans-
actional support [8]. One of our long-term goals is to under-
stand which scheduling objectives are amenable to efficient
reallocation, and which ones are brittle.

Reallocation and Scheduling

This paper addresses the problem of minimizing the sum of
completion times with reallocation in a system of p (identi-
cal) servers. The input consists of an online sequence of job

143

insertions or deletions, where each job has a size wj and a
(re)scheduling cost f(wj) that depends only on its size.

The goal is to maintain, after each insert/delete request,
a schedule that (approximately) minimizes the sum of com-
pletion times of all jobs currently in the system. We ab-
breviate this problem as p|f(w) realloc |

∑
j Cj (generalizing

standard notation [18]).
The optimal static solution for sum of completion times is

achieved by sorting jobs by increasing length and assigning
them greedily to servers, allocating each job in turn to the
first available server. However, it is not hard to show that
achieving this optimal solution could require a large number
of reallocations after each insert/delete.

To achieve low reallocation cost, we allow solutions that
approximately minimize the sum of completion times. A
natural way to approximate the optimal sum of completion
times is to sort jobs by approximate size, e.g., schedule all
jobs with size at most 2i before larger jobs with size at
most 2i+1. Our solution adopts this approximate-sorting
approach, but the difficulty is in maintaining this order with
low reallocation cost as insertions and deletions occur.

There is a special case worth noting. When f(w) = 1 for
all w, i.e., moving a job has constant cost regardless of size,
there is a straightforward algorithm with O(1) amortized
reallocation cost that maintains a sum of completion times
no more than 4 times the optimal.1

A goal of this paper is to explore reallocating schedulers
for general reallocation-cost functions f , not just constant
f . If f(w) = w, i.e., the cost is linear in the size of a job,
the simple solution degrades, giving a reallocation cost of
O(log ∆), where ∆ is the size of the largest job.

One option is to design a suite of algorithms, each specifi-
cally tuned to achieve a better reallocation cost for a specific
function f . However, for some functions, e.g., the linear cost
function f(w) = w, we know of no better solution than the
one presented in this paper.

Our more elegant alternative to optimizing for specific cost
functions is to produce a single algorithm that simultane-
ously achieves the best known reallocation cost for a wide
range of reallocation-cost functions.

Our main result is a cost oblivious reallocating scheduler
that has low reallocation cost for any subadditive, mono-
tonically nondecreasing cost function f . (A monotonically
nondecreasing function f(x) is subadditive if f(x + y) ≤
f(x)+f(y) for any positive x and y. All monotonic concave
functions are subadditive.) Being cost oblivious means that
the scheduler does not use any knowledge of f . Cost obliv-
iousness was introduced in [8], motivated by the practical
problem of storage reallocation in database systems. Cost
obliviousness is desirable, because the true cost of realloca-
tion may be complex or even unknown.

Our algorithm achieves an O(1) reallocation cost for con-
stant f and an O(log3 log ∆) reallocation cost for linear f .

1Consider the single-server case, where p = 1. Allocate a
job-sized gap in the schedule between each group of jobs.
To insert a size-2i job, schedule it immediately after the last
size 2i job, possibly evicting an overlapping larger job which
is rescheduled recursively. This process may cascade across
all sizes, but it is not hard to show that the amortized reallo-
cation cost is O(1) if f(w) = 1 since large-job evictions leave
large gaps that facilitate many future small-job insertions.

Formalization of the reallocating scheduler problem

An online execution consists of a sequence of requests of
the form 〈InsertJob,name, length〉 and 〈DeleteJob,name〉,
with integral lengths. Between requests, we define the ac-
tive jobs to be those that have been inserted but not yet
deleted. We typically assume throughout that we are given
in advance ∆, the size of the largest job; we discuss how
to remove this restriction. There is no given bound on the
total number of jobs or the total number of active jobs.

After each insert/delete request, the scheduler must out-
put a schedule for each server. If S and S ′ are schedules
before and after a request r, then the reallocation cost
of r is the sum of the reallocation costs of all jobs whose
scheduling has changed between S and S ′. The reallocation
cost of a sequence of requests is the sum of the reallocation
costs for each request.

There are two different types of reallocations that may
occur. If a job’s schedule is modified, but it remains sched-
uled on the same server, it is considered a nonmigrating
reallocation. If the job is rescheduled on a new server, it is
considered a migrating reallocation.

A reallocating scheduler A is (f, a, b)-competitive for
cost function f(), if (1) the objective function is always
within an a-factor of optimal, and (2) the reallocation cost
is at most b times the sum of the allocation costs of every
object inserted thus far (including those that have subse-
quently been deleted).

Let C be a set of cost functions. A reallocation algorithm
A is cost oblivious if it does not depend on f(). (This
means not only that f() is not a parameter to algorithm
A, but also A learns nothing about f() as A executes.) A
cost-oblivious reallocator A is (C, a, b)-competitive if it is
(f, a, b)-competitive for every f ∈ C; we abbreviate to (a, b)-
competitive if the set C is unambiguous.

Results

We develop a reallocating scheduler for p servers that achieves
an O(1) approximation for the sum of completion times. For
subadditive cost functions, the scheduling algorithm is(

O(1), O(log3 log ∆)
)

competitive, where ∆ denotes the length of the longest job.
For strongly subadditive cost functions, the algorithm is
(O(1), O(1))-competitive. (We define a subadditive func-
tion f(x) to be strongly subadditive if f(2x) ≤ (2−γ)f(x)
where 2 > γ > 0 is bounded above 0 by a constant.) This
scheduling algorithm is cost oblivious, and the same algo-
rithm achieves both bounds. All the reallocations associated
with insertions are nonmigrating, and each deletion triggers
at most one migrating reallocation.

The key technical tool is a single-server scheduler that
achieves a 1 + ε approximation (0 < ε ≤ 1/2) for the sum
of completion times. We then build the general multi-server
scheduler by properly load balancing jobs across servers.

To achieve these results, we develop a k-cursor sparse
table that maintains constant prefix density in an array
with inserts/deletes restricted to k “cursors” in the array.
This data structure has an amortized O(log3 k) insertion and
deletion cost, which (critically) is independent of the number
n of elements. We employ the structure with k = Θ(log ∆),
giving the O(log3 log ∆) bound.

In contrast, general sparse tables have an amortized up-
date cost of Θ(log2 n) [21, 35–37], which is tight [11]. Re-

144

placing the k-cursor sparse table with a general sparse table
in the scheduling algorithm of Section 2 would yield a signif-
icantly worse reallocation cost of O(log3 V), where V ≥ ∆
is the total length of all jobs. Our k-cursor structure has
significant complexity beyond that of a standard sparse ta-
ble, with many more structural constraints to guarantee the
stronger bound for the special case of cursors.

Other related work

Reallocation-style problems have been studied in a variety of
contexts, particularly in the last several years. In the context
of scheduling, we previously studied a reallocation scheduler
for unit-sized jobs with arrival times and deadlines [7]. Some
aspects of that problem were much simpler: all jobs had an
identical size of one. Some aspects were more complicated:
jobs could not be scheduled arbitrarily, but had to respect
arrival times and deadlines. The techniques from [7] do not
apply to the problem addressed in the current paper.

Cost oblivious reallocation is a relatively new concept that
we recently introduced [8]. In that paper, the goal was to
minimize the total space footprint of the data being stored;
this is analogous to minimizing the makespan (i.e., the maxi-
mum time that any job completes) in scheduling. In the cur-
rent paper, we focus on minimizing the sum of completion
times, which imposes different constraints on the ordering
of jobs. The storage reallocator [8] relied on different tools,
e.g., cascading buffers, that would not help for minimizing
sum of completion times; by contrast, the main tool here is
the k-cursor sparse table.

Shachnai et al. [29] explore a form of reallocation for com-
binatorial optimization. Given an input, an optimal solution
for that input, and a modified version of the input, they de-
velop algorithms that find the minimum-cost modification
of the optimal solution to the modified input. A difference
between their setting and ours is that we measure the ratio
of reallocation cost to allocation cost, whereas they measure
the ratio of the actual transition cost to the optimal tran-
sition cost resulting in a good solution. Also, we focus on
a sequence of changes, meaning we amortize the expensive
changes against a sequence of updates.

Davis et al. [14] study a reallocation problem, where an
allocator divides resources among a set of users, updating
the allocation as the users’ constraints change. The goal is
to minimize the number of changes to the allocation. Other
papers that solve specific instances of reallocation problems
include [15,17,19,28,32].

Robust scheduling is a related notion, which involves de-
signing schedules that can tolerate some uncertainty [12,13,
22, 25–27, 31]. The assumption is that the problem is ap-
proximately static, but there is some error or uncertainty.
The schedule remains near optimal even if the underlying
situation changes.

Reoptimization problems minimize the computational cost
for incrementally updating the schedule [2–5, 10]. By con-
trast, we focus on the resource-allocation cost instead of the
computation cost of finding an allocation.

One of the contributions of this paper is a new sparse table
data structure; many sparse tables have appeared previously
in the literature [9,11,20,21,24,35–37]. Indeed, one distinc-
tion between our paper and most prior work on reallocation
and rescheduling is that the technical results seem to meld
data structures and combinatorial optimization.

3rd size class!
space S(3)!

V(3)!

start(4)! end(4)!

4th size class!
space S(4)!

Figure 1: The layout of the schedule, viewed as an
array, with δ = 0.5. The light-gray rectangles are
the regions assigned to each size class. The orange
rounded rectangles are the jobs scheduled in each
size class. The dark-gray rectangles are regions out-
side size classes and contain no jobs. Note that the
4th size class contains jobs of slightly different sizes
in arbitrary order.

2. SINGLE SERVER SCHEDULING
This section presents a cost-oblivious reallocating sched-

uler for the problem of (approximately) minimizing the sum
of completion times for the single-server case where p = 1.
The algorithm achieves an efficient reallocation cost on job
insertions and deletions, as stated by the following theorem,
proved at the end of the section.

Theorem 1. For any constant ε with 0 < ε ≤ 1, there
exists a cost-oblivious reallocating scheduler for p = 1
for minimizing the sum of completion times that is (1 +
ε,O((1/ε5) log3 log1+ε ∆))-competitive over all subadditive

cost functions, and (1 + ε,O(1/ε3))-competitive over all
strongly subadditive cost functions.

On a single server, the optimal schedule for minimizing
sum of completion times is to sort the jobs in order of in-
creasing size; see [23]. The main goal of our algorithm is
to maintain this order approximately by allowing jobs of
roughly the same size to be in arbitrary order. Our algo-
rithm organizes jobs into groups called size classes, con-
taining jobs that differ in size by no more than a 1+δ factor,
for constant δ ≤ 1 with δ = Θ(ε). (We shall specify δ more
precisely in the analysis.) Precisely, a job of size w belongs

to size class j =
⌊
log(1+δ)(w)

⌋
, i.e., it belongs to size-class j

if (1 + δ)j−1 ≤ w < (1 + δ)j .

Schedule-array layout

Think of the jobs as being placed in an array, as shown in

Figure 1. The schedule array is divided into
⌈
log(1+δ) ∆

⌉
segments, where the ith segment contains jobs from size
class i. Let V (i) denote the volume, or total length, of
jobs in size class i, and let S(i) denote the total space allo-
cated in the array for size class i (possibly including empty

space). We write V (i, j) =
∑j
`=i V (`) for the sum of the

volumes of size classes i to j. Moreover, start(i) and end(i)
are, respectively, the beginning and end of size class i.

The key challenge is managing the size-class boundaries
in the array: each size class needs enough space to accom-
modate insertions, but sufficiently little to ensure that the
sum of completions times is approximately optimal. The
following property limits the amount of space:

Property 1. For every j ≤ log(1+δ) ∆:

• S(j) ≥ bV (j)(1 + δ)c,
• start(j) ≤ V (1, j − 1)(1 + δ)2, and

145

• end(j) ≤ V (1, j)(1 + δ)2.

That is, for every size class j, there is at least a factor of
(1 + δ) of extra allocated space (modulo rounding), and at
most a factor of (1+δ)2 of extra allocated space. Note there
may be additional empty space left between size classes (to
facilitate future growth and shrinking).

As insertions and deletions occur, the boundaries of size
classes may change, but these movements must be limited to
avoid expensive reallocations. Job movements within each
size class must also be bounded, but these are easier to han-
dle. We use the term lost slots to refer to any array slots
that were part of a particular size class before an operation,
but that are not part of that size class after. A second key
property is that the algorithm supports the following “one
directional” charging scheme for lost slots:

Property 2. There exists a function g mapping lost slots
to insert/delete operations subject to:

• The function g maps each slot lost by size class j to
an insert/delete operation on a size class ≤ j.
• There are O(log3 log1+δ ∆/δ3) lost slots in total
mapped to any particular insert/delete operation.

• There are O(1) lost slots from each size class mapped
to any particular insert/delete operation.

To manage size-class boundaries dynamically, we employ
a new data structure called a k-cursor sparse table. A
k-cursor sparse table is a special case of a sparse table that
contains k different regions called cursor districts (cor-
responding to size classes), each of which supports inser-
tions and deletions of unit-size elements with amortized cost
O(log3 k). The k-cursor data structure has constant “pre-
fix density,” which implies Property 1, and it has “one di-
rectional rebalances” consistent with Property 2. Perhaps
counterintuitively, we do not use the k-cursor table to re-
allocate jobs directly, but use it to indicate when size-class
boundaries move and contained jobs should be reallocated.

We now describe the reallocation algorithm, ending with
a proof of Theorem 1. The k-cursor data structure, hiding
much of the technical complexity, is described in Section 4.

Reallocating scheduler algorithm

We now describe the basic algorithm. Every job is stored

in array A, which is divided into
⌈
log(1+δ) ∆

⌉
size-classes.2

We use an auxiliary k-cursor data structure, where k =⌈
log(1+δ) ∆

⌉
, to maintain the boundaries of job classes; each

district boundary is interpreted as a size-class boundary.
Insertions: Consider a job of size w belonging to size class

j =
⌊
log(1+δ)(w)

⌋
. (Recall that w is an integer between 1

and ∆.) Let w̃ be the minimum size of a job in size class j.
In order to insert the job:

1. Insert (roughly) w(1+δ) elements into district j of the
k-cursor structure, more specifically, if V (j) is the cur-
rent volume of size class j, including the new job, in-
sert until the number of elements in the district equals
bV (j)(1 + δ)c.

2Due to interactions with the k-cursor structure, we assume
here that ∆, the size of the largest job, is known in advance.
This assumption can be removed as the k-cursor data struc-
ture allows addition and removal of the last district.

2. Adjust the size classes in the array A to match the
district boundaries indicated by the k-cursor structure.
No jobs have moved yet.

3. Identify S, the set of jobs overlapping lost slots, i.e.,
those falling before the new starting point of their size
class’s segment. These jobs must be moved.

4. For each job in S from largest to smallest size class,
remove it from its old location and re-place it in its
size class, as described below.

5. Finally, place the newly inserted job in its size class.

To (re)place a job of length w in size class j, we identify
a subinterval in the job class that has at least w empty
space and is of size at most O(w/δ) (i.e., it contains at most
O(1/δ) jobs). We then rearrange the jobs in this subinterval
to make space, and (re)place the job.

One further restriction is that this subinterval should not
include the first or last bw̃δ/4c slots of the size class so as to
avoid further changes should the size class boundary move
again. (Recall that w̃ is the minimum size job for the size
class.) We refer to the first and last bw̃δ/4c slots as bound-
ary padding , and the remaining slots as non-boundary
slots. Whenever boundary movement causes jobs to shift,
no job should be replaced within the first or last bw̃δ/4c
slots of the size class. This boundary padding prevents small
changes in the boundary from causing jobs to move.

We now explain in more detail how a job is (re)placed.
We begin with the case where V (j) < 2/δ. Since there is at
least one job in the size class, we know that w̃ ≤ V (j) < 2/δ.
Hence the boundary padding is of size bw̃δ/4c = 0. Thus,
we simply rearrange all < 2/δ jobs to make room.

Next, we consider the case where 2/δ < V (j) ≤ 5w/δ. In
this case, we have bV (j)(1 + δ)c ≥ V (j)(1 + δ/2). Consider
the entire size class, excluding the boundary padding of size
bw̃δ/4c. Since V (j) ≥ w̃, we conclude that the excluded
boundary padding contain at most V (j)δ/2 slots, and hence
there are at least V (j) available non-boundary slots. Again,
we move every job in the non-boundary portion of the size
class to make room for the (re)placed one, moving at most
10/δ jobs (as each job is of size at least w/(1 + δ)).

Lastly, assume V (j) > 5w/δ. We identify a subinterval
in size class j of length at most 10w/δ that has at least w
empty space and does not overlap the boundary padding.

First, we determine the percentage of empty slots in the
non-boundary portion of the size class. Since (in this case)
V (j) > 5w/δ ≥ 4/δ, the total number of slots is at least
bV (j)(1 + δ)c ≥ V (j)(1 + 3δ/4). At most w̃δ/2 ≤ V (j)δ/2
of these slots are boundary slots, and so the total number
of non-boundary slots is at least V (j)(1 + δ/4). Therefore,
the fraction of free non-boundary slots in the size class is at
least 1− V (j)/V (j)(1 + δ/4) ≥ δ/(4 + δ).

Next, partition the non-boundary portion of the size class
into (disjoint) subintervals of length between 5w/δ and
10w/δ. (The total number of slots in the class is at least
5w/δ in this case.) At least one of these intervals must have
at least the average number of empty slots, i.e., for at least
one interval, the fraction of free slots is at least δ/(4 + δ).

In this subinterval, the amount of free space is at least
(5w/δ)(δ/(4 + δ)) ≥ w. To make room, move all the jobs in
the subinterval; there are at most 10/δ jobs. We conclude:

Claim 2. Given fixed size-class boundaries obeying Prop-
erty 1, each job (re)placement causes at most O(1/δ) jobs
within the same size class to move.

146

Deletions: Deletions differ only slightly from insertions.
First, the size-w job is removed from the array. Then,
roughly (1 + δ)w elements are removed from the k-cursor
structure. Finally, adjust size-class boundaries and replace
jobs as before, proceeding from smallest to largest size class.

Analysis

We now analyze the amortized reallocation cost of our al-
gorithm. Combining the following lemma with a setting of
δ = Θ(ε) proves the reallocation-cost aspect of Theorem 1.

Lemma 3. Consider an execution of the reallocation
scheduler. If the cost function f is subadditive, then
the amortized reallocation cost per operation is at most
O
(
(1/δ5) log3 log1+δ ∆)

)
times the initial allocation cost. If

f is strongly subadditive, then the amortized reallocation cost
is at most O(1/δ3) times the initial allocation.

Proof. Consider each job of size w as consisting of w
unit-sized components. Our goal is to map the reallocation
of each unit-sized component to some unit-sized component
of an insertion or deletion in an earlier job class. More pre-
cisely, for an insertion/deletion of a size-w job, we will show
that at most O(w log3 k/δ5) unit-size components, all in the
same or later size classes, are charged to the operation. The
last step of the proof is to substitute k = log1+δ ∆.

Such a mapping implies the desired result for subaddi-
tive cost functions due to subadditivity and monotonicity.
Subadditivity implies that the per-unit cost of reallocating
larger jobs is less than that of smaller jobs. Monotonicity
implies that all jobs in the same size class have a per-unit
cost that varies by at most a constant factor.

Due to the boundary padding, there must be at least
Ω(dδwe) = Ω(δw) unit boundary movements to effect the
reinsertion of a job in a size class having jobs of size at least
w. (The ceiling arises because at least one slot must be lost
to cause any job to move.) Due to Claim 2, the cost of this
reinsertion is at most O(1/δ) times the initial allocation, or
O(1/δ2) per unit boundary slot lost.

Multiplying the lost slots of Property 2 with the O(1/δ2)
movements caused by each lost slot proves the lemma for
subadditive functions. For strongly subadditive functions,
observe that the per-unit cost of reallocating jobs geomet-
rically decreases every log1+δ 2 = 1/ lg(1 + δ) ≈ 1/δ size
classes. Applying the other bound (O(1) lost slots per dis-
trict or size class) of Property 2 and multiplying by this
additional 1/δ factor completes the proof.

We now bound the sum of completion times to complete
the proof of Theorem 1. The analysis actually shows a (1 +
O(δ)) ratio; here is where we choose the constant in δ =
Θ(ε). The proof follows from the fact that the jobs are stored
in order, and the empty space is limited by Property 1.

Lemma 4. At all times, the scheduled sum of completion
times is at most (1 + ε) times larger than optimal.

Proof. Fix a job class j containing jobs of size at least s
and at most s(1 + δ). We show that the sum of completion
times of the jobs in class j are within a 1+O(δ) factor of the
sum of completion times for these same jobs in the optimal
schedule. Let J be the set of jobs in job class j, and let
k = |J | be the number of jobs in J .

We divide the analysis into two parts, first examining the
contribution of jobs in size classes < j, and then in size class
j, to the sum of completion times of jobs in class j.

Recall that in an optimal schedule, the jobs are sorted in
order from smallest to largest. Thus, every job that precedes
job class j in the schedule also precedes every job in J in
the optimal schedule. For each job in J , these earlier jobs
contribute V (1, j− 1) to the sum of completion times in the
optimal schedule, i.e., at least kV (1, j − 1) in total.

By Property 1, guaranteed by the k-cursor structure, job
class j begins no later than V (1, j−1)(1 + δ)2, and hence in
the actual schedule these jobs contribute at most kV (1, j −
1)(1 + δ)2. The contribution of the jobs prior to job class j
to the sum of completion times is within a 1 + 3δ factor.

We now focus on the contribution of the jobs and empty
space in job class j to the sum of completion times. Since
there are k jobs of size at least s, the contribution of these
jobs is at least OPTj = k(k + 1)s/2 ≥ sk2/2.

We now consider the delay caused by the empty space
that is part of job class j. Recall that job class j has size at
most V (j)(1+δ)2, and hence there is at most 3δV (j) empty
space. Also, notice that since every job is of size at most
s(1 + δ), we know that V (j) ≤ ks(1 + δ) ≤ 2ks. Thus, the
empty space contributes at most k3δV (j) ≤ 6δk2s to the
sum of completion times, i.e., at most 12δOPTj .

Finally, we consider the delay caused by the jobs being out
of order within job class j. Imagine beginning with the jobs
in J in sorted order, and swapping jobs one at a time until
the schedule matches that of the actual execution. This can
be accomplished using at most k swaps, starting with the
first job in the schedule and proceeding onwards. Since all
the jobs have size at least s and at most s(1 + δ), each swap
delays each later job by at most δs. This reordering adds
δk2s ≤ 2δOPTj to the sum of completion times.

In total, if OPT is the optimal schedule, then the schedule
has a sum of completion times of at most OPT (1+17δ).

3. PARALLEL SCHEDULING
This section generalizes the result from the previous sec-

tion, showing how to design a reallocating scheduler for a
parallel system consisting of p servers. The main result of
this section is a scheduler where the sum of completion times
is an O(1) approximation of optimal, while the cost of inser-
tions/deletions is O(log3 log ∆) competitive with the total
allocation costs (both bounds independent of p).

Algorithm

We consider a straightforward application of the previous
scheduler. Each server executes an independent instance of
the 1-processor reallocating scheduler.

As jobs are inserted and deleted, we use a simple balancing
rule to ensure that within each size class, jobs are distributed
evenly among the servers.

Invariant 5. For any two servers sk and s`, for every
size class j, the number of jobs in size class j on the two
servers differs by at most 1.

In more detail, when an insertion happens: If the new job
is in size class j, then we insert it on the server that has the
smallest number of jobs in size class j (breaking ties by server
id). That is, for each size class, we insert jobs in round-
robin order. As such, there are no job migrations during an
insertion. Thus each insertion has cost O(log3 log ∆), i.e.,
the cost of scheduling one job on one server.

When a deletion happens, we may need to migrate a sin-
gle job in order to maintain balance. Assume the job being

147

deleted is in size class j and is deleted from server s`. If,
after the deletion, Invariant 5 still holds, then we are done.
Otherwise, we need to migrate one job to restore the invari-
ant. Again, the cost is O(log3 log(∆): two deletions and one
insertions yielding one migration.

Analysis

We show that this algorithm ensures that the sum of com-
pletion times is within a constant factor of optimal. For a
given set of scheduled jobs, we consider the modified collec-
tion of jobs where the size of each job is rounded up to the
nearest power of two. The real sum of completion times is
bounded by the sum of completion times of the rounded set.
We first observe the standard fact (see, e.g., [23]):

Lemma 6. Given a set of jobs in sorted order of size from
smallest to largest, the sum of completion times is minimized
by assigning jobs to servers round-robin.

We next compare the schedule constructed by the optimal
round-robin algorithm and the schedule constructed by our
algorithm. The key difference is that when we start a new
job class, we restart the round-robin scheduling with the first
server. That is, within a job class, jobs are assigned round-
robin across servers (in the order that they were added); but
across job classes this is not true. We observe the following:

Lemma 7. For each job j, let Sj be the set of jobs that
precede it on its server, as scheduled by the reallocating
scheduler, and let SOPTj be the set of jobs that precede it
on its server, as scheduled by the optimal round-robin sched-
ule. The set difference Sj \ SOPTj contains at most one job
per size class.

This immediately yields the following corollary:

Corollary 8. The difference between the completion
time of a job j when scheduled according to the reallocating
scheduler and the optimal round-robin scheduler is at most
2size(j).

Thus, the sum of completion times increases by at most a
factor of two. This proves the following theorem:

Theorem 9. For a system with p servers, there exists a
cost-oblivious reallocating scheduler for minimizing the sum
of completion times that is (O(1), O(log3 log ∆))-competitive
over all subadditive cost functions, and (O(1), O(1/ε3))-
competitive over all strongly subadditive cost functions. An
insertion incurs only nonmigrating reallocations, and a dele-
tion incurs at most one migrating reallocation.

4. THE K-CURSOR DATA STRUCTURE
This section presents the k-cursor sparse table. A k-

cursor table consists of k disjoint regions, called cursor dis-
tricts, and supports insertion and deletion of the n unit-
sized elements into a specified district. At any time, the
districts must be stored in order in an (infinite) array, sub-
ject to constant prefix density . Specifically, given space
parameter δ > 0, the first x elements (i.e., those in the ear-
liest districts) must be stored within the earliest x + bδxc
array slots.3

3For purposes of exposition, we allow O(1) additional infor-
mation per district to be stored outside the array, e.g., keep-
ing pointers to the district’s boundaries. In the scheduling
reallocation problem, arbitrary bookkeeping is permitted.

Each cursor district acts as a LIFO stack, where elements
are inserted at the end of each district, and must be stored in
each district in order of insertion. Similarly, elements must
be deleted in reverse order of insertion. This is why we think
of the data structure as consisting of cursors, e.g., editing at
k locations within a single file. More precisely, the k-cursor
sparse table supports:

• Insert(x, j)—Insert the new element x at the end of
the jth cursor district.

• Delete(j)—Delete and return the last element from
the jth cursor district, if the district is not empty.

Assume k is known a priori ; we later relax this assumption.
Like standard sparse-tables [21], where elements may be

inserted or deleted at arbitrary positions, we leave “empty
space” in the array to support operations with a lower amor-
tized cost. On insertion or deletion, an occasional “rebal-
ance” may be triggered, where a (potentially large) region
of the array is rebuilt, making room for future insertions or
compacting the storage on deletion. Standard sparse tables
are more general, but the amortized cost for insertion and
deletion is O(log2 n), which has a matching lower bound [11]
in the worst case.

Our k-cursor sparse table supports insertions and dele-
tions in amortized time O(log3 k) per operation, with a con-
stant that depends on the space parameter δ hidden in the
big-O. Our k-cursor sparse table is also one directional :
an insert or delete triggers a rebalance region that extends
only to the right (for Property 2 of Section 2).

The remainder of this section is organized as follows. Sec-
tion 4.1 provides an overview of the data structure, which
includes most of the important ideas and intuition, with
some details omitted. Section 4.2 fills-in the remaining de-
tails of the algorithm. Section 4.3 gives the space analysis
and sketches the performance analysis, with more complete
proofs deferred to the full version of the paper.

4.1 Overview
At a high level, the districts are stored in order in an array,

with empty space carefully distributed to facilitate faster
insertions and deletions. How this space is arranged and
redistributed/rebalanced on insertions and deletions is the
key to an efficient structure. The empty spaces in our data
structure take two forms, which we call “buffers” and “gaps.”
The gaps add an additional complication, but they only arise
in the data structure when districts have drastically different
sizes. We describe a gapless version first, and later augment
it to include gaps in Section 4.2.

We group cursor districts at H + 1 levels of granularity
(H = dlg ke) as follows. Without loss of generality, assume
k is a power of 2, and make a complete binary tree of height
H = lg k where the cursor districts are the leaves of the
tree. A level-0 chunk corresponds to a single district and
its buffer, stored sequentially in the array. A level-(i +
1) chunk , for 0 ≤ i < H, corresponds to a height-(i +
1) subtree of districts, and thus includes the corresponding
2i+1 consecutive districts, as well as lower-level buffers and
gaps. More precisely, a level-(i + 1) chunk contains two
level-i chunks plus a level-(i + 1) buffer.4 In the array, we

4The binary tree can be represented implicitly because the
chunks are “aligned,” meaning that the 0th level-i chunk
corresponds to districts 0, 1, . . . , 2i−1, and in general the rth
level-i chunk consists of districts r2i, r2i+1, . . . , (r+1)2i−1.

148

= τ(SL + SR)

level-(i+ 1) buffer size Bi+1 ≤ τNi+1

nonbuffer space Ni+1

(i− 1) chunk

level-i chunk: total space SR

level-i chunk: total space SL

level-i buffer

Figure 2: The recursive layout of a single level-(i+1)
chunk in the k-cursor sparse array, consisting of two
level-i chunks and a level-(i+1) buffer. An additional
level of recursive layout is displayed.

store level-(i+ 1) chunks recursively as its two child chunks,
first the left chunk then the right chunk , followed by a
level-(i+ 1) buffer , as shown in Figure 2. Buffer slots are
empty array slots that may be redistributed when insertions
or deletions cause “rebalances” to occur. Every empty array
slot (buffer and gap) is assigned to a particular chunk.

As a convention throughout this section, when referring
to one chunk ci we use the subscript i to denote its level.
When referring to the left and right child chunks of a chunk,
we use cL and cR, respectively.

The τ parameter: The data structure is parameterized
by τ , which is set to τ = Θ(δ/H) for analysis. Since δ
bounds the extra space, large δ only makes the problem
easier; without loss of generality we assume δ ≤ 1 and thus
τ ≤ 1. Due to rounding to integer indices within the array,
it is convenient to restrict τ further. Specifically, we will
choose τ such that 1/τ ≥ H is an integer.

Notation for space usage

For level-i chunk ci, define space usage in the array as fol-
lows:

• Buffer space, denoted by B(ci), is the number of
(empty) array slots assigned to ci’s buffer.
• Gap space, denoted by G(ci), is the number of

(empty) array slots assigned to ci as level-i gaps (see
Section 4.2). A level-0 chunk has no gaps. For now,
the reader should assume G(ci) = 0.
• Total space, denoted by S(ci), includes all array slots

assigned to ci or its nested children. For i ≥ 1, if ci
has children cL and cR, then S(ci) = S(cL) + S(cR) +
B(ci) + G(ci). For a level-0 chunk, its total space is
its buffer space plus the number of elements in the
corresponding district.
• Nonbuffer space, denoted by N(ci), is defined as the

total space excluding the buffer at that node but in-
cluding its gaps, i.e., N(ci) +B(ci) = S(ci).

We maintain the following invariant over buffer/gap space,
bounding the empty space with respect the total space of
the children. This invariant alone is enough to bound the
total space of the data structure, but it does not immediately
imply prefix density, as we have not yet specified where the
gaps are located.

Invariant 10. (Space invariant) Except while processing
an operation, for any chunk ci we have:

0 ≤ B(ci) ≤ τN(ci) .

touched by rebuild

district

level-0 buffer

empty level-0 buffer
level-1 buffer

level-2 buffer

N1 nonbuffer space

N0 space

level-1 buffer increased to bτ(N1 +X)/2c+X space,
where X = bτ(N0 + 1)/2c+ 1

N ′
1 = N1 +X nonbuffer space

level-1 buffer B′
1 = τN ′

1/2

level-0 buffer set to B0 = X = bτ(N0 + 1)/2c+ 1 space

district

district

Insert

touched by rebuild

c)

b)

a)

Figure 3: Example insertion into an empty buffer.
(a) the initial layout of the structure. (b) the state
after the level-1 buffer is rebuilt. (c) the state after
the level-0 buffer is rebuilt. Finally (not shown),
the element would be inserted into the newly rebuilt
level-0 buffer, increasing and decreasing N0 and B0

by 1, respectively.

If ci is a level-0 chunk, then G(ci) = 0. Otherwise, let cR be
its right child, and we have:

0 ≤ G(ci) ≤ τS(cR) .

Insertion sketch

At a high level, ignoring gaps, insertions operate as de-
scribed below. (See also Figure 3.) Section 4.2 gives more
detail and pseudocode. To insert into a district, replace the
leftmost buffer slot with the element being inserted. If no
empty buffer slots remain, then the corresponding chunk
must be “rebuilt.” During a rebuild, the chunk increases its
buffer space by taking slots from its parent chunk’s buffer.
“Taking slots” means scanning all slots between the current
buffer and the parent buffer and sliding those elements to
the right. If the parent does not have a large enough buffer
to rebuild the child, the parent must first be rebuilt; this
rebuild process may cascade up ancestors. When rebuilding
a chunk ci, it is rebuilt so that the a posteriori buffer size
is B′(ci) = bτN ′(ci)/2c, where primed terms denote sizes
after completion.

Analysis overview and why gaps occur

A main idea of the analysis (see Section 4.2) is that when
rebuilding the buffer of a left level-i chunk cL (the expensive
case), the cost of the rebuild is proportional to the total
space S(cR) of the right level-i chunk cR that is moved out
of the way. We amortize this cost against the ≥ bτN(cL)/2c
slots moving into cL’s buffer. As long as the right level-i
chunk satisfies S(cR) = O(N(cL)) slots, i.e., the right chunk
is not much larger than the left chunk, then the amortized
cost per buffer slot moved is O(1/τ). Summing across the

149

H + 1 levels yields an amortized insertion cost of O(H/τ),
which is O(log2 k/δ) for H = dlg ke and τ = Θ(δ/H).

This argument fails if the right chunk is much larger than
the left chunk. Thus, we introduce “gaps.” As with buffers,
gaps are tagged with a level. The purpose of level-(i+1) gaps
is similar to level-(i + 1) buffers—when rebuilding a level-i
chunk, take the nearest level-(i+1) empty slots, either from
the corresponding level-(i + 1) gaps or buffer. Careful gap
placements leads to an efficient operation (albeit increased
by a 1/τ factor), even in the unbalanced case.

4.2 More Details and the Gaps
This section describes further algorithmic details, notably

how gaps are laid out and the full insertion algorithm.

Chunk states

The presence of small buffers poses a challenge in the anal-
ysis, primarily due to roundoff errors (floors and ceilings)
aggregating across multiple levels. We avoid this issue by
excluding small buffers using an additional chunk state, de-
scribed next. This detail allows us to amortize the rounding
error against more elements.

We associate with each chunk a state that is either
buffered or unbuffered. As the name suggests, un-
buffered chunks have no buffer; buffered chunks may
contain some buffer bounded by the buffer space invariant.5

The states toggle as follows. An empty chunk is initially un-
buffered. When the chunk’s size grows to N(ci) ≥ 2/τ2,
it becomes buffered. When the chunk’s nonbuffer space
drops below N(ci) < 1/τ2, it becomes unbuffered.

In summary, a chunk with N(ci) < 1/τ2 is always un-
buffered, a chunk with N(ci) ≥ 2/τ2 is always buffered,
and a chunk with 1/τ2 ≤ N(ci) < 2/τ2 may be either
buffered or unbuffered depending on which threshold
it crossed more recently.

Insertions and deletions

Insertions operate as follows; see Figure 4. This code in-
cludes handling of gaps, which we ignore for now in our
discussion, i.e., ignore lines 10–16 and line 19, and assume
Z = Y in line 17. To insert an element into a district (level-
0 chunk c0), if the corresponding level-0 buffer has nonzero
size B(c0) > 0, replace the leftmost buffer slot with the
element being inserted, thereby decreasing the buffer size.

If B(c0) = 0, on the other hand, then a rebalance occurs,
which consist of cascading chunk rebuilds, starting at the
level-0 chunk c0. In general, an (insertion-triggered) rebuild
of a chunk ci causes ci to increase its total space by taking
empty space from its parent’s buffer, and moving that empty
space to the right end of ci’s buffer. If the parent’s buffer
is not large enough to handle the child’s space request, the
parent must first be rebuilt. In this way, the rebuild may
cascade through the nearest ancestor chunks of c0, whose
buffers are all located to the right of c0. The rebalance en-
sures that after the insertion, all rebuilt buffered ancestor
chunks ci have the desired buffer size bτN ′(ci)/2c, where
N ′ denotes the sizes after the operation completes.

More precisely, a rebuild (on insertion) takes as argument
a level-i chunk ci and some number X of additional slots to
be given to a nested child, with X = 1 when rebuilding a

5Note that buffered does not mean that B(ci) > 0. A
buffered chunk may have B(ci) = 0.

1: procedure Insert(x, j) // add x to jth district
2: Let c0 be level-0 chunk containing the jth district.
3: if B(c0) = 0 then Rebuild(c0,1)

4: Insert x in first empty buffer slot.

5: procedure Rebuild(ci, X)
// X ≥ 1 is the number of slots taken by a child

6: if N(ci) +X ≥ 2/τ2 then mark ci as buffered

// d is desired buffer size
7: d = 0
8: if ci is buffered then d = bτ(N(ci) +X)/2c
9: Y = (d−B(ci)) +X // Y is increased to S(ci)

10: if ci is a left chunk then
11: gp = G(parent(ci))
12: Take leftmost min{gp, Y } level-(i+ 1) gaps

from parent(ci).
13: Z = Y − gp

// Z is the number of level-(i+ 1) buffer slots to take
14: else // ci is a right chunk
15: Calculate g, the number of level-(i+ 1) gaps

distributed throughout the Y new space.
16: Z = Y + g

17: if Z > B(parent(ci)) then Rebuild(parent(ci), Z)

18: Take leftmost Z slots from parent(ci)’s buffer.
19: Tag g of the slots as level-(i+1) gaps if ci is a right chunk.

Figure 4: Pseudocode for insert and rebuild in the
k-cursor data structure.

level-0 chunk (to accommodate the newly inserted element).
Since the child is to add X slots to its total space, we have
N ′(ci) = N(ci) + X after the operation; hence the desired
buffer size is d = bτ(N(ci) +X)/2c as long as the chunk is
buffered. The rebuild of ci takes Y = d−B(ci) +X slots
from its parent, if available. If not, the parent is rebuilt first
with requested space Z = Y . After taking space from the
parent, S(ci) increases by Y slots, all of which are initially
stored in the buffer. After this recursion, each chunk has
collected all the space that it needs and rebuilds, leaving
the final buffer size matching the desired buffer size.

We now consider how ci takes Z space from its parent.
Without gaps, all of the space in question belongs to the
parent’s buffer, which is located somewhere to the right of
ci. If ci is the left child of its parent, then this space can be
taken by sliding the entire intervening right level-i chunk to
the right by Z slots. If ci is a right child, then the parent’s
buffer is contiguous with it, and the empty buffer slots can
simply be reassigned to ci.

Figure 3 shows an example for insertion and rebalance,
where all chunks are buffered. An insert into the leftmost
cursor district has insufficient space in the level-0 buffer (a).
There is also insufficient space in the level-1 buffer to re-
build the level-0 buffer, so the rebalance propagates to the
next level. First, the level-1 buffer is rebuilt by moving the
sibling level-1 chunk (including 2 districts) to the right to
move space from the level-2 buffer. Then the level-0 buffer
is rebuilt by moving the sibling district to the right. In
general, a rebalance may propagate through all H levels, re-
quiring a buffer at each level to be rebuilt. At the end, the
rebuilt buffers (in this case at levels 0 and 1) have buffer
sizes equaling bτN ′(c)/2c.

Deletions are similar, but instead of taking slots from the
parent’s buffer, slots are returned to the parent’s buffer.6

6In fact, deletions are more straightforward as the parent
can be rebuilt after the slots are returned to it.

150

SL

τ + 2
τ2 gap free 1/τ1/τ

(i− 1) chunk

level-i buffer
level-(i+ 1) gaps

level-(i+ 1) buffer

level-i chunk
size SL

Figure 5: The recursive layout of a single level-(i+
1) chunk with gaps present, including a left level-i
chunk followed by a right level-i chunk followed by a
level-(i+ 1) buffer. As with Figure 2, a second level
of the recursive layout is displayed. Level-(i + 1)
gaps are spread throughout the right level-i chunk,
with 1/τ slots between each gap. The leftmost SL

gaps (have been used and) are not present, where
SL is the total size of the left level-i chunk.

When deleting the last element in a district (level-0 chunk
c0), the slot it occupies is “returned” to the corresponding
level-0 buffer. If the level-0 buffer size now violates the
buffer space invariant, i.e., B(c0) > τN(c0) where N(c0)
is the number of postdeletion elements, then it is rebuilt to
the same desired buffer size d = bτN(c0)/2c by returning
space to its parent. If the nonbuffer size is too small, i.e.,
N(c0) < 1/τ2, then the chunk becomes unbuffered and
d = 0. In general, a level-i buffer is rebuilt to the desired
buffer size by returning the excess elements to the nearest
level-(i+1) buffer to the right and sliding the entire interven-
ing level-i sibling (if there is one) to the left. This process is
analogous to the insertion rebuild. If the rebuild causes the
level-(i+ 1) parent chunk ci+1’s buffer to exceed its thresh-
old (i.e., either B(ci+1) > τN(ci+1) or N(ci+1) < 1/τ2),
then it should also be rebuilt in a similar manner. After the
rebalance completes, all rebuilt buffers of buffered chunks
have buffer space exactly bτN(ci)/2c, as with insertions.

Gap placement

Consider a level-(i + 1) chunk ci+1. The level-(i + 1) gaps,
each a single slot in the array, are incorporated into only the
right level-i chunk cR as shown in Figure 5 according to the
following invariant. There are no level-(i+1) gaps in the left
level-i chunk. Here is where we require 1/τ to be an integer,
and we choose τ later to satisfy this integrality assumption.

Invariant 11. (Gap invariant) Consider a level-(i + 1)
chunk ci+1 containing left and right level-i chunks cL and
cR, respectively. The leftmost level-(i+ 1) gap appears after
the first 2/τ2 + S(cL)/τ slots of the right level-i chunk cR.
Another gap appears after each of the next 1/τ slots in cR.

The gap invariant is important from both directions. Specif-
ically, the insert analysis requires that gaps not be too far
from the left chunk so that a scan does not need to travel far
to find empty space. The delete analysis, on the other hand,
requires that gaps not be too near the left chunk so that
gaps can be inserted into the right chunk without scanning
very far. The gap invariant also implies the space invariant
on gaps (i.e., G(ci+1) ≤ τS(cR)). The additive 2/τ2 term
implies that unbuffered chunks contain no gaps, which is
convenient in the analysis.

Recall that each level-(i + 1) gap is counted towards the
nonbuffer space N(ci+1) and the total space S(ci+1) for the
chunk ci+1, but these gaps are not counted towards a child’s
space even though they interleave with the right chunk.
When recursively considering the layout or rebuilding of the
contained level-i chunks, think of the level-(i+ 1) or higher
gaps as being elided—the position of level-(i + 1) gaps are
only manipulated when considering the level-(i + 1) chunk.
This elision is only for understanding the algorithm—the
analysis must cope with the fact that “skipping” the gaps
introduce additional cost.

How gaps affect updates in the k-cursor structure

We discuss how the insertion procedure copes with gaps; see
Figure 4. The variable X should now be interpreted as the
number of slots to add to the child’s buffer plus the number
of level-i gaps in ci that this additional space requires. Since
these gaps count towards ci’s nonbuffer space, it is still true
that N(ci) is to increase by X, leaving the desired buffer
space unaffected. Thus, Y denotes the total increase to S(ci)
as before. We next consider two cases, depending on whether
ci is a left child or right child of its parent. Some handling
of the cases is combined in the pseudocode, but we consider
each case separately from start to finish here.

Suppose ci is a left child, and let cR be its right sibling.
When rebuilding ci, it should not contain any level-(i + 1)
gaps. Hence, ci need only take Y empty level-(i + 1) slots
from its parent. The difference is how it takes that space.
Rather than drawing only from its parent’s buffer, ci first
consumes the leftmost gp level-(i + 1) gaps that are spread
throughout cR. Taking these gaps means sliding some prefix
of cR to the right to fill in the appropriate previously empty
spaces.7 If there are not enough level-(i+ 1) gaps to handle
ci’s space request, i.e., Y > gp, then ci takes the remaining
Z = Y − gp level-(i+ 1) slots from its parent’s buffer. If the
parent does not have that many, it must first be rebuilt.

Suppose ci is a right child, and let cL be its left sibling. In
this case, there are no level-(i + 1) gaps to the right of ci’s
buffer, and all the space ci takes from its parent comes from
the parent’s buffer. But adding Y space to ci may require
introducing up to dτY e level-(i + 1) gaps, according to the
gap invariant. It is straightforward to calculate the number
g of new gaps given the total space S(ci), the total space
of its left neighbor S(cL), and the amount Y of increase
to S(ci). These gaps would be counted towards the parent’s
nonbuffer space, so the space needed from the parent’s level-
(i+ 1) buffer is increased to Z = Y + g. Once appropriated,
all of these empty slots appear at the end of ci’s buffer, but
g of them (spread evenly, according to the gap invariant)
belong to ci’s parent as level-(i + 1) gaps and should be
tagged appropriately (line 19).

Deletions may be similarly augmented to handle gaps.
When rebuilding a left level-i chunk to return slots to its
parent, return them as either level-(i + 1) gaps or buffers
according to the gap invariant. Gaps can be introduced to
the right sibling by sliding the right sibling to the left to
consume the returned space. When returning space from a
right level-i chunk to its parent, also return any level-(i+ 1)
gaps that are embedded in that space.

7Note that taking these gaps leaves the nonbuffer space of
the parent unaffected, and hence this step does not risk vi-
olating the invariant on buffer space.

151

4.3 Analysis
This section analyzes the space usage and provides a

sketch of the performance analysis.

Space analysis and prefix density

We now prove claims on the number of array slots used by
regions of the k-cursor sparse array.8 These claims are useful
for proving both the desired prefix density and bounds on the
cost of rebuilding buffers. We show that the data structure
achieves constant prefix density. Throughout this section,

we set τ = δ′

dlg ke+1
, for some 0 < δ′ to be defined later in

terms of τ so that 1/τ is an integer greater than dlg ke+ 1.
The following bounds the space used by any chunk. Recall

that slots counted towards a level-i chunk include those for
all level-(≤ i) buffers and gaps, but not higher-level gaps, so
these slots are not necessarily contiguous.

Lemma 12. A level-i chunk ci with a total of x elements
in all descendent districts is assigned at most S(ci) ≤ (1 +
3τ)i+1x array slots.

Proof. We proceed by induction on level i. For the base
case, a level-0 chunk corresponds to a district with x ele-
ments and its size ≤ τx buffer, for at most (1 + τ)x slots.
There are no level-0 gaps.

For the inductive step, consider a level-i chunk with i > 0.
Let xL and xR be the number of elements in the left and
right level-(i − 1) chunks, respectively, and let SL and SR
be the total number of slots used by these chunks. Then the
space used by the level-i chunk is at most (SL + SR) plus
any level-i gaps plus the level-i buffer. By the gap-space
invariant we have G(ci) ≤ τSR ≤ τ(SL+SR). The nonbuffer
space is then upper bounded by N(ci) ≤ (1 + τ)(SL + SR),
which implies the buffer space is at most τ(1 + τ)(SL + SR)
by the buffer-space invariant. Adding the nonbuffer space
to the buffer space, we have S(ci) ≤ (1 + τ)2(SL + SR) ≤
(1 + 3τ)(SL + SR) for τ ≤ 1. By inductive assumption, we
have SL + SR ≤ (1 + 3τ)ixL + (1 + 3τ)ixR = (1 + 3τ)ix.
We thus conclude that the level-i chunk uses at most (1 +
3τ)(1 + 3τ)ix = (1 + 3τ)i+1x space.

We now extend the above lemma for a particular choice of τ :

Corollary 13. Let τ = δ′

H+1
and H = dlg ke, where δ′

is chosen from the range 0 < δ′ ≤ 1/6. Then a chunk with
x elements in all descendent districts is stored in at most
(1 + 6δ′)x array slots.

Proof. The worst case space usage occurs at the highest
level (level H). According to Lemma 12, the space is at most

(1 + 3τ)H+1x = (1 + 3δ′

H+1
)H+1x space. We then observe

that (1 + 3δ′

H+1
)H+1 ≤ e3δ

′
=
∑∞
j=0

(3δ′)j

j!
<
∑∞
j=0(3δ′)j .

For 0 < δ′ ≤ 1/6, we have
∑∞
j=0(3δ′)j = 1

1−3δ′ ≤ 1 + 6δ′.
Multiplying by x gives the corollary.

The preceding lemma and corollary ignore higher-level
gaps within each chunk. The following lemma and corol-
lary bound the number of gaps in a contiguous subarray.

Lemma 14. Any contiguous region of s slots in the array
contains at most dτse level-i gaps, for any level i. Moreover,
the first s slots in the array contain at most bτsc level-i gaps.
8All of these claims are implicitly intended to apply after
fully processing some sequence of operations—the bounds
may temporarily be violated during a rebalance event.

Proof. By the gap invariant, there are 1/τ slots allo-
cated to a nested level-(i − 1) chunk between each level-i
gap. This fact is true even when the region spans different
level-i chunks, as the first gap in the chunk does not appear
until at after least 1/τ slots. The addition of higher-level
gaps can only cause the distance between two gaps in the
array to increase. We conclude that there are at least 1/τ
array slots between any two level-i gaps, and hence the total
number of level-i gaps in the region is at most dτse.

When the region corresponds to a prefix of the array, the
first gap begins after at least 2/τ2 ≥ 1/τ slots, which com-
pletes the proof.

Corollary 15. Let τ = δ′

H+1
and H = dlg ke, where

δ′ > 0. Any contiguous region of s slots in the array contains
at most δ′s + (H + 1) gaps across all levels. Moreover, the
first s slots in the array contain at most δ′s gaps.

Proof. Sum Lemma 14 across all H + 1 levels with dτse
rounded up to τs+ 1.

The following theorem shows that our k-cursor sparse ar-
ray guarantees constant prefix density. Setting δ′ ≤ δ/9
yields a space bound of (1 + δ)x array slots to store the first
x elements. To satisfy the integrality requirement on τ , we
choose δ′ = 1

d9/δe .

Theorem 16. Let τ = δ′

H+1
and H = dlg ke, where δ′ is

chosen from the range 0 < δ′ ≤ 1/6. Then the earliest x
elements in the k-cursor sparse array are stored within the
first (1 + 9δ′)x array slots.

Proof. First, observe that any prefix of the array con-
sists of a sequence of complete chunks of decreasing level, fol-
lowed by at most one partial district.9 Ignoring any higher-
level gaps, a complete chunk with y elements uses (1 + 6δ′)y
space from Corollary 13. Ignoring higher-level gaps, a par-
tial district contains only real elements, and thus uses y
space to store y elements. Summing across all these chunks,
we have (1 + 6δ′)x space.

To incorporate higher-level gaps, we apply Corollary 15.
Specifically, the first s slots in the array contains at most
δ′s gaps. It follows that the first s slots include the first x

elements as long as s−δ′s ≥ (1+6δ′)x, or s ≥ (1+6δ′)
1−δ′ x. With

δ′ ≤ 1/6, we have (1+6δ′)
1−δ′ < 1 + 9δ′, and hence (1 + 9δ′)x

slots must contain at least x elements.

Performance analysis

We now outline the analysis for the amortized cost of inser-
tions and deletions. We focus on achieving an O(log4 k/δ2)
amortized cost per operation, with a brief discussion about
removing a δ log k factor. Proving the O(log3 k/δ3) bound
entails coping with some additional complications (notably
rounding error). The full details, including the O(log3 k/δ3)
analysis, are deferred to the full version.

Note that the reason for chunk states (buffered and un-
buffered) is also to facilitate the better analysis. Through-
out this section, instead consider a simplified version of the
data structure where every chunk is always buffered.

Our analysis is an accounting argument—we associate
money with particular substructures, and we argue that

9E.g., the first 11 districts correspond to a level-3 chunk
followed by a level-1 chunk followed by a level-0 chunk.

152

enough money is released to pay for the cost of any rebuild.
Throughout this section, we implicitly adopt the terminol-
ogy/variables (i.e., X, Y , Z) used in Figure 4.

We first consider the actual cost of each rebuild:

Lemma 17. Consider a buffered chunk ci that is being
rebuilt to increase or decrease its space usage by Y ≥ 1 slots.
Then the cost of the rebuild is O(Y/τ2).

Proof sketch. There are several cases to consider (in-
sert or delete on a left or right chunk). Since the parent’s
buffer is contiguous, the most expensive case is when ci is a
left child and the Y slots taken (or returned) are gaps. From
the gap invariant, these Y slots are located within the next
2/τ2 +S(ci)/τ +Y/τ slots of the parent. From Corollary 15
and the fact that H < 1/τ , the cost of scanning that many
slots in the parent is at most a constant factor more.

To complete the proof sketch, we claim that whenever a
buffered chunk ci is rebuilt, we must have Y = Ω(τS(ci)).
Combining this claim with the above bound, the dominating
term is O(S(ci)/τ) = O(Y/τ2). Again, there are several
cases. For an insert, the idea is that a chunk is only rebuilt
if its buffer would be more than drained, and hence the
number of slots Y it takes is at least dτS(ci)/2e.

Our accounting argument pins a specific amount of money
to each level-i chunk. More precisely, we define currencies
$i at each level in the data structure. For any chunk, we
maintain the invariant that ci has at least

$i

∣∣∣B̂(ci)−B(ci)
∣∣∣ ,

where B(ci) is the current buffer space and B̂(ci) is the
buffer just after the previous rebalance the rebuilt ci.

The value of a level-i dollar $i depends on i. Specifically,
a level-i dollar is worth the following number of normal $’s:

$i1 = $(H + 1− i)
(

1 +
4

H + 1

)H+1−i

, (1)

where H = dlg ke. We will charge Θ(1/τ2) = Θ(log2 k/δ2)
units of work to each dollar. Note that level-0 dollars are the
most valuable, each worth $01 ≤ $(H+ 1)e4 = $Θ(log k), or
Θ(log3 k/δ2) units of work.

The main idea of the analysis is to leverage the difference
in values across levels. In particular, consider when a level-i
chunk ci is rebuilt (on insert), requesting Y slots from its

parent. During the rebuild, B̂(ci) changes and after the re-

balance B̂(ci) = B(ci). Thus, ci’s entire account can be used
for the rebuild. The challenge is that slots are taken from
ci’s parent’s buffer, so the parent must be compensated. The
key observation, following from Equation 1, is that currency
can be converted across levels at the following rate:

$i1 ≥ $1 + $i+1

(
1 +

4

H + 1

)
. (2)

In this way, if ci has $iD, then we can afford $D for the
rebuild itself, and also pass $i+1(1 + 4

H+1
)D to the parent.

The remaining argument is to show that ci has enough
money stored to pay for its rebuild and to compensate its
parent. The argument proceeds by induction over rebuilds
from low to high: We assume inductively that ci has $iD,
where D is at least the number of buffer slots already con-
sumed plus the number X of slots requested by the rebuild-
ing child; we prove that ci can afford to pass $i+1Z to its par-
ent. To do so, we argue that Z ≤ (1+O(τ))D+O(1) ≤ (1+

4
H+1

)D +O(1), which entails applying relationships among

different types of space. (The constant 4 in Equation 1 was
specifically chosen to exceed the one in O(τ).) From the con-
version rate, $iD yields $i+1(1+ 4

H+1
)D ≥ $i+1Z−$i+1O(1),

which almost fully pays the parent (except for $i+1O(1)).
Moreover, D = Ω(Z) and hence D = Ω(Y), so by Lemma 17
the $D given off by the conversion are also enough to pay for
the rebuild itself. We charge the $i+1O(1) at each rebuilt
level to the insertion itself, giving a total cost of at most
$0O(H) = $O(log2 k) = O(log2 k/τ2) = O(log4 k/δ2).

The preceding argument suffers from rounding errors that
may occur at all H levels of granularity. A more so-
phisticated argument leveraging the chunk states allows us
to amortize most of those $i+1O(1)’s against Θ(1/τ2) in-
sertions, requiring each insert to pay at most $0O(1) =
O(log3 k/δ2) work. (Our current analysis has a potentially
unnecessary extra 1/δ factor due to some extra boundary
condition on chunk states.) To summarize the main result:

Theorem 18. The amortized cost of an insertion or dele-
tion into the k-cursor sparse table is O(log3 k/δ3).

We next specialize the bound to the reallocation scheduler
of Section 2 by considering the “charging pattern” and lost
slots. Specifically, the next theorem directly implies Prop-
erty 2. There are two main ideas to the proof, which is
deferred to the full version. First, all money is passed only
up to ancestors. Rebuilds of a chunk touch only space to
the right of the chunk, so as money moves up it pays only
for rebuilds that occur even further to the right. Second, to
get an O(1) bound on lost slots per district, let us consider
what happens when rebuilding a left level-i chunk takes (or
returns) Z slots from the parent. Essentially, Z empty space
is moved to the left (or to the right), causing any district
boundary in the right subtree to move rightward (or left-
ward) by up to Z slots; thus these districts lose at most 2Z
slots. As we have $iΩ(Z) to work with, we need only charge
O(1) lost slots against each level-i dollar. Considering the
path of money in the structure, a district can only charge to
an insert when that insert’s money is at a specific ancestor.

Theorem 19. A total of O(log3 k/δ3) lost slots are
charged to each insert or delete. Each lost slot is only
charged to an operation occurring in a district to the left.
There are at most O(1) lost slots in each district charged to
a particular insert or delete.

Creating more cursors

If k is not known a priori, cursors can be added at the end of
the structure without increasing the asymptotic costs. These
additions must be at the end—the data structure does not
support arbitrary cursor insertions. The one complication
is that if k changes, then τ changes. Fortunately, we can
modify the data structure to define τ locally—any chunk
containing districts ≤ ` uses L = dlg `e and hence τ ′ =
Θ(δ/(dlg `e + 1)). None of the performance theorems are
asymptotically affected by this change.

5. CONCLUSIONS
This paper has presented an efficient cost-oblivious real-

location algorithm for the sum of completion times. It re-
mains open whether constant reallocation cost is possible;
there are no nontrivial lower bounds. More generally, there

153

exist a wealth of unexplored reallocation problems in com-
binatorial optimization and scheduling, problems that arise
when online decisions can be changed at some cost.

6. REFERENCES
[1] M. Andrews, M. X. Goemans, and L. Zhang.

Improved bounds for on-line load balancing.
Algorithmica, 23(4):278–301, 1999.

[2] C. Archetti, L. Bertazzi, and M. G. Speranza.
Reoptimizing the Traveling Salesman Problem.
Networks, 42(3):154–159, 2003.

[3] C. Archetti, L. Bertazzi, and M. G. Speranza.
Reoptimizing the 0-1 knapsack problem. Disc. Appl.
Math., 158(17):1879–1887, Oct. 2010.

[4] G. Ausiello, V. Bonifaci, and B. Escoffier. Complexity
and approximation in reoptimization. In S. B. Cooper
and A. Sorbi, editors, Computability in Context:
Computation and Logic in the Real World, pages
101–129. World Scientific, 2011.

[5] G. Ausiello, B. Escoffier, J. Monnot, and V. T.
Paschos. Reoptimization of minimum and maximum
traveling salesman’s tours. J. Disc. Alg., 7(4):453–463,
2009.

[6] G. Baram and T. Tamir. Reoptimization of the
minimum total flow-time scheduling problem. In
G. Even and D. Rawitz, editors, Proc. MedAlg, volume
7659 of LLNCS, pages 52–66, 2012.

[7] M. A. Bender, M. Farach-Colton, S. P. Fekete, J. T.
Fineman, and S. Gilbert. Reallocation problems in
scheduling. In Proc. SPAA, pages 271–279, 2013.

[8] M. A. Bender, M. Farach-Colton, S. P. Fekete, J. T.
Fineman, and S. Gilbert. Cost-oblivious storage
reallocation. In Proc. PODS, pages 278–288, 2014.

[9] M. A. Bender and H. Hu. An adaptive packed-memory
array. Trans. Datab. Syst., 32(4), 2007.

[10] H.-J. Böckenhauer, L. Forlizzi, J. Hromkovic, J. Kneis,
J. Kupke, G. Proietti, and P. Widmayer. Reusing
optimal TSP solutions for locally modified input
instances. In Proc. TCS, pages 251–270, 2006.

[11] J. Bulánek, M. Koucký, and M. Saks. Tight lower
bounds for the online labeling problem. In Proc.
STOC, pages 1185–1198, 2012.

[12] A. Caprara, L. Galli, L. Kroon, G. Maróti, and
P. Toth. Robust train routing and online
re-scheduling. In Proc. ATMOS, pages 24–33, 2010.

[13] V. Chiraphadhanakul and C. Barnhart. Robust flight
schedules through slack re-allocation. EURO Journal
on Transportation and Logistics, 2(4):277–306, 2013.

[14] S. Davis, J. Edmonds, and R. Impagliazzo. Online
algorithms to minimize resource reallocations and
network communication. In Proc.
APPROX-RANDOM, pages 104–115, 2006.

[15] L. Epstein and A. Levin. A robust APTAS for the
classical bin packing problem. In Proc. ICALP, pages
214–225, 2006.

[16] L. Epstein and A. Levin. Robust algorithms for
preemptive scheduling. In Proc. ESA, pages 567–578,
2011.

[17] S. P. Fekete, T. Kamphans, N. Schweer, C. Tessars,
J. C. van der Veen, J. Angermeier, D. Koch, and
J. Teich. Dynamic defragmentation of reconfigurable

devices. ACM Trans. Reconf. Technol. Syst.,
5(2):8:1–8:20, June 2012.

[18] R. Graham, E. Lawler, J. Lenstra, and A. Kan.
Optimization and approximation in deterministic
sequencing and scheduling: a survey. Ann. Disc.
Math., 5:287 – 326, 1979.

[19] N. G. Hall and C. N. Potts. Rescheduling for new
orders. Op. Res., 52(3), 2004.

[20] A. Itai and I. Katriel. Canonical density control. IPL,
104(6):200–204, 2007.

[21] A. Itai, A. G. Konheim, and M. Rodeh. A sparse table
implementation of priority queues. In Proc. ICALP,
pages 417–431, 1981.

[22] H. Jiang and C. Barnhart. Dynamic airline scheduling.
Transp. Sc., 43(3):336–354, 2009.

[23] D. Karger, C. Stein, and J. Wein. Scheduling
Algorithms. CRC Press, 1998.

[24] I. Katriel. Implicit data structures based on local
reorganizations. Master’s thesis, Technion, May 2002.

[25] P. Kouvelis and G. Yu. Robust Discrete Optimization
and Its Applications. Kluwer, 1997.

[26] S. Lan, J.-P. Clarke, and C. Barnhart. Planning for
robust airline operations: Optimizing aircraft routings
and flight departure times to minimize passenger
disruptions. Transp. Sc., 40(1):15–28, 2006.

[27] J. M. Mulvey, R. J. Vanderbei, and S. A. Zenios.
Robust optimization of large-scale systems. Op. Res.,
43(2), 1995.

[28] P. Sanders, N. Sivadasan, and M. Skutella. Online
scheduling with bounded migration. Math. Oper. Res.,
34(2):481–498, 2009.

[29] H. Shachnai, G. Tamir, and T. Tamir. A theory and
algorithms for combinatorial reoptimization. In Proc.
LATIN, pages 618–630, 2012.

[30] M. Skutella and J. Verschae. A robust PTAS for
machine covering and packing. In Proc. ESA, pages
36–47, 2010.

[31] C. A. Tovey. Rescheduling to minimize makespan on a
changing number of identical processors. Nav. Res.
Logist., 33:717–724, 1986.

[32] A. T. Unal, R. Uzsoy, and A. S. Kiran. Rescheduling
on a single machine with part-type dependent setup
times and deadlines. Ann. Op. Res., 70, 1997.

[33] J. C. Verschae. The Power of Recourse in Online
Optimization Robust Solutions for Scheduling, Matroid
and MST Problems. PhD thesis, TU Berlin, June 2012.

[34] J. Westbrook. Load balancing for response time. J. of
Alg., 35(1):1 – 16, 2000.

[35] D. Willard. Maintaining dense sequential files in a
dynamic environment (extended abstract). In Proc.
STOC, pages 114–121, 1982.

[36] D. E. Willard. Good worst-case algorithms for
inserting and deleting records in dense sequential files.
In Proc. SIGMOD, pages 251–260, 1986.

[37] D. E. Willard. A density control algorithm for doing
insertions and deletions in a sequentially ordered file
in good worst-case time. I&C, 97(2):150–204, 1992.

154

