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Continuous Geometric Algorithms for
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Abstract

We consider the problem of building a dynamic and
robust network between mobile terminals with the
help of a large swarm of robots in the continuous Eu-
clidean plane. Individually, the robots have limited
capabilities, both in terms of global information and
computation. We propose a set of local continuous
algorithms that together produce a generalization of
a Euclidean Steiner tree. At any stage, the result-
ing overall shape achieves a good compromise between
local thickness, global connectivity, and flexibility to
further continuous motion of the terminals.

1 Introduction

Robot navigation is one of the classical application ar-
eas for computational geometry. How can we gather
the geometric information that is necessary for orient-
ing ourselves in a known or unknown environment?
How can we carry out geometric computations effi-
ciently, and how can we optimize specific objectives?
Without a doubt, the close interaction between theory
and practice for these challenges has motivated ma-
jor progress, both in robotics and in computational
geometry. Even without a specific focus on robotics,
a relatively new area of algorithmics has arisen from
considering not just a single active agent, but a whole
group or even swarm. Swarm robotics combines clas-
sical robotics with distributed algorithms and many
aspects of wireless sensor networks.

Traditionally, computational geometry has focused
on discrete algorithms. In this paper, we demonstrate
that a more continuous (not event-based) approach is
able to lead to interesting and non-trivial geometric
algorithms. In particular, we consider a large swarm
of mobile robots with very simple individual capa-
bilities. Motion is continuous, as is interaction and
response between different robots.

The challenge is to combine two fundamentally op-
posite objectives: How can we develop local self-
stabilizing mechanisms that allow the swarm to stay
locally well connected, even when being pulled apart
by several distant and mobile sites?
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Figure 1: A robust robot swarm emulating a Steiner
tree between five diverging leader robots.

Related Work. Even in a centralized and static
setting with full information, we have to deal with
the well-known NP-hard problem of finding a good
Steiner tree [3]. There is a large body of work on
geometric swarm behavior; for lack of space, we only
mention Chazelle [1] for flocking behavior, and Fekete
et al. [2, 5] for geometric algorithms for static sen-
sor networks. As far as we know, only Hamann and
Worn [4] have explicitly considered the construction
of Steiner Trees by a robot swarm. For static ter-
minals, they start with an exploratory network; as
soon as all terminals are connected, only best paths
are kept and locally optimized. More specific refer-
ences are given in Section 3.1, where they are used as
building blocks.

This Paper. We propose a set of local, self-
stabilizing algorithms that maintain a dynamic and
robust network between leader robots. The algo-
rithms ensure that the swarm adopts the directions of
multiple leaders, while preserving a uniform thickness
along the edges of the Steiner tree. We demonstrate
the usefulness of this approach by simulations with a
swarm of 400 robots, five leaders and various failure
rates.

2 Preliminaries

For a finite set of robots R with an externally con-
trolled subset of leader robots £ C R,|L| < [R],
we want the remaining robots R \ £ to maintain a
dynamic and robust network that keeps the swarm
connected, even in the presence of random robot fail-
ures and arbitrary leader movements. Thus, the over-
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all shape of the swarm should form a “thick” Steiner
tree among the leaders with the robots R \ £ evenly
distributed along the edges, as shown in Figure 1.

Robots have the shape of circles; two of them are
connected when within a maximum distance and with
an unobstructed line of sight. Robots know the rela-
tive positions and orientations of their neighbors and
can communicate asynchronously. Each robot has
a unique ID; leader IDs are known by all others.
Robot’s translations and rotations are limited in ve-
locity and acceleration. Communication is possible by
broadcasting to immediate neighbors.

The perception of all robots is local; however, due
to the known position and orientation difference, each
robot can transform vectors of its neighbors to its own
coordinate system. We avoid multi-hop transforma-
tions to keep errors small.

3 Algorithm

The proposed approach consists of a set of local self-
stabilizing mechanisms that either detect a condition
or induce a force. The weighted sum of the induced
forces determines the robot motion; input for the lo-
cal mechanisms of the local state and environment of
the robot, output is a value for current robot motion.
In principle, these mechanisms are continuous. (Our
implementation described later updates at 60 Hz.)

We first discuss the base behavior of the robots in
Section 3.1, inducing an almost convex swarm shape.
This is subsequently improved by leader forces, sta-
bility improvement and thickness contraction.

3.1 Base Behavior

Our base behavior consists of three components that
result in a swarm shape of a droplet. (i) The flocking
algorithm of Olfati-Saber [8] considers regular distri-
bution and movement consensus. The algorithm is
a stateless equation based on potential fields and is
proven to converge. It uses three rules: Attraction
to neighbors, repulsion from too close neighbors, and
adaption to the velocity of neighbors. We slightly
modified the algorithm for better response to addi-
tional forces. (ii) An extended version of the bound-
ary detection algorithm of McLurkin and Demaine [7],
which determines if a robot lies on the boundary and
also identifies small holes! by using the average angle.
(iii) The boundary tension of Lee and McLurkin [6],
which straightens and minimizes the boundary of the
swarm. This is done by simply pushing boundary
robots to the middle of its two boundary neighbors.

IThe method theoretically allows the robots to distinguish
exterior and interior boundaries and determine their size, but
the limited precision and the convergence time limit this usage.

However, the base be-
havior without any other
forces results in at most
convex shapes before los-
ing connectivity. The fig- ot :
ure to the right depicts a @ o
situation in which the swarm is just about to lose
connectivity. For stronger control and more variable
shapes, leader forces are introduced.

3.2 Leader Forces

A single leader constitutes the simplest form of swarm
control. In this case the swarm motion is determined
by the leader’s velocity. With multiple (possibly an-
tagonistic) leaders, the swarm is not just steered, but
may be stretched to the limit until connectivity is lost.
Therefore, each robot needs to find an appropriate
balance between the influence of different leaders. See
top of Figure 2 for an illustration.
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Figure 2: (Top) A one-dimensional scenario with two
leaders (red) moving in opposite directions. (Bottom)
With increasing distance to the leader, the effect shifts
from velocity matching to leader pursuit.

There are two ways of following a leader: either by
matching its velocity or by moving towards it. Veloc-
ity matching preserves the overall shape of the swarm,
but fails with multiple leaders. In addition, there are
accumulated losses in accuracy with each hop because
the velocity information needs to be passed between
robots with noisy sensors. On the other hand, moving
towards the leader causes a deformation of the swarm
and can also be used to control its shape when mul-
tiple leaders are used. However, regions close to the
leaders suffer from “compression”. We therefore com-
bine both methods by a smooth transition between
velocity matching close to the leaders and leader pur-
suit when further away; see bottom of Figure 2.

In order to achieve the combination of movement
with the leader and towards the leader, three public
variables are used for each leader. The leader dis-
tance is the minimum hop count to the leader. Let
pred(r) be the predecessor in a minimum-hop tree to
the leader, which can be the leader itself. The leader
velocity is the one of pred(r) for a non-leader, and
the robot’s own velocity for the leader. The leader
direction is a normalized direction vector calculated
incrementally from the direction to pred(r) as fol-
lows: Each robot takes the leader direction of its
pred(r) and merges it with the normalized direction
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Figure 3: (Left) The basic swarm with leader forces
added. (Right) Swarm with stability improvement.
Lower swarms are scaled down for better visibility.

to pred(r). If pred(r) is the leader, only the normal-
ized direction to it is used. For computing the leader
force, the leader direction is scaled to the length of
the leader velocity and then combined with a leader
distance-sensitive weighting.

For £ € L, let ¢, : R — R? be the force on a specific
robot and let dy : R — N be its distance to £. The
leader forces on robot r are combined as follows:

-1
Z co(r) L_l
ter 2rerde(r)

Additionally we provide leaders with too few neigh-
bors with an attraction force, so they do not lose con-
nection to the swarm. This attraction spreads over
some distance, but decreases exponentially.

3.3 Stability Improvement

Near Steiner points, connections along concave swarm
boundaries may be stretched by boundary forces.
When the involved edges approach the upper bound
for communication, connections may be disrupted, to
the point where the swarm loses connectivity. By
adding a thickness-dependent compression force, we
reduce neighbor distances without influencing the
Steiner-tree shape of the swarm; in effect, this works
similar to compression stockings. In the following, we
give a heuristic for thickness computation and com-
pression. In order to let the flocking algorithm handle
this compression without destroying the regular dis-
tribution, we sketch a density distribution heuristic
later in this Section. A comparison of a swarm with
and without the stability improvement can be seen in
Figure 3.

Thickness Contraction. We define the local thick-
ness at a robot as the radius of the largest hop circle
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Figure 4: Thickness determination (b(r)/t(r)/h(r))
for a limb part. The red edges fulfill the Gabriel graph
condition. A largest hop circle is marked in blue.

containing it. A hop circle of radius h with robot ¢
as circle center is the set of all robots with a hop
count < h to ¢; only robots with distance equal to h
may be on the boundary. An example is highlighted
in blue in Figure 4.

The relationship between geometric thickness and
boundary hop distance may be distorted by long con-
nections that skip over robots. This can be avoided
by only considering edges that fulfill the edge condi-
tion of the Gabriel graph, meaning that no robot is al-
lowed to be closer to the midpoint of an edge than the
robots connected by it. We denote the corresponding
reduced neighborhood of a robot r as N;.

The following method is a simplified implementa-
tion of the thickness metric above, which performed
well enough in simulation. It gets by with only three
public variables; all circles with its center within a
larger circle are ignored.

For this heuristic evaluation of the thickness ¢(r)
of a robot r, we need the hop distance b(r) from the
boundary and the circle center distance h(r). Com-
puting the hop distance to the boundary for each
robot can easily be achieved by setting b(r) to 0 for
all robots on the boundary, while all others take the
minimum of their neighbors plus one, as follows

b(r) = 0 7 on boundary
~ | min{b(n) +1|n e N'} else

Small holes, that occur frequently but also vanish
quickly, are excluded from the boundary, otherwise
the value can become too instable. The thickness ¢(r)
is determined as the maximum b(r) within some range
h(r), as follows.

t(r) := max{{b(r) }U{t(n) | n € N.At(n)+X > h(n)}},

where A € N is a small constant (e.g. A = 2) that
tackles the problem of irregular boundaries. If r is
a circle center (¢(r) = b(r)), then the circle center
distance h(r) is 0. Otherwise,

h(r) := min{h(n) + 1 |n € N, At(n) =t(r)}
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Based on this thickness ¢(r), the described compres-
sion force grows linearly with this ¢(r). It acts only
on robots of large boundaries, so that small holes are
not prevented from closing.

Density. The local density of a robot refers to the
number of neighbors in relation to its observable area.
By introducing an attraction to low and repulsion
from high local density neighbors, the overall swarm
density is maintained at a specific homogeneous level.
It is determined by divid-
ing the number of neighbors
by the roughly calculated ob-
servable area as depicted in
the figure to the right. In or-
der to avoid lumps, robots in
collision range are weighted
higher. For robots on the boundary the computation
is a bit more involved. However, further details are
omitted due to limited space.

Let p(r') be the averaged local density of robot 7/,
o the optimal density, and N, the neighbors of r, then
the density distribution force for a robot r is given by

> Pe(n) # 6(p(n) — o) with (z) = 2*/|a],

neN,

where P, : R — R? is the direction from robot r to a
neighbor with the length of the distance for p(n) < o
and of range minus distance else. We do not apply
this force to robots on the boundary.

4 Experiments

We validated our approach by conducting experi-
ments with a set of five leaders stretching out a swarm
of 400 robots until it disconnects. The performance
is measured by the length of the minimal Steiner tree
on disconnection (calculated by the Geosteiner soft-
ware [9]), divided by the theoretically maximal possi-
ble length estimated by |R’| xrange, where R’ are the
robots that did not fail yet. This would correspond to
an optimal but extremely fragile Steiner tree in which
any node failure disconnects the swarm. Thus, the
best possible value of 1 is completely elusive.

For comparison we tested three configurations:
BASE—only the base behavior as discussed in Sec-
tion 3.1; LEAD—the basic behavior enriched by leader
forces as discussed in Section 3.2; ALL—the final con-
figuration that also incorporates Density and Thick-
ness Contraction as presented in Section 3.3.

The experiments were carried out with 60 iterations
per simulated second, a robot diameter of 10 cm and
a range of 1.2m. The maximal robot velocity was set
to 1ms™!, but the leaders only moved by at most
0.25ms~! in order to give the swarm robots the op-
portunity to react. These parameters are chosen ar-

Failure rate BASE LEAD ‘ ALL
0| .07.08.09 | .25.30 .34 | .28 .32 .35
5-107% | .07 .08 .09 | .25 .28 .32 | .26 .29 .33
1072 | .06 .08 .09 | .23 .28 .31 | .26 .30 .33
2-107° | .07.08 .09 | .22 .25 .29 | .26 .30 .33

Table 1: Relative Steiner tree sizes reached by first,
second, and third quartiles. The failure rate is the
probability of each robot to die in each step of the
simulation.

bitrary but are oriented to the R-One swarm robots
of the Rice University.

For each configuration there were 100 random tri-
als on four different failure rates. The results in Ta-
ble 1 show that leader forces already produce decent
swarm behavior, with survivability four times higher
than for the base forces. Without robot losses, it
reaches around 30% of the length of the hypothetical
optimum. With robot failures, the performance gets
weaker with increasing failure probability. The vari-
ant with additional stability improvement is slightly
better without failures, but is clearly more robust
against robot losses.
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