
Algorithmica (2014) 68:1019–1044
DOI 10.1007/s00453-012-9713-8

Online Square Packing with Gravity

Sándor P. Fekete · Tom Kamphans · Nils Schweer

Received: 21 October 2010 / Accepted: 9 November 2012 / Published online: 16 November 2012
© Springer Science+Business Media New York 2012

Abstract We analyze the problem of packing squares in an online fashion: Given a
semi-infinite strip of width 1 and an unknown sequence of squares of side length in
[0,1] that arrive from above, one at a time. The objective is to pack these items as
they arrive, minimizing the resulting height. Just like in the classical game of Tetris,
each square must be moved along a collision-free path to its final destination. In
addition, we account for gravity in both motion (squares must never move up) and
position (any final destination must be supported from below). A similar problem has
been considered before; the best previous result is by Azar and Epstein, who gave a
4-competitive algorithm in a setting without gravity (i.e., with the possibility of let-
ting squares “hang in the air”) based on ideas of shelf packing: Squares are assigned
to different horizontal levels, allowing an analysis that is reminiscent of some bin-
packing arguments. We apply a geometric analysis to establish a competitive factor
of 3.5 for the bottom-left heuristic and present a 34

13 ≈ 2.6154-competitive algorithm.

Keywords Online packing · Strip packing · Squares · Gravity · Tetris

1 Introduction

1.1 Packing Problems

Packing problems arise in many different situations, either concrete (where actual
physical objects have to be packed), or abstract (where the space is virtual, e.g., in

Tom Kamhans was supported by DFG grant FE 407/8-3, project “ReCoNodes”. A preliminary
extended abstract summarizing the results of this paper appeared in [15].

S.P. Fekete (�) · T. Kamphans · N. Schweer
Department of Computer Science, Algorithms Group, Braunschweig University of Technology,
Mühlenpfordtstrasse 23, 38106 Braunschweig, Germany
e-mail: s.fekete@tu-bs.de

mailto:s.fekete@tu-bs.de

1020 Algorithmica (2014) 68:1019–1044

scheduling). Even in a one-dimensional setting, computing an optimal set of positions
in a container for a known set of objects is a classical, hard problem. Having to deal
with two-dimensional objects adds a variety of difficulties; one of them is the more
complex structure of feasible placements; see, for example, Fekete et al. [14]. Another
one is actually moving the objects into their final locations without causing collisions
or overlap along the way. A different kind of difficulty may arise from a lack of
information: in many settings, objects have to be assigned to their final locations
one by one, without knowing future items. Obviously, this makes the challenge even
harder.

In this paper, we consider online packing of squares into a vertical strip of unit
width. Squares arrive from above in an online fashion, one at a time, and have to
be moved to their final positions. On this path, a square may move only through
unoccupied space, come to a stop only if it is supported from below; in allusion to the
well-known computer game, this is called the Tetris constraint. In addition, an item
is not allowed to move upwards and has to be supported from below when reaching
its final position; these conditions are called gravity constraints. The objective is to
minimize the total height of the occupied part of the strip.

1.2 Problem Statement

Let S be a semi-infinite strip of width 1 and A = (A1, . . . ,An) a sequence of squares
with side length ai ≤ 1, i = 1, . . . , n. The sequence is unknown in advance. A strategy
gets the squares one by one and must place a square before it gets the next. Initially,
a square is located above all previously placed ones.

Our goal is to find a non-overlapping packing of squares in the strip that keeps the
height of the occupied area as low as possible. More precisely, we want to minimize
the distance between the bottom side of S and the highest point that is occupied by
a square. The sides of the squares in the packing must be parallel to the sides of the
strip. Moreover, a packing must fulfill two additional constraints:

Tetris constraint: At the time a square is placed, there is a collision-free path from
the initial position of a square (top of the strip) to the square’s final position.

Gravity constraint: A square must be packed on top of another square (i.e., the
intersection of the upper square’s bottom side and the lower square’s top side must be
a line segment) or on the bottom of the strip; in addition, no square may ever move
up on the path to its final position.

1.3 Related Work

In general, the strip packing problem asks for a non-overlapping placement of a set
of rectangles in a semi-infinite strip such that the height of the occupied area is mini-
mized. The bottom side of a rectangle has to be parallel to the bottom side of the strip.
Over the years, many different variations of the strip packing problem have been pro-
posed: online, offline, with or without rotation, and so on. Typical measures for the
evaluation of approximation and online algorithms are the absolute performance and
the asymptotic performance ratio.

Algorithmica (2014) 68:1019–1044 1021

If we restrict all rectangles to be of the same height, the strip packing prob-
lem without rotation is equivalent to the bin packing problem: Given a set of one-
dimensional items each having a size between zero and one, the task is to pack these
items into a minimum number of unit size bins. Hence, all negative results for the
bin packing problem, e.g., NP-hardness and lower bounds on the competitive ratio
also hold for the strip packing problem; see [17] for a survey on (online) bin pack-
ing.

If we restrict all rectangles to be of the same width then the strip packing prob-
lem without rotation is equivalent to the list scheduling problem: Given a set of jobs
with different processing times, the task is to schedule these jobs on a set of identical
machines such that the makespan is minimized. This problem was first studied by
Graham [18]. There are many different kinds of scheduling problems, e.g., the ma-
chines can be identical or not, preemption might be allowed or not, and there might
be other restrictions such as precedence constraints or release times; see [8] for a
textbook on scheduling.

Offline Strip Packing Concerning the absolute approximation factor, Baker et al. [3]
introduce the class of bottom-up left-justified algorithms. A specification that sorts
the items in advance is a 3-approximation for a sequence of rectangles and a 2-
approximation for a sequence of squares. Sleator [23] presents an algorithm with
approximation factor 2.5, Schiermeyer [21] and Steinberg [24] present algorithms
that achieve an absolute approximation factor of 2, for a sequence of rectangles.

Concerning the asymptotic approximation factor, the algorithms presented by
Coffman et al. [9] achieve performance bounds of 2, 1.7, and 1.5. Baker et al. [4]
improve this factor to 1.25. Kenyon and Rémila [20] design a fully polynomial time
approximation scheme. Han et al. [19] show that every algorithm for the bin packing
problem implies an algorithm for the strip packing problem with the same approx-
imation factor. Thus, in the offline case, not only the negative results but also the
positive results from bin packing hold for strip packing.

Online Strip Packing Concerning the absolute competitive ratio Baker et al. [2]
present two algorithms with competitive ratio 7.46 and 6.99. If the input sequence
consists only of squares the competitive ratio reduces to 5.83 for both algorithms.
These algorithms are the first shelf algorithms: A shelf algorithm classifies the rect-
angles according to their height, i.e., a rectangle is in a class s if its height is in the
interval (αs−1, αs], for a parameter α ∈ (0,1). Each class is packed in a separate
shelf, i.e., into a rectangular area of width one and height αs , inside the strip. A bin
packing algorithm is used as a subroutine to pack the items. Ye et al. [26] present
an algorithm with absolute competitive factor 6.6623. Lower bounds for the abso-
lute performance ratio are 2 for sequences of rectangles and 1.75 for sequences of
squares [7].

Concerning the asymptotic competitive ratio, the algorithms in [2] achieve a com-
petitive ratio of 2 and 1.7. Csirik and Woeginger [11] show a lower bound of 1.69103
for any shelf algorithm and introduce a shelf algorithm whose competitive ratio
comes arbitrarily close to this value. Han et al. [19] show that the competitive ra-
tio of the so-called Super Harmonic algorithms for the bin packing problem, can be

1022 Algorithmica (2014) 68:1019–1044

transferred to the strip packing problem. The current best algorithm for bin packing
is 1.58889-competitive [22]. Thus, there is an algorithm with the same ratio for the
strip packing problem. A lower bound, due to van Vliet [25], for the asymptotic com-
petitive ratio of bin packing is 1.5401; this bound was improved by Balogh et al. [5]
to 1.54037. Epstein and van Stee [12] considered packing squares into unit square
bins. They showed an upper bound of 2.2697 and a lower bound of 1.6406 for online
square packing and also gave bounds for higher-dimensional packings.

Tetris Every reader is certainly familiar with the classical game of Tetris: Given a
strip of fixed width, find an online placement for a sequence of objects falling down
from above such that space is utilized as good as possible. In comparison to the strip
packing problem, there is a slight difference in the objective function as Tetris aims
at filling rows. In actual optimization scenarios this is less interesting as it is not
critical whether a row is used to precisely 100 %—in particular, as full rows do not
magically disappear in real life. In this process, no item can ever move upward, no
collisions between objects must occur, an item will come to a stop if and only if it is
supported from below, and each placement has to be fixed before the next item arrives.
Even when disregarding the difficulty of ever-increasing speed, Tetris is notoriously
difficult: Breukelaar et al. [6] show that Tetris is PSPACE-hard, even for the, original,
limited set of different objects.

Strip Packing with Tetris Constraint Tetris-like online packing has been considered
before. Most notably, Azar and Epstein [1] consider online packing of rectangles
into a strip; just like in Tetris, they consider the situation with or without rotation of
objects. For the case without rotation, they show that no constant competitive ratio
is possible, unless there is a fixed-size lower bound of ε on the side length of the
objects, in which case there is an upper bound of O(log 1

ε
) on the competitive ratio.

For the case in which rotation is possible, they present a 4-competitive strategy
based on shelf-packing methods: Each rectangle is rotated such that its narrow side is
the bottom side. The algorithm tries to maintain a corridor at the right side of the strip
to move the rectangles to their shelves. If a shelf is full or the path to it is blocked,
by a large item, a new shelf is opened. Until now, this is also the best deterministic
upper bound for squares. Note that in this strategy gravity is not taken into account
as items are allowed to be placed at appropriate levels.

Coffman et al. [10] consider probabilistic aspects of online rectangle packing with-
out rotation and with Tetris constraint. If n rectangle side lengths are chosen uni-
formly at random from the interval [0,1], they show that there is a lower bound of
(0.31382733 . . .)n on the expected height for any algorithm. Moreover, they propose
an algorithm that achieves an asymptotic expected height of (0.36976421 . . .)n.

Strip Packing with Tetris and Gravity Constraint There is one negative result for
the setting with Tetris and gravity constraint when rotation is not allowed in [1]: If
all rectangles have a width of at least ε > 0 or of at most 1 − ε, then the competitive
factor of any algorithms is Ω(1

ε
).

Algorithmica (2014) 68:1019–1044 1023

1.4 Our Results

We analyze a natural and simple heuristic called BottomLeft (Sect. 2), which works
similar to the one introduced by Baker et al. [3]. This strategy makes relatively flex-
ible use of the available space; however, this makes the analysis harder, in particular
in the presence of gravity. We show that it is possible to develop sufficient structure
to guarantee a better competitive ratio than the ratio 4 achieved by Azar and Epstein,
even in the presence of gravity by proving an asymptotic competitive ratio of 3.5
for BottomLeft. Furthermore, we introduce the more restricted strategy SlotAlgorithm
(Sect. 3), which intuitively leads to a more restricted use of space, but allows a tighter
analysis of the ensuing upper bound. We establish an asymptotic competitive ratio of
34
13 = 2.6154

2 The Strategy BottomLeft

In this section, we analyze the packing generated by the strategy BottomLeft, which
works as follows. We place the current square as close as possible to the bottom of
the strip; this means that we move the square along a collision-free path from the
top of the strip to the desired position, without ever moving the square in positive
y-direction. We break ties by choosing the leftmost among all possible bottommost
positions. This is a fairly natural strategy; intuitively, it makes good and flexible use
of the available space. In the following, we establish sufficient structure to prove that
BottomLeft yields a better bound than the one established by Azar and Epstein, even
in the presence of gravity.

A packing may leave areas of the strip empty. We call a maximal connected com-
ponent (of finite size) of the strip’s empty area a hole, denoted by Hh, h ∈ IN. We
denote by |Hh| the area of Hh. For a simplified analysis, we finish the packing with
an additional square, An+1, of side length 1. As a result, all holes have a closed
boundary. Let H1, . . . ,Hs be the holes in the packing. We can express the height of
the packing produced by BottomLeft as follows:

BL =
n∑

i=1

a2
i +

s∑

h=1

|Hh|.

In the following sections, we prove that

s∑

h=1

|Hh| ≤ 2.5 ·
n+1∑

i=1

a2
i .

Because any strategy produces at least a height of
∑n

i=1 a2
i , and because a2

n+1 = 1,
we get

BL =
n∑

i=1

a2
i +

s∑

h=1

|Hh| ≤
n∑

i=1

a2
i + 2.5 ·

n+1∑

i=1

a2
i ≤ 3.5 · OPT + 2.5,

where OPT denotes the height of an optimal packing. This proves:

1024 Algorithmica (2014) 68:1019–1044

Fig. 1 The square Ai with its
left sequence LAi

, the bottom
sequence BAi

, and the
skyline SAi

. The left sequence
ends at the left side of S, and the
bottom sequence at the bottom
side of S

Theorem 1 BottomLeft is (asymptotically) 3.5-competitive.

Definitions Before we start with the analysis, we need some definitions: We denote
the bottom (left, right) side of the strip by BS (RS , LS ; respectively), and the sides of
a square, Ai , by BAi

, TAi
, RAi

, LAi
(bottom, top, right, left; respectively); see Fig. 1.

The x-coordinates of the left and right side of Ai in a packing are lAi
and rAi

; the
y-coordinates of the top and bottom side tAi

and bAi
, respectively. Let the left neigh-

borhood, NL(Ai), be the set of squares that touch the left side of Ai . In the same way
we define the bottom, top, and right neighborhoods, denoted by NB(Ai),NT (Ai),
and NR(Ai), respectively.

A point, P , is called unsupported, if there is a vertical line segment pointing from
P to the bottom of S whose interior lies completely inside a hole. Otherwise, P is
supported. A section of a line segment is supported, if every point in this section is
supported.

For an object ξ , we refer to the boundary as ∂ξ , to the interior as ξ◦, and to its area
by |ξ |. If ξ is a line segment, then |ξ | denotes its length.

Outline of the Analysis We proceed as follows: First, we state some basic prop-
erties of the generated packing (Sect. 2.1). In Sect. 2.2 we simplify the shape of
the holes by partitioning a hole, produced by BottomLeft, into several disjoint new
holes. In the packing, these new holes are open at their top side, so we introduce vir-
tual lids that close these holes. Afterwards, we estimate the area of a hole in terms
of the squares that enclose the hole (Sect. 2.3). First, we bound the area of holes that
have no virtual lid and whose boundary does not intersect the boundary of the strip.
Then, we analyze holes with a virtual lid; as it turns out, these are “cheaper” than
holes with non-virtual lids. Finally, we show that holes that touch the strip’s bound-
ary are just a special case. Section 2.4 summarizes the costs that are charged to a
square.

Algorithmica (2014) 68:1019–1044 1025

Fig. 2 A packing produced by BottomLeft. The squares Ã1, . . . , Ãk contribute to the boundary of the
hole Hh . In the analysis, Hh is split into a number of subholes. In the shown example one new subhole
H�

h
is created. Note that the square Ã1 also contributes to the holes Hh+1 and Hh+2. Moreover, it serves

as a virtual lid for H�
h+1

2.1 Basic Properties of the Generated Packing

In this section, we show some basic properties of a packing generated by BottomLeft.
In particular, we analyze structural properties of the boundary of a hole.

We say that a square, Ai , contributes to the boundary of a hole, Hh, iff ∂Ai and
∂Hh intersect in more than one point, i.e., |∂Ai ∩ ∂Hh| > 0. For convenience, we
denote the squares on the boundary of a hole by Ã1, . . . , Ãk in counterclockwise
order starting with the leftmost uppermost square;1 see Fig. 2. (We will show in
Lemma 1 that every square meets a hole at most once.) It is always clear from the
context which hole defines this sequence of squares. Thus, we chose not to introduce
an additional superscript referring to the hole. We define Ãk+1 = Ã1, Ãk+2 = Ã2,
and so on. By Pi,i+1 we denote the point where ∂Hh leaves the boundary of Ãi and
enters the boundary of Ãi+1; see Fig. 3.

Let Ai be a square packed by BottomLeft. Then Ai can be moved neither to the left
nor down. This implies that either NL(Ai) �= ∅ (NB(Ai) �= ∅) or that LAi

(BAi
) coin-

cides with LS (BS). Therefore, the following two sequences LAi
and BAi

exist: The
first element of LAi

(BAi
) is Ai . The next element is chosen as an arbitrary left (bot-

tom) neighbor of the previous element. The sequence ends if no such neighbor exits.
We call LAi

the left sequence and BAi
the bottom sequence of a square Ai ; see Fig. 1

We call the polygonal chain from the upper right corner of the first element of
LAi

to the upper left corner of the last element, while traversing the boundary of the
sequence in counterclockwise order, the skyline, SAi

, of Ai .

1That is, we take the square with the topmost bottom line. If there is more than one, we take the leftmost
of these squares.

1026 Algorithmica (2014) 68:1019–1044

Fig. 3 The hole Hh with the
two squares Ãi and Ãi+1 and
their bottom sequences. In this
situation, Ãi+1 is Ã1. If ∂Hh is
traversed in counterclockwise
order then ∂Hh ∩ ∂Ãi+2 is
traversed in clockwise order
with respect to ∂Ãi+2

Obviously, SAi
has an endpoint on LS and S ◦

Ai
∩H ◦

h = ∅ (where S ◦
Ai

is the polyg-
onal chain SAi

without its endpoints). With the help of LAi
and BAi

we can prove
(see Fig. 3):

Lemma 1 Let Ãi be a square that contributes to ∂Hh. Then,

(i) ∂Hh ∩ ∂Ãi is a single curve, and
(ii) if ∂Hh is traversed in counterclockwise (clockwise) order, ∂Hh ∩∂Ãi is traversed

in clockwise (counterclockwise) order with respect to ∂Ãi .

Proof For the first part, suppose for a contradiction that ∂Hh ∩∂Ãi consists of at least
two curves, c1 and c2. Consider a simple curve, C, that lies completely inside Hh and
has one endpoint in c1 and the other one in c2. We add the straight line between
the endpoints to C and obtain a simple closed curve C′; note that this straight line is
completely contained in Ãi (and in some case in δÃi). As c1 and c2 are not connected,
there is a square, Ãj , inside C′ that is a neighbor of Ãi . If Ãj is a left, right or bottom
neighbor of Ãi this contradicts the existence of B

Ãj
and if it is a top neighbor this

contradicts the existence of L
Ãj

: In both cases, the existence of C implies that Ãj

is part of an area that is completely unsupported from below or from the left. This,
in turn, implies that the corresponding sequence cannot exist. Hence, ∂Hh ∩ ∂Ãi is a
single curve.

For the second part, imagine that we walk along ∂Hh in counterclockwise order.
Then, the interior of Hh lies on our left-hand side, and all squares that contribute to
∂Hh lie on our right-hand side. Hence, their boundaries are traversed in clockwise
order with respect to their interior. �

We define P and Q to be the left and right endpoint, respectively, of the line
segment ∂Ã1 ∩ ∂Hh. Now, we turn to the description of the boundary of a hole. Two
squares Ãi and Ãi+1 can basically be arranged in four ways, i.e., Ãi+1 can be a left,
right, bottom or top neighbor of Ãi . The next lemma restricts these possibilities.

Algorithmica (2014) 68:1019–1044 1027

Lemma 2 Let Ãi , Ãi+1 be a pair of squares that contribute to the boundary of a
hole Hh.

(i) If Ãi+1 ∈ NL(Ãi), then either Ãi+1 = Ã1 or Ãi = Ã1.
(ii) If Ãi+1 ∈ NT (Ãi), then Ãi+1 = Ã1 or Ãi+2 = Ã1.

Proof (i) Let Ãi+1 ∈ NL(Ãi). Consider the endpoints of the vertical line R
Ãi+1

∩L
Ãi

;
see Fig. 3. We traverse ∂Hh in counterclockwise order, starting in P . By Lemma 1, we
traverse ∂Ãi in clockwise order, and therefore, Pi,i+1 is the lower endpoint of R

Ãi+1
∩

L
Ãi

. Now, B
Ãi

, B
Ãi+1

, and the segment of BS between the lower left corner of the
last element of B

Ãi+1
and the lower right corner of the last element of B

Ãi
completely

enclose an area that completely contains the hole Hh. (If the sequences have a square
in common, we consider the area enclosed up to the first intersection.) Therefore, if
b
Ãi+1 ≥ b

Ãi
then Ãi+1 = Ã1 otherwise Ãi = Ã1 by the definition of PQ.

The proof of (ii) follows almost directly from the first part. Let Ãi+1 ∈ NT (Ãi).
If ∂Hh is traversed in counterclockwise order, we know that ∂Ãi+1 is traversed in
clockwise order, and we know that Ãi+1 must be supported to the left (i.e., it must
have a neighbor to the left or touch LS). Therefore, Ãi+2 ∈ NL(Ãi+1) ∪ NB(Ãi+1).
Using the first part of the lemma, we conclude that, if Ãi+2 ∈ NL(Ãi+1) then Ãi+2 =
Ã1 or Ãi+1 = Ã1. If Ãi+2 ∈ NB(Ãi+1) then Ãi+1 = Ã1. �

The last lemma implies that either Ãi+1 ∈ NB(Ãi) or Ãi+1 ∈ NR(Ãi) holds for all
i = 2, . . . , k − 2; see Fig. 2. The next lemma shows that there are only two possible
arrangements of the squares Ãk−1 and Ãk :

Lemma 3 Either Ãk ∈ NR(Ãk−1) or Ãk ∈ NT (Ãk−1).

Proof We traverse ∂Hh from P in clockwise order. From the definition of PQ and
Lemma 1 we know that Pk,1 is a point on L

Ãk
. If Pk−1,k ∈ L

Ãk
, then Ãk ∈ NR(Ãk−1);

if Pk−1,k ∈ B
Ãk

, then Ãk ∈ NT (Ãk−1). In any other case Ãk does not have a bottom
neighbor, so L

Ãk
coincides with LS and Ak−1 has no point in common with Ak . �

Following the distinction described in the lemma, we say that a hole is of Type R
if Ãk ∈ NR(Ãk−1), and of Type T if Ãk ∈ NT (Ãk−1); see Fig. 4.

2.2 Splitting Holes

Let Hh be a hole whose boundary does not touch the boundary of the strip, i.e., the
hole is completely enclosed by squares. We define two lines that are essential for the
computation of an upper bound for the area of a hole, Hh: The left diagonal, Dh

l , is
defined as the straight line with slope −1 starting in P2,3 if P2,3 ∈ R

Ã2
or, otherwise,

in the lower right corner of Ã2; see Fig. 4. We denote the point where Dh
l starts

by P ′. The right diagonal, Dh
r , is defined as the line with slope 1 starting in Pk−1,k

if Ãk ∈ NR(Ãk−1) (Type R) or in Pk−2,k−1, otherwise (Type T). For Type T, note
that Pk−2,k−1 lies on L

Ãk−1
because otherwise, there would not be a left neighbor of

1028 Algorithmica (2014) 68:1019–1044

Fig. 4 Holes of Type R and T with their left and right diagonals

Ãk−1. We denote the point where Dh
r starts by Q′. If h is clear or does not matter we

omit the superscript.

Lemma 4 Let Hh be a hole and Dr its right diagonal. Then, Dr ∩ H ◦
h = ∅.

Proof Consider the left sequence, L
Ãk

= (Ãk = α1, α2, . . .) or L
Ãk−1

= (Ãk−1 =
α1, α2, . . .), for Hh being of Type R or T, respectively. It is easy to show by induction
that the upper left corners of the αi ’s lie above Dr : If Dr intersects ∂αi at all, the
first intersection is on Rαi

, the second on Bαi
. Thus, at least the skyline separates Dr

and Hh. �

If Lemma 4 would also hold for Dl , we could use the polygon formed by Dl , Dr ,
and the part of the boundary of Hh between Q′ and P ′ to bound the area of Hh,
but—unfortunately—it does not.

Let F be the first nontrivial intersection point of ∂Hh and Dl , while traversing
∂Hh in counterclockwise order, starting in P . F is on the boundary of a square, Ãi .
Let E be the other intersection point of Dl and ∂Ãi .

It is a simple observation that if Dl intersects a square, Ãi , in a nontrivial way, i.e.,
in two different points, E and F , then either F ∈ R

Ãi
and E ∈ T

Ãi
or F ∈ B

Ãi
and

E ∈ L
Ãi

. To break ties, we define that an intersection in the lower right corner of Ãi

belongs to B
Ãi

. Now, we split our hole, Hh, into two new holes, H
(1)
h and H�

h . We
consider two cases (see Fig. 5):

• Case A: F ∈ R
Ãi

\ B
Ãi• Case B: F ∈ B

Ãi

In Case A, we define Ãup := Ãi−1 and Ãlow := Ãi , in Case B Ãup := Ãi and
Ãlow := Ãi+1. The names are motivated by the following lemma:

Lemma 5 Ãlow ∈ NB(Ãup).

Algorithmica (2014) 68:1019–1044 1029

Fig. 5 Dl can intersect Ãi (for the second time) in two different ways: on the right side or on the bottom
side. In Case A, the square Ãi−1 is on top of Ãi ; in Case B, Ãi is on top of Ãi+1

Proof We consider Case A and Case B separately, starting with Case A. We traverse
∂Hh from F in clockwise order. By Lemma 1, Ãi−1 is the next square that we reach;
see Fig. 5. Because F is the first intersection, Pi−1,i lies between F and E. Thus,
either Pi−1,i ∈ T

Ãi
or Pi−1,i ∈ R

Ãi
holds. With Lemma 2, the latter implies either

Ãi−1 = Ã1 or Ãi = Ã1. Because b
Ãi−1

> b
Ãi

holds, only Ãi−1 = Ã1 is possible, and

therefore, Ãi = Ã2. Dl intersects Ã2 in the lower left corner—which is not included
in this case—or in P2,3. However, P2,3 ∈ R

Ã2
cannot be an intersection, because this

would imply Ã3 ∈ NR(Ã2). Thus, only Pi−1,i ∈ T
Ãi

is possible.

In Case B, we traverse ∂Hh from F in counterclockwise order, and Ãi+1 is the
next square that we reach. Because F is the first intersection, it follows that Pi,i+1
lies on ∂Ãi between F and E in clockwise order; see Fig. 5. Thus, Ãi+1 ∈ NB(Ãi)

or Ãi+1 ∈ NL(Ãi) holds. If Ãi+1 ∈ NL(Ãi), we have Pi,i+1 ∈ L
Ãi

. If we move from

Pi,i+1 to F on ∂Ãi , we move in clockwise order on ∂Hh. If we reach Pi−1,i before F ,
the square, Ãi−1, is between Pi,i+1 and F . The points, Pi,i+1 and F , are on ∂Hh, and
thus, ∂Hh ∩Ãi is disconnected, which contradicts Lemma 1. Thus, we reach F before
Pi−1,i . Moreover, Ãi must have a bottom neighbor, and therefore, Pi−1,i ∈ B◦

Ãi
. By

Lemma 2, we have Ãi = Ã1 or Ãi+1 = Ã1. Both cases contradict the fact that Dl

intersects neither Ã2 in the lower right corner nor Ã1. Altogether, Pi,i+1 must be on
B

Ãi
to the left of F . �

Now, observe the horizontal ray that emanates from the upper right corner of Ãlow
to the right: This ray is subdivided into supported and unsupported sections. Let U =
MN be the leftmost unsupported section with left endpoint M and right endpoint N ;
see Fig. 5. Now, we split Hh into two parts, H�

h below MN and H
(1)
h := Hh\H�

h .

We split H
(1)
h into H

(2)
h and H��

h etc., until there is no further intersection between

the boundary of H
(z)
h and Dh

l . Because there is a finite number of intersections, this

process will eventually terminate. In the following, we show that H
(1)
h and H�

h are

1030 Algorithmica (2014) 68:1019–1044

indeed two separate holes, and that H�
h has the same properties as an original one,

i.e., it is a hole of Type R or T. Thus, we can analyze H�
h using the same technique,

i.e., we may split H�
h with respect to its left diagonal. We need some lemmas for this

proof:

Lemma 6 M is the upper right corner of Ãlow.

Proof Case A: By Lemma 5, we know F ∈ R
Ãi

and Pi−1,i ∈ T
Ãi

. By Lemma 1, the

upper right corner, M ′, of Ãi belongs to ∂Hh. Because F does not coincide with M ′
(degenerate intersection), FM ′ is a vertical line of positive length. Hence, M ′ is the
beginning of an unsupported section of the horizontal ray emanating from M ′ to the
right. Thus, the leftmost unsupported section starts in M ′; that is, M = M ′. A similar
argument holds in Case B. �

To ensure that H�
h is well defined, we show that it has a closed boundary. Ob-

viously, MN and the part of ∂Hh counterclockwise from M to N forms a closed
curve. We place an imaginary copy of Ãup on MN , such that the lower right cor-
ner is placed in N . We call the copy the virtual lid, denoted by Ã′

up. We show that

MN < ãup holds, where ãup denotes the side length of Ãup. Thus, MN is completely
covered by the virtual copy of Ãup, and in turn, we can choose the virtual block as a
new lid for H�

h .

Lemma 7 MN < ãup.

Proof We show that at the time Ãup is packed by BottomLeft, it can be moved
to the right along MN , such that the lower right corner coincides with N . Since
MN is unsupported, MN ≥ ãup implies that there would have been a position
for Ãup that is closer to the bottom of S than its current position, a contradic-
tion.

Let VN be the vertical line passing through the point N , and let vN be its x-
coordinate. Assume that there is a square, Ãp , that prevents Ãup from being moved
as described. Then, Ãp fulfills l

Ãp
< vN and b

Ãp
< t

Ãup
(∗); see Fig. 5. Now, consider

the sequence L
Ãp

, and note that all squares in L
Ãp

are placed before Ãup. From (∗)

we conclude that the skyline, S
Ãp

, may intersect the horizontal line passing through

T
Ãlow

only to the left of vN . If the skyline intersects MN or touches it in more than
one point, we have a contradiction to the choice of M and N as endpoints of the
first unsupported section. If Pup,low is to the left of M , an intersection between M

and Pup,low is not possible, because this part completely belongs to T
Ãlow

. Therefore,
S

Ãp
either intersects the horizontal line to the left of Pup,low or it touches LS above

T
Ãlow

. This implies that Ãup must pass Ãp on the right side and at the bottom side

to get to its final position. In particular, b
Ãp

< t
Ãup

implies that Ãup’s path must go
upwards to reach its final position; such a path contradicts the choice of Bottom-
Left. �

Algorithmica (2014) 68:1019–1044 1031

Using the preceding lemmas, we can prove the following:

Corollary 1 H�
h is a hole of Type R or Type T with virtual lid Ã′

up.

Proof H�
h has a closed boundary, and there is at least a small area below MN in

which no squares are placed. Hence, H�
h is a hole. Using the arguments that the

interior of MN is unsupported and that N is supported and lies on L
Ãq

, for some
1 ≤ q ≤ k, we conclude that there is a vertical line of positive length below N on
∂Ãq that belongs to ∂Hh. If we move from N on ∂Ãq in counterclockwise order,
we move on ∂Hh in clockwise order and reach Ãq−1 next. If Pq−1,q ∈ L

Ãq
, then H�

h

is of Type R. If Pq−1,q ∈ B
Ãq

, then it is of Type T. Pq−1,q /∈ L
Ãq

∪ B
Ãq

yields a

contradiction, because in this case there is no bottom neighbor for Ãq .
The sequences B

Ãq
and B

Ãlow
exist, because both Ãq and Ãlow are supported.

Thus, Ã′
up is the unique lid of H�

h . �

Note that the preceding lemmas also hold for the holes H
(...)
h , H��

h , H���
h , and so

on.

Lemma 8 For every square, Ai , there is at most one copy of Ai .

Proof A square Ai is used as a virtual lid only if its lower right corner is on the
boundary of the hole that is split. Because its corner can be on the boundary of at
most one hole, there is only one hole with virtual lid Ai . �

2.3 Computing the Area of a Hole

In this section we show how to compute the area of a hole. In the preceding section
we eliminated all intersections of Dh

l with the boundary of the hole, H(z)
h , by splitting

the hole. Thus, we assume that we have a set of holes, Ĥh, h = 1, . . . , s�, that fulfill
∂Ĥh ∩ Dh

l = ∅ and have either a non-virtual or a virtual lid.
Our aim is to bound |Ĥh| by the areas of the squares that contribute to ∂Ĥh.

A square, Ai , may contribute to more than one hole. Therefore, it is too expensive
to use its total area, a2

i , in the bound for a single hole. Instead, we charge only frac-
tions of a2

i per hole. Moreover, we charge every edge of Ai separately. By Lemma 1,

∂Ĥh ∩ ∂Ai is connected. In particular, every side of Ai contributes at most one (con-
nected) line segment to ∂Ĥh. For the left (bottom, right) side of a square, Ai , we
denote the length of the line segment contributed to ∂Ĥh by λh

i (βh
i , ρh

i ; respec-
tively). If a side of a square does not contribute to a hole, the corresponding length of
the line segment is defined to be zero.

Let c
{λ,β,ρ}
h,i be appropriate coefficients, such that the area of a hole can be charged

against the area of the adjacent squares, i.e.,

|Ĥh| ≤
n+1∑

i=1

cλ
h,i

(
λh

i

)2 + c
β
h,i

(
βh

i

)2 + c
ρ
h,i

(
ρh

i

)2
.

1032 Algorithmica (2014) 68:1019–1044

As each point on ∂Ai is—obviously—on the boundary of at most one hole, the
line segments are pairwise disjoint. Thus, for the left side of Ai , the two squares
inside Ai induced by the line segments, λh

i and λ
g
i , of two different holes, Ĥh and

Ĥg , do not overlap. Therefore, we obtain

s�∑

h=1

cλ
h,i · (λh

i

)2 ≤ cλ
i · a2

i ,

where cλ
i is the maximum of the cλ

h,i ’s taken over all holes Ĥh. We call cλ
i the charge

of LAi
and define c

β
i and c

ρ
i analogously.

We use virtual copies of some squares as lids. However, for every square, Ai , there
is at most one copy, A′

i . We denote the line segments and charges corresponding to A′
i

by λh
i′ , cλ

h,i′ , and so on. Taking the charges to the copy into account, the total charge
of Ai is given by

ci = cλ
i + c

β
i + c

ρ
i + cλ

i′ + c
β

i′ + c
ρ

i′ .

Altogether, we bound the total area of the holes by

s�∑

h=1

|Ĥh| ≤
n+1∑

i=1

ci · a2
i ≤

n+1∑

i=1

c · a2
i ,

where c = maxi=1,...,n{ci}. In the following, we want to find an upper bound
on c.

Holes with a Non-Virtual Lid We know that each hole is either of Type R or T.
Moreover, we removed all intersections of Ĥh with its diagonal, Dh

l . Therefore, Ĥh

lies completely inside the polygon formed by Dh
l , Dh

r , and the part of ∂Ĥh that is
clockwise between P ′ and Q′; see Fig. 4.

If Ĥh is of Type R, then we consider the rectangle, R1, of area ρh
2 · βh

1 induced by
the points P , P ′, and Q. Moreover, let �1 be the triangle below R1 formed by the
bottom side of R1, Dh

l , and the vertical line, VQ, passing through Q; see Fig. 4. We
obtain:

Lemma 9 Let Ĥh be a hole of Type R. Then,

|Ĥh| ≤
(
βh

1

)2 + 1

2

(
ρh

2

)2
.

Proof Obviously, |Ĥh| ≤ |R1| + |�1|. As Dh
l has slope −1, we get |�1| = 1

2 (βh
1)2.

Moreover, we have |R1| = ρh
2 · βh

1 ≤ 1
2 (ρh

2)2 + 1
2 (βh

1)2. Altogether, we get the stated
bound. �

Algorithmica (2014) 68:1019–1044 1033

Thus, we charge the bottom side2 of Ã1 with 1 and the right side of Ã2 with 1
2 . In

this case, we get c
β

h,1 = 1 and c
ρ
h,2 = 1

2 .

If Ĥh is of Type T, we define R1 and �1 in the same way. In addition, R2 is the
rectangle of area βh

k · λh
k−1 induced by the points Q′ and Pk−1,k as well as the part

of B
Ãk

that belongs to ∂Ĥh. Let �2 be the triangle below R2, induced by the bottom

side of R2, Dh
r , and VQ. Using similar arguments as in the preceding lemma, we get:

Corollary 2 Let Ĥh be a hole of Type T. Then,

|Ĥh| ≤
(
βh

1

)2 + (
βh

k

)2 + 1

2

(
ρh

2

)2 + 1

2

(
λh

k−1

)2
.

We obtain the charges c
β

h,1 = 1, c
ρ
h,2 = 1

2 , c
β
h,k = 1 and cλ

h,k−1 = 1
2 . Thus, we have a

maximum total charge of 2 (bottom: 1, left: 1/2, and right: 1/2) for a square, so far.

Holes with a Virtual Lid Next we consider a hole, Ĥh, with a virtual lid. Let Ĥg

be the hole immediately above Ĥh, i.e., Ĥh was created by removing the diagonal-
boundary intersections in Ĥg . Corresponding to Lemma 5, let Ãup be the square
whose copy becomes a new lid, while Ã′

up is the copy. The bottom neighbor of Ãup is

denoted by Ãlow. We show that Ã′
up increases the total charge of Ãup not above 2.5.

Recall that Ĥh is a hole of Type R or T by Corollary 1.
If Ãup does not exceed Ãlow to the left, it cannot serve as a lid for any other

hole; see Fig. 6. Hence, the charge of the bottom side of Ãup is zero; by Corollary 1,
Lemma 9, and Corollary 2 we obtain a charge of at most 1 to the bottom side of Ã′

up.

Thus, we get a total charge of 1 to Ãup. For an easier summation of the charges at the
end, we transfer the charge from the bottom side of Ã′

up to the bottom side of Ãup.

If it exceeds Ãlow to the left, we know that the part B
Ãup

∩ T
Ãlow

of B
Ãup

is not
charged by any other hole, because it does not belong to the boundary of a hole, and
the lid is defined uniquely.

We define points, P and P ′, for Ĥh in the same way as in the preceding section.
Independent of Ĥh’s type, Ã′

up would get charged only for the rectangle R1 induced
by P , P ′, and N , as well as for the triangle below R1 if we would use Lemma 9 and
Corollary 2.

Next we show that we do not have to charge Ã′
up for R1 at all, because the part of

R1 that is above D
g
l is already included in the bound for Ĥg , and the remaining part

can be charged to B
Ãup

and R
Ãlow

. Ã′
up will get charged only 1

2 for the triangle.

D
g
l splits R1 into a part that is above this line and a part that is below this line.

The latter part of R1 is not included in the bound for Ĥg . Let F be the intersection

2The charge to the bottom of Ã1 can be reduced to 3
4 by considering the larger one of the rectangles, R1

and the one induced by Q, Q′ , and P , as well as the triangle below the larger rectangle formed by Dh
l

and Dh
r . However, this does not lead to a better competitive ratio, because these costs are already dominated

by the cost for holes of Type T.

1034 Algorithmica (2014) 68:1019–1044

Fig. 6 The holes Ĥg and Ĥh and the rectangle R1 which is divided into two parts by D
g
l

. The upper part

is already included in the bound for Ĥg . The lower part is charged completely to R
Ãlow

and B
Ã′

up
. Here

P and P ′ are defined with respect to Ĥh

of ∂Ĥg and D
g
l that caused the creation of Ĥh. If F ∈ R

Ãlow
, then this part is at most

1
2 (ρh

low)2, where ρh
low is the length of P ′F . We charge 1

2 to R
Ãlow

. If F ∈ B
Ãup

, then

the part of R1 below D
g
l can be split into a rectangular part of area ρh

low · βh
up, and a

triangular part of area 1
2 (ρh

low)2; see Fig. 6. Here βh
up is the length of PF . The cost

of the triangular part is charged to R
Ãlow

. Note that B
Ãup

exceeds Ãlow to the left and

to the right and that the part that exceeds Ãlow to the right is not charged. Moreover,
ρh

low is not larger than B
Ãup

∩ T
Ãlow

, i.e., the part of B
Ãup

that was not charged before.

Therefore, we can charge the rectangular part completely to B
Ãup

. Hence, Ã′
up is

charged 1
2 for the triangle below R1, and Ãup is charged at most 2.5 in total.

Holes Containing Parts of ∂S So far we did not consider holes whose boundary
touches ∂S. We show in this section that these holes are just special cases of the ones
discussed in the preceding sections.

Because the top side of a square never gets charged for a hole, it does not matter
whether a part of BS belongs to the boundary. Moreover, for any hole, Ĥh, either LS

or RS can be a part of ∂Ĥh, because otherwise there exits a curve with one endpoint
on LS and the other endpoint on RS , with the property that this curve lies completely
inside of Ĥh. This contradicts the existence of the bottom sequence of a square lying
above the curve.

For a hole Ĥh with LS contributing to ∂Ĥh, we can use the same arguments as in
the proof for Lemma 1 to show that LS ∩ ∂Ĥh is a single line segment. Let P be the
topmost point of this line segment and Ã1 be the square containing P . Ã1 must have
a bottom neighbor, Ãk , and Ãk must have a left neighbor, Ãk−1, we get Pk,1 ∈ B

Ã1

Algorithmica (2014) 68:1019–1044 1035

Table 1 The charges to the different sides of a single square. Summing up the charges to the different
sides, we conclude that every square gets a total charge of at most 2.5

Non-virtual Lid Virtual Lid Total

Type R Type T LS RS Max. Type R Type T RS Max.

Left 0 1
2

1
2 0 1

2 0 0 0 0 1
2

Bottom 1 1 1 1 1 1
2

1
2

1
2

1
2 1.5

Right 1
2

1
2 0 1

2
1
2 0 0 0 0 1

2

Total 2 1
2 2.5

and Pk−1,k ∈ L
Ãk

, respectively. We define the right diagonal, Dr , and the point Q′ as

above and conclude that Ĥh lies completely inside the polygon formed by LS ∩ ∂Ĥh,
Dr , and the part of ∂Ĥh that is between P and Q′ in clockwise order. We split this
polygon into a rectangle and a triangle in order to obtain charges of 1 to B

Ã1
and 1

2
to L

Ãk
.

Now, consider a hole where a part of RS belongs to ∂Ĥh. We denote the topmost
point on RS ∩ ∂Ĥh by Q, and the square containing Q by Ã1. We number the squares
in counterclockwise order and define the left diagonal, Dl , as above. Now we consider
the intersections of Dl and eliminate them by creating new holes. After this, the
modified hole Ĥ

(z)
h can be viewed as a hole of Type T, for which the part on the right

side of VQ has been cut off; compare Corollary 2. We obtain charges of 1 to B
Ã1

and
1
2 to R

Ã2
. For the copy of a square we get a charge of 1

2 to the bottom side.

2.4 Summing up the Charges

Altogether, we have the charges from Table 1. The charges depend on the type of
the adjacent hole (Type R, T, touching or not touching the strip’s boundary), but the
maximal charge dominates the other ones. Moreover, the square may also serve as a
virtual lid. The maximal charges from a hole with non-virtual lid and those from a
hole with virtual lid sum up to a total charge of 2.5 per square. This proves our claim
from the beginning:

s∑

h=1

|Hh| ≤ 2.5 ·
n+1∑

i=1

a2
i .

2.5 Improvement

The above proof shows that BottomLeft does indeed provide a better asymptotic
bound than the factor of 4 established by Azar and Epstein, even in the presence
of gravity. Intuitively, BottomLeft is a fairly flexible strategy that does not waste a
lot of space, so it is natural to conjecture a better upper bound than 3.5. However,
the price for the flexibility of the algorithm is a fairly intricate analysis. We believe
that making use of this structure may yield an even better result, which is why we

1036 Algorithmica (2014) 68:1019–1044

provided all details. A discussion of possible further improvement is given in the
concluding section.

In the following section, we show that paradoxically, a more restricted algorithmic
approach allows establishing an even better bound. This does not mean that it is
indeed the better algorithm; at this point, it is the algorithm with the best proven
bound.

3 The Strategy SlotAlgorithm

In this section we analyze a different strategy for the strip packing problem with
Tetris and gravity constraint. This strategy provides more structure on the generated
packing, at the price of an upfront cost of 2, resulting from rounding up square sizes
to the nearest power of 1/2. However, this allows us to prove an upper bound of
2.6154 on the asymptotic competitive ratio.

3.1 The Algorithm

Consider two vertical lines of infinite length going upwards from the bottom side of
S and parallel to the left and the right side of S. We call the area between these lines
a slot, the lines the left boundary and the right boundary of the slot, and the distance
between the lines the width of the slot.

Now, our strategy SlotAlgorithm works as follows: We divide the strip S of width
1 into slots of different widths; for every j = 0,1,2 . . . , we create 2j slots of width
2−j side by side, i.e., we divide S into one slot of width 1, two slots of width 1/2,
four slots of width 1/4, and so on. Note that a slot of width 2−j contains 2 slots of
width 2−j−1; see Fig. 7.

For every square Ai , we round the side length ai to the smallest number 2−ki that
is larger than or equal to ai . Among all slots of with 2−ki , we place Ai in the one
that allows Ai to be placed as near to the bottom of S as possible, by moving Ai

down along the left boundary of the chosen slot until another square is reached. The
algorithm clearly satisfies the Tetris and the gravity constraints, and next we show
that the produced height is at most 2.6154 times the height of an optimal packing.

3.2 Analysis

Let Ai be a square placed by the SlotAlgorithm in a slot Ti of width 2−ki . If ai ≤ 1
2 ,

we define δi as the distance between the right side of Ai and the right boundary of
the slot of width 2−ki+1 that contains Ai , and we define δ′

i = min{ai, δi}. We call the
area obtained by enlarging Ai by δ′

i to the right and by ai − δ′
i to the left (without Ai

itself) the shadow of Ai and denote it by AS
i . Thus, AS

i is an area of the same size as
Ai and lies completely inside a slot of twice the width of Ai ’s slot and covering the
width of Ti . If ai ≥ 1

2 , we enlarge Ai only by ai to the right side and call this area the
shadow. Moreover, we define the widening of Ai as AW

i = (Ai ∪AS
i)∩Ti ; see Fig. 7.

Now, consider a point P in S that is neither inside an Aj nor inside an AS
j for any

square Aj . We charge P to the square Ai , if AW
i is the first widening that intersects

Algorithmica (2014) 68:1019–1044 1037

Fig. 7 Squares Ai , i = 1,2,3,
with their shadows AS

i
(dark

grey) and their widening AW
i

(dashed lines). δ′
2 is equal to a2

and δ′
3 is equal to δ3. The points

P and Q are charged to A1. R is
not charged to A1, but to A2

the vertical line going upwards from P . We denote by FAi
the set of all points charged

to Ai and by |FAi
| its area. For points lying on the left or the right boundary of a slot,

we break ties arbitrarily. For the analysis, we place a closing square, An+1, of side
length 1 on top of the packing. Therefore, every point in the packing that does not lie
inside an AS

j is charged to a square. Because Ai and AS
i have the same area, we can

bound the height of the packing produced by the SlotAlgorithm by

2 ·
n∑

i=1

a2
i +

n+1∑

i=1

|FAi
|.

Theorem 2 The SlotAlgorithm is (asymptotically) 2.6154-competitive.

Proof The height of an optimal packing is at least
∑n

i=1 a2
i , and therefore, it suffices

to show that |FAi
| ≤ 0.6154 · a2

i holds for every square Ai . We select for every Ai a
sequence of squares Ãi

1, Ã
i
2, . . . , Ã

i
m starting with Ãi

1 = Ai (to ease notation, we omit
the superscript i in the following). We denote by Ej the extension of the bottom side
of Ãj to the left and to the right (up to the boundaries of the strip); see Fig. 8.

We will show that by an appropriate choice of the sequence, we can bound the area
of the part of F

Ã1
that lies between a consecutive pair of extensions, Ej and Ej+1,

in terms of Ãj+1 and the slot width. From this we will derive the upper bound on the
area of F

Ã1
. We denote the slot in which Ãj is placed by Tj , and the width of Tj by

2−kj . Note that F
Ã1

is completely contained in T1.

A slot is called active (with respect to Ej and Ã1) if there is a point in the slot that
lies below Ej and that is charged to Ã1 and nonactive otherwise. If it is clear from
the context we leave out the Ã1.

The sequence of squares is chosen as follows: The first square is Ã1 = Ai and the
next square, Ãj+1, j = 1, . . . ,m − 1, is chosen as the smallest one that intersects or

1038 Algorithmica (2014) 68:1019–1044

Fig. 8 The first three squares of the sequence (light gray) with their shadows (gray). In this example, Ã2
is the smallest square that bounds Ã1 from below. Ã3 is the smallest one that intersects E2 in an active slot
(with respect to E2) of width 2−k2 . There has to be an intersection of E2 and some square in every active
slot because, otherwise, there would have been a better position for Ã2. T2 is nonactive, (with respect to
E2) and of course, also with respect to all extension Ej , j ≥ 3. The part of F

Ã1
that lies between E1 and

E2 has size 2−k1 ã2 − 2ã2
2

touches Ej in an active slot (with respect to Ej and Ã1) of width 2−kj and that is not
equal to Ãj ; see Fig. 8. The sequence ends if all slots are nonactive with respect to
an extension Em. We prove each of the following claims by induction:

Claim A Ãj+1 exists for j + 1 ≤ m and ãj+1 ≤ 2−kj −1 for j + 1 ≤ m, i.e., the
sequence exists and its elements have decreasing side length.

Claim B The number of active slots (with respect to Ej) of width 2−kj is at most

j∏

i=2

(
2ki−ki−1 − 1

)
.

Claim C The area of the part of F
Ã1

that lies in an active slot of width 2−kj between

Ej and Ej+1 is at most 2−kj ãj+1 − 2ã2
j+1.

Proof of Claim A If Ã1 is placed on the bottom of S or completely supported by a
larger square, F

Ã1
has size 0 and Ã1 is the last element of the sequence (all slots are

nonactive). Otherwise, the square Ã1 has at least one bottom neighbor, which is a
candidate for the choice of Ã2.

Now suppose for a contradiction that there is no candidate for the choice of the
(j + 1)th element. Let T ′ be an active slot in T1 (with respect to Ej) of width 2−kj

where Ej is not intersected by a square in T ′. If there is a horizontal line segment

Algorithmica (2014) 68:1019–1044 1039

Fig. 9 If Ej is not intersected in an active slot of size 2−kj we obtain a contradiction: Either there is a

position for Aj that is closer to the bottom of S or there is a square that makes Ej nonactive. Â is the
square Q is charged to, B

Â
its bottom sequence

spanning T ′ at ε height below Ej , of which all points are charged to Ã1, we conclude
that there would have been a better position for Ãj . Hence, there is at least one point
Q below Ej that is visible from Ej (i.e., the line segment from Q straight up to Ej

does not intersect a square) and that is not charged to Ã1; see Fig. 9. Consider the
bottom sequence (as defined in Sect. 2.1) of the square Â that Q is charged to. This
sequence must intersect Ej outside of T ′ (by the choice of T ′). This implies that one
of its elements, A′, must intersect the left or the right boundary of T ′, and we can
conclude that A′ has at least the width of T ′. This is because (by the algorithm) a
square with rounded side length 2−
 cannot cross the boundary of a slot of width
larger than 2−
. In turn, a square with rounded side length larger than the width of
T ′ completely covers T ′, and all points in T ′ below Ej are charged to A′. Thus, T ′
cannot be active with respect to Ej and Ã1; a contradiction. This proves that there is
a candidate for the choice of Ãj+1.

Suppose ã2 > 2−k1−1. Then, Ã2 was placed in a slot of width at least 2−k1 . Thus,
its widening has width at least 2−k1 and covers the width of T1. Ã2 is a bottom
neighbor of Ã1. Then, no point in T1 below E1 is charged to Ã1, and hence T1 is
nonactive with respect to E1 and Ã1. This implies that Ã2 does not belong to the
sequence; a contradiction.

Similarly, ãj+1 ≥ 2−kj implies that all slots inside Tj are nonactive (with respect
to Ej). Therefore, if Ãj+1 belongs to the sequence, ãj+1 ≤ 2−kj −1 must hold. �

Proof of Claim B By definition, the only active slot of width 2k1 can be T1; see Fig. 8.
By the induction hypothesis, there are at most

(
1

2k1
2k2 − 1

)
·
(

1

2k2
2k3 − 1

)
· . . . ·

(
1

2kj−2
2kj−1 − 1

)

1040 Algorithmica (2014) 68:1019–1044

active slots of width 2−kj−1 (with respect to Ej−1). Each of these slots contains
2kj −kj−1 slots of width 2−kj , and in every active slot of width 2−kj−1 at least one slot
of width 2−kj is nonactive because we chose Ãj to be of minimum side length. Hence,
the number of active slots (with respect to Ej) is at most a factor of (1

2kj−1
2kj − 1)

times larger than the number of active slots (with respect to Ej−1). �

Proof of Claim C The area of the part of F
Ã1

that lies between E1 and E2 is at most

2−k1 ã2 − 2ã2
2 ; see Fig. 8: The width of the strip is 2−k1 and the height of the part

between E1 and E2 is ã2. We can subtract the area of Ã2 twice, because F
Ã1

contains

only points that are neither inside a square nor inside a shadow and ÃS
2 was defined

to lie completely inside a slot of width 2−k2+1 ≤ 2−k1 and is of same area as Ã2.
By the choice of Ãj+1 and because in every active slot of width 2−kj there is at

least one square that intersects Ej (points below the widening of this square are not
charged to Ã1) we conclude that the area of F

Ã1
between Ej and Ej+1 is at most

2−kj ãj+1 − 2ã2
j+1, in every active slot of width 2−kj . �

Altogether, we proved that the sequence is well defined and we calculated an
upper bound on the number of active slots and an upper bound on the size of the part
of |F

Ã1
| that is contained in an active slot. Multiplying the number and the size yields

an upper bound on |F
Ã1

| of

|F
Ã1

| ≤
(

ã2

2k1
− 2ã2

2

)
· 1 +

m∑

j=2

(
ãj+1

2kj
−2ã2

j+1

) j∏

i=2

(
2ki

2ki−1
−1

)
.

By simple analysis, this expression is maximized if ãi+1 = 1/2ki+2, for i = 1, . . . ,m,
i.e., ki = k1 + 2(i − 1).

We get:

|F
Ã1

| ≤ 1

2k1+2
· 1

2k1
− 2 ·

(
1

2k1+2

)2

+
m∑

j=2

[
1

2k1+2(j−1)
· 1

2k1+2j
− 2

(
1

2k1+2j

)2] j−1∏

i=1

(
2k1+2i

2k1+2(i−1)
− 1

)

= 1

2k1+3
+

m∑

j=2

[
1

22k1+4j−2
− 1

22k1+4j−1

]
· 3j−1

= 1

2k1+3
+

m∑

j=2

3j−1

22k1+4j−1

= 1

2k1+3
+

m−1∑

j=1

3j

22k1+4j+3

≤
∞∑

j=0

3j

22k1+4j+3
.

Algorithmica (2014) 68:1019–1044 1041

Fig. 10 The left column shows possible packings of any algorithm for the first iteration. The right column
contains optimal packings. The top row displays the first and the bottom row the second type of sequence

The fraction |F
Ã1

|/ã2
1 is maximized, if we choose ã1 as small as possible, i.e., ã1 =

2−k1−1 + ε. We conclude:

|F
Ã1

|
ã2

1

≤
∞∑

j=0

22k1+2 · 3j

22k1+4j+3
=

∞∑

j=0

3j

24j+1
= 1

2
·

∞∑

j=0

(
3

16

)j

= 8

13
= 0.6153 . . .

Thus,

|FAi
| ≤ 0.6154 · a2

i .
�

4 Lower Bounds

The lower bound construction for online strip packing introduced by Galambos and
Frenk [16] and later improved by van Vliet [25] relies on an integer programming
formulation and its LP-relaxation for a specific bin packing instance. This formula-
tion does not take into account that there has to be a collision-free path to the final
position of the item. Hence, it does not carry over to our setting.

1042 Algorithmica (2014) 68:1019–1044

The best asymptotic lower bound we are aware of, is 3
2 . It is based on two se-

quences which are repeated iteratively. We denote by Ak
i , k = 1, . . . ,4 and i =

1,2, . . ., the k-th square of the sequence in the i-th iteration, and we denote by Hi ,
i = 1,2, . . ., the height of the packing after the i-th iteration; we define H0 = 0.

The first two squares of each sequence have a side length of 1
2 − 2−i+1ε, that

is, a1
1 = a2

1 = 1
2 − ε. Now, depending on the choice of the algorithm, the sequence

continues with one of the following two possibilities (see Fig. 10):
Type I: If the algorithm packs the first two squares on top of each other, the se-

quence continues with one square of side length 1
2 + 2 · 2−i+1 · ε, that is, a3

1 = 1
2 + 2ε

and a4
1 = 0 (upper left picture in Fig. 10).

Type II: Otherwise, the sequence continues with two squares of side length 1
2 +

2−i+1 · ε, that is, a3
1 = a4

1 = 1
2 + ε (lower left picture in Fig. 10).

Lemma 10 The height of the packing produced by any algorithm increases in each
iteration, on average, by at least 3

2 .

Proof Consider the i-th iteration, i = 1,2, The first square of this iteration has a
side length of 1

2 − 2−i+1ε and, thus, cannot pass the preceding square of side length
either 1

2 + 2 · 2−i+2 · ε or 1
2 + 2−i+2 · ε (for i > 1, for i = 1 the first square is placed

on the bottom side of the strip).
If the sequence is of Type I, the square of side length 1

2 + 2 · 2−i+1 · ε cannot pass
any of the squares of side length 1

2 − 2−i+1ε that are packed on top of each other;
see Fig. 10. Similarly, if the sequence is of Type II, the second square of side length
1
2 + 2−i+1 · ε cannot pass the first one of the same length.

Thus, the statement holds for both types. �

Theorem 3 There is no algorithm with asymptotic competitive ratio smaller than 3
2

for the online strip packing problem with Tetris and gravity constraint.

Proof The height of the packing produced by any algorithm increases by 3
2 per itera-

tion for the instance described before (Lemma 10). The optimum can pack the squares
belonging to one iteration always such that the height of the packing increases by at
most 1 + 2ε; see the right column of Fig. 10. �

5 Conclusion

There are instances consisting only of squares for which the algorithm of Azar and
Epstein does not yield a competitive factor better than 4. Hence, this algorithm is
tightly analyzed. We proved competitive ratios of 3.5 and 2.6154 for BottomLeft and
the SlotAlgorithm, respectively. Hence, both algorithms outperform the one by Azar
and Epstein if the input consists only of squares.

We do not know any instance for which BottomLeft produces a packing that is 3.5
times higher than an optimal packing. The best lower bound we know is the general 3

2 .
Moreover, we are not aware of an instance in which the SlotAlgorithm reaches its

upper bound of 2.6154. The instance consisting of squares with side length 2−k + δ,

Algorithmica (2014) 68:1019–1044 1043

for large k and small δ, gives a lower bound of 2 on the competitive ratio. Clearly,
BottomLeft performs better on these instances; it is conceivable that the eventual
competitive ratio does not exceed 2.

Hence, there is still room for improvement. Our analysis might be improved or
there may be more sophisticated algorithms for the strip packing problem with Tetris
and gravity constraint. As discussed at the end of Sect. 2, we strongly believe that
BottomLeft should eventually be at least as good as SlotAlgorithm.

At this point, the bottleneck in our analysis for BottomLeft is the case in which a
square has large holes at the right, left, and bottom side and also serves as a virtual
lid; see Fig. 2. This worst case can happen to only a few squares, but never to all
of them. Thus, it may be possible to transfer charges between squares, which may
yield a refined analysis. The same holds for the SlotAlgorithm and the sequence we
constructed to calculate the size of the unoccupied area below a square.

In addition, it may be possible to apply better lower bounds on the packing than
just the total area, e.g., the one arising from dual-feasible functions by Fekete and
Schepers [13].

References

1. Azar, Y., Epstein, L.: On two dimensional packing. J. Algorithms 25(2), 290–310 (1997)
2. Baker, B.S., Schwarz, J.S.: Shelf algorithms for two-dimensional packing problems. SIAM J. Comput.

12(3), 508–525 (1983)
3. Baker, B.S., Coffman, E.G. Jr., Rivest, R.L.: Orthogonal packings in two dimensions. SIAM J. Com-

put. 9(4), 846–855 (1980)
4. Baker, B.S., Brown, D.J., Katseff, H.P.: A 5/4 algorithm for two-dimensional packing. J. Algorithms

2(4), 348–368 (1981)
5. Balogh, J., Békési, J., Galambos, G.: New lower bounds for certain classes of bin packing algo-

rithms. In: Proc. 8th Internat. Workshop Approx. Online Algor. Lect. Notes Comput. Sci., vol. 6534,
pp. 25–36 (2010)

6. Breukelaar, R., Demaine, E.D., Hohenberger, S., Hoogeboom, H.J., Kosters, W.A., Liben-Nowell, D.:
Tetris is hard, even to approximate. Int. J. Comput. Geom. Appl. 14(1–2), 41–68 (2004)

7. Brown, D.J., Baker, B.S., Katseff, H.P.: Lower bounds for on-line two-dimensional packing algo-
rithms. Acta Inform. 18(2), 207–225 (1982)

8. Brucker, P.: Scheduling Algorithms, 2nd edn. Springer, Berlin (2004)
9. Coffman, E.G. Jr., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for level-oriented

two-dimensional packing algorithms. SIAM J. Comput. 9(4), 808–826 (1980)
10. Coffman, E.G. Jr., Downey, P.J., Winkler, P.: Packing rectangles in a strip. Acta Inform. 38(10), 673–

693 (2002)
11. Csirik, J., Woeginger, G.J.: Shelf algorithms for on-line strip packing. Inf. Process. Lett. 63(4), 171–

175 (1997)
12. Epstein, L., van Stee, R.: Online square and cube packing. Acta Inform. 41, 595–606 (2005)
13. Fekete, S.P., Schepers, J.: New classes of lower bounds for bin packing problems. In: Proceed-

ings of the 6th International Conference on Integer Programming and Combinatorial Optimization
(IPCO’98). Lecture Notes in Computer Science, vol. 1412, pp. 257–270. Springer, Berlin (1998)

14. Fekete, S.P., Schepers, J., van der Veen, J.: An exact algorithm for higher-dimensional orthogonal
packing. Oper. Res. 55, 569–587 (2007)

15. Fekete, S.P., Kamphans, T., Schweer, N.: Online square packing. In: Proceedings of the 11th Algo-
rithms and Data Structures Symposium (WADS’09). Lecture Notes in Computer Science, vol. 5664,
pp. 302–314. Springer, Berlin (2009)

16. Galambos, G., Frenk, J.B.G.: A simple proof of Liang’s lower bound for online bin packing and the
extension to the parametric case. Discrete Appl. Math. 41(2), 173–178 (1993)

17. Galambos, G., Woeginger, G.J.: Online bin packing—a restricted survey. Math. Methods Oper. Res.
42(1), 25–45 (1995)

1044 Algorithmica (2014) 68:1019–1044

18. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17(2), 416–429
(1969)

19. Han, X., Iwama, K., Ye, D., Zhang, G.: Strip packing vs. bin packing. In: Proceedings of the 3rd In-
ternational Conference on Algorithmic Aspects in Information and Management (AAIM’07). Lecture
Notes in Computer Science, vol. 4508, pp. 358–367. Springer, Berlin (2007)

20. Kenyon, C., Rémila, E.: Approximate strip packing. In: Proceedings of the 37th Annual IEEE Sympo-
sium on Foundations of Computer Science, (FOCS’96), pp. 31–36. IEEE Comput. Soc., Los Alamitos
(1996)

21. Schiermeyer, I.: Reverse-fit: A 2-optimal algorithm for packing rectangles. In: Proceedings of the 2nd
Annual European Symposium on Algorithms (ESA’94). Lecture Notes in Computer Science, vol. 855,
pp. 290–299. Springer, Berlin (1994)

22. Seiden, S.S.: On the online bin packing problem. J. ACM 49(5), 640–671 (2002)
23. Sleator, D.D.: A 2.5 times optimal algorithm for packing in two dimensions. Inf. Process. Lett. 10(1),

37–40 (1980)
24. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM J. Comput. 26(2),

401–409 (1997)
25. van Vliet, A.: An improved lower bound for online bin packing algorithms. Inf. Process. Lett. 43(5),

277–284 (1992)
26. Ye, D., Han, X., Zhang, G.: A note on online strip packing. J. Comb. Optim. 17(4), 417–423 (2009)

	Online Square Packing with Gravity
	Abstract
	Introduction
	Packing Problems
	Problem Statement
	Related Work
	Offline Strip Packing
	Online Strip Packing
	Tetris
	Strip Packing with Tetris Constraint
	Strip Packing with Tetris and Gravity Constraint

	Our Results

	The Strategy BottomLeft
	Definitions
	Outline of the Analysis
	Basic Properties of the Generated Packing
	Splitting Holes
	Computing the Area of a Hole
	Holes with a Non-Virtual Lid
	Holes with a Virtual Lid
	Holes Containing Parts of S

	Summing up the Charges
	Improvement

	The Strategy SlotAlgorithm
	The Algorithm
	Analysis

	Lower Bounds
	Conclusion
	References

